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Abstract

Nature has devised sophisticated cellular machinery to process mRNA transcripts produced by 

RNA Polymerase II, removing intronic regions and connecting exons together, to produce mature 

RNAs. This process, known as splicing, is very closely linked to transcription. Alternative 

splicing, or the ability to produce different combinations of exons that are spliced together from 

the same genomic template, is a fundamental means of regulating protein complexity. Similar to 

transcription, both constitutive and alternative splicing can be regulated by chromatin and its 

associated factors in response to various signal transduction pathways activated by external 

stimuli. This regulation can vary between different cell types, and interference with these 

pathways can lead to changes in splicing, often resulting in aberrant cellular states and disease. 

The epithelial to mesenchymal transition (EMT), which leads to cancer metastasis, is influenced 

by alternative splicing events of chromatin remodelers and epigenetic factors such as DNA 

methylation and non-coding RNAs. In this review, we will discuss the role of epigenetic factors 

including chromatin, chromatin remodelers, DNA methyltransferases and microRNAs in the 

context of alternative splicing, and discuss their potential involvement in alternative splicing 

during the EMT process.
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INTRODUCTION

The removal of introns from pre-mRNAs followed by the joining together of exons is an 

essential step for the generation of mature mRNAs in higher eukaryotes. When the human 

genome was first sequenced, the number of predicted mRNA coding genes (~25,000) was 

surprisingly much lower than the number of proteins in a mammalian cell (over a million). 

Alternative splicing, which joins together different combinations of exons to allow the 

generation of multiple mRNA isoforms (and in turn proteins) from the same genomic 

region, is the main mechanism responsible for this disparity. The process of alternative 
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splicing contributes significantly to proteome diversity: 92–94% of protein-coding genes 

undergo alternative splicing in humans (Pan et al. 2008; Wang et al. 2008). By switching 

between alternatively spliced isoforms, several functions of the resulting proteins can be 

affected, including protein or DNA binding, ligand binding, enzyme activity, or localization 

of the protein.

A macromolecular complex called the spliceosome is responsible for the stepwise catalysis 

of pre-mRNA splicing, involving four small nuclear ribonucleic proteins (snRNPs or 

“snurps”), the U1, U2, U4/U6 and U5 snRNPs, and several associated splicing factors. 

Splicing can be regulated in cis, by RNA sequences: AG/GU(A or G)AGU at the 5′ splice 

site and YnNCAG/G at the 3′ splice site (the forward slash indicates position of the splice 

site) (Shapiro and Senapathy 1987), which are important in the pre-mRNA splicing reaction 

(Jackson 1991; Hall and Padgett 1994). However, splicing can also be regulated in trans, by 

proteins that can bind to specific RNA sequences. For instance, the serine/arginine rich 

family of proteins (SR proteins) dictate splice site recognition (Bradley et al. 2015; Zahler et 

al. 1992) and lead to exon inclusion (Graveley 2000; Shen and Green 2006) by bringing 

general splicing factors to the splice site to assemble the spliceosome (Roscigno and Garcia-

Blanco 1995; Tarn and Steitz 1996; Das et al. 2007). Another family of splicing regulators is 

the hnRNP group of proteins, which commonly leads to exon exclusion (Smith and 

Valcarcel 2000) through its ability to wrap the pre-mRNA transcript (Krecic and Swanson 

1999). Spliceosome assembly and dynamics is the subject of several excellent reviews (e.g. 

(Jurica and Moore 2003; Wahl et al. 2009; Will and Luhrmann 2011; Lee and Rio 2015) and 

will not be discussed here in detail.

Changes in alternative splicing can be triggered by a variety of stimuli, including but not 

limited to calcium (Razanau and Xie 2013; Sharma et al. 2014), estradiol (Bhat-Nakshatri et 

al. 2013), stress (Busa and Sette 2010; Lehtinen et al. 2013) and circadian rhythms 

(Henriques and Mas 2013), to name a few. These environmental stimuli -induced alternative 

splicing events can in turn regulate a wide variety of important cellular functions, including 

but not limited to cell cycle, signal transduction, cell proliferation and differentiation, 

apoptosis, angiogenesis, invasion, motility and metastasis. Therefore, any deviations from 

the highly controlled alternative splicing events has the potential to severely affect cellular 

function, leading to disease such as cancer. Splicing in turn can influence transcriptional 

proteins and the process of transcription in general, which can in turn affect chromatin in the 

vicinity of the gene that is being transcribed. Both splicing and chromatin have been shown 

to play important roles in the process of EMT, or epithelial to mesenchymal transition. 

Research has suggested that the interactions between splicing, chromatin and transcription 

involve several feedback mechanisms, which regulate gene expression during EMT. In this 

review, we will discuss the involvement of chromatin remodelers, epigenetic factors and 

alternative splicing during the cellular program of EMT.

Alternative splicing, transcription and chromatin: closely coupled mechanisms

For many years, pre-mRNA splicing and transcription were thought to occur independently 

from each other. This concept was challenged in the late 80s, when electron microscopy 

images of nascent pre-mRNA transcripts from Drosophila embryos revealed that in fact, 
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splicing could occur in concert with transcription (Beyer and Osheim 1988). More recently, 

several studies have provided compelling evidence that introns can be removed while the 

nascent transcript is still tethered to the DNA through the RNA polymerase II (Pol II) 

complex (Dye et al. 2006; Listerman et al. 2006; Pandya-Jones and Black 2009; Ameur et 

al. 2011; Khodor et al. 2011; Vargas et al. 2011; Khodor et al. 2012; Tilgner et al. 2012).

The kinetic model of co-transcriptional splicing was proposed to explain the keen “eyesight” 

of the spliceosome complex that allowed it to recognize the short, often ~100 nt or less sized 

exons, the proverbial needles in the haystack of long, several 1000 Kb introns. This model 

proposed that the rate of Pol II elongation directly affected splice site recognition and 

spliceosome assembly. In other words, if Pol II transcribed at a rapid rate (either due to it 

being hyperphosphorylated, or if there was fairly “open” chromatin along the gene), then the 

spliceosome would not be able to keep up with the fast moving Pol II (Figure 1). This would 

result in several alternative splice sites being presented to the spliceosome to choose from, 

and by default, it would choose the stronger 3′ splice site more often relative to the weaker 

site(s), leading to some exons being spliced out (Figure 1). In contrast, if the rate of Pol II 

elongation was hindered in some way, either due to chromatin factors such as nucleosomes 

or due to DNA methylation in the intragenic regions, the spliceosome machinery is then able 

to keep up with Pol II elongation, and splices all possible exons. In support of this model, 

experiments that used Pol II mutants that slowed down the rate of Pol II elongation (de la 

Mata et al. 2003), or that inserted DNA elements that ‘paused’ Pol II in reporter constructs 

(Robson-Dixon and Garcia-Blanco 2004) were able to favor “weak” exon inclusion in the 

fibronectin (FN1) and fibroblast growth factor receptor 2 (FGFR2) genes.

The involvement of chromatin in alternative splicing was first suggested in a study that 

followed adenovirus E1B mRNA splicing in HeLa cells at early versus late time after 

infection (Adami and Babiss 1991). The E1B precursor mRNA was known to produce two 

alternatively spliced mRNAs- a 22S, which was found during early infection (pre-replicative 

phase), and a 13S, which appeared later (replicative phase) during viral infection. Suspecting 

a trans-activating factor that switched the splicing during the course of infection, they tested 

this hypothesis by infecting HeLa cells first with one mutant virus, allowing replication for 

15 hours, and then adding a second mutant virus. Irrespective of the presence of the first 

virus, which had switched splicing to the 13S form, the newly infected virus nevertheless 

still produced the 22S isoform (Adami and Babiss 1991), indicating that a trans-activating 

factor that appeared after viral infection was probably not involved, as the first infection 

should have already resulted in expression of large amounts of the suspected factor. As there 

was very little variation in the genomic sequence of the viral templates, the question of how 

the adenovirus could produce two such different transcripts was raised. The authors 

proposed that if Pol II elongation was hindered due to more compact chromatin, it would 

allow the incorporation of the upstream 5′ splice site, forming a shorter mRNA, relative to 

when the downstream splice site was used.

A subsequent study supported this idea following their demonstration that the upstream E1a 

adenovirus splice site was utilized when the cells expressed a slow Pol II point mutant (de la 

Mata et al. 2003). Further support for the kinetic model came from the Groudine laboratory, 

who showed that the introduction of an in vitro methylated DNA sequence downstream of a 
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gene promoter caused local decreases in histone acetylation and chromatin accessibility, 

thereby slowing down Pol II elongation (Lorincz et al. 2004). Although a slow rate of Pol II 

elongation often allows for alternative exon inclusion, there are exceptions. Depending on 

the recruitment and function of RNA binding proteins involved in splicing, a slow rate of 

Pol II elongation may favor alternative exon exclusion. The alternative exon 9 of the cystic 

fibrosis transmembrane conductance regulator (CFTR) gene is excluded when the Pol II 

elongation rate is slow (Dujardin et al. 2014). Under these conditions a negative factor 

CELF2 (CUGBP, Elav-Like Family Member 2; ETR-3) is recruited to the UG-repeat at the 

exon 9 3′ splice site, resulting in the displacement of the constitutive splicing factor U2AF2 

(U2 small nuclear RNA auxiliary factor 2; also called U2AF65) from the polypyrimidine 

tract (Dujardin et al. 2014). Together these events result in exon 9 exclusion.

Since these discoveries, a plethora of studies have been published, detailing the involvement 

of epigenetic factors- including nucleosome positioning, histone modifications and histone 

variants, DNA methylation and non-coding RNAs- in alternative splicing (reviewed in 

(Kornblihtt 2006; Allemand et al. 2008; Allo et al. 2010; Luco et al. 2011; Khan et al. 2012; 

Braunschweig et al. 2013), some of which will be discussed here.

Alternative splicing in cancer and EMT

Alternative splicing regulates many genes involved in cancer progression and metastasis. 

The importance of alternative splicing in cancer is evident from the fact that DNA mutations 

and normal genetic variation can contribute to alternative splicing defects: over 100 different 

point mutations have been reported near mRNA splice junctions, which affect the pathology 

of diseases by altering splicing efficiency (Krawczak et al. 1992; Wang and Cooper 2007). 

Loss of splicing fidelity can result in isoforms in proteins controlling various facets of 

cancer (reviewed in (Brinkman 2004; Venables 2006). For example, the BCL-x gene 

produces two splice variants, one proapoptotic Bcl-x(s) form, and the other an antiapoptotic 

Bcl-x(L) form, via alternative 5′ splice site selection involving binding of SF3B1 (Splicing 

Factor 3B subunit 1, also called SAP155), a splicing factor, to a cis-element on the Bcl2l1 

(B-Cell CLL/Lymphoma 2 – like 1; or Bcl-x) pre-mRNA (Massiello et al., 2006). Activation 

of the Bcl-x(s) 5′ splice site helped drive the splicing to the pro-apoptotic RNA isoform, thus 

increasing the effectiveness of chemotherapy. Another splicing protein, KHDRBS1 (KH 
Domain containing, RNA Binding, Signal transduction associated 1, also known as Sam68), 

was shown to bind the pre-mRNA for Bcl-x and affect its alternative splicing, and 

phosphorylation of KHDRBS1 was shown to play a role in how it affected the alternative 

splicing of Bcl-x (Paronetto et al., 2007). There are many additional examples of how 

alternative pre-mRNA splicing is involved in tumorigenesis and tumor progression, 

including several that are as yet unknown.

The role of alternative splicing during EMT has been increasingly well documented 

recently. Cancer in its advanced stages is characterized by the development of metastases, as 

a result of cells moving from the original mass to different locations and forming secondary 

tumors. Cellular migration during metastasis is a result of alteration in cell shape from an 

epithelial to a mesenchymal cell phenotype (EMT), which results in the acquisition of an 

invasive, mesenchymal phenotype by tumor cells and the reverse process, MET, which 
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enables their differentiation into secondary tumors. EMT is regulated by a long list of 

transcription factors, including SNAI1 (SNAIL), SNAI2 (SLUG), ZEB1, ZEB2, E47, 

TWIST1, etc. which function as ‘master regulators’ of gene expression, repressing 

epithelial-specific genes such as E-cadherin, and allowing an upregulation of mesenchymal 

specific genes such as Vimentin (reviewed in (Barrallo-Gimeno and Nieto 2005; Kalluri and 

Weinberg 2009; Lim and Thiery 2012; Nieto and Cano 2012; Wang and Zhou 2013; 

Lamouille et al. 2014; Zheng and Kang 2014).

Several types of splicing events are known to occur during EMT (Figure 2 and Warzecha 

and Carstens 2012). One of the first EMT-related genes shown to be alternatively spliced is 

the fibroblast growth factor receptor 2 (FGFR2), during EMT in rat bladder carcinoma 

(Savagner et al. 1994). During EMT, the CD44 gene switches from several constitutive 

splicing variants (CD44v), found in the epithelial state, into a single, short isoform, CD44s 

(Figure 2), which is essential for EMT (Brown et al. 2011). This CD44 isoform switch is 

regulated by the splicing factor Epithelial Splicing Regulatory Protein 1 (ESRP1) 

(Warzecha et al. 2009; Brown et al. 2011). Both ESRP1 and its related protein ESRP2 are 

essential for maintaining the epithelial state, as loss of these proteins caused cells to 

transition from the epithelial to the mesenchymal state. Together, ESRP1 and ESRP2 

regulate the splicing of several genes, including Fibroblast Growth Factor Receptor 

2(FGFR2), CD44, Catenin (cadherin-associated protein), delta 1 (CTNND1, or p120-

Catenin), and the Enabled homolog (ENAH) (Warzecha et al. 2009) during EMT, and loss 

of ESRP1 and 2 induced alternative splicing during EMT (Warzecha et al. 2010). During the 

process of EMT, the transcription repressor Snail was shown to bind to E-boxes in the 

ESRP1 promoter, causing repression of the ESRP1 gene transcription (Reinke et al. 2012). 

ESRP1, when bound to the intronic region flanking a CD44 variable exon, caused increased 

variable exon inclusion, and expression of ESRP1 caused downregulation of Snail-driven 

EMT (Reinke et al. 2012). More recently, a microarray-based analysis demonstrated that 

TGF-β induced alternative splicing events by downregulating ESRP1 and 2 via upregulation 

of two other EMT transcription factors, δEF1 and SIP1, which associated with the promoter 

of ESRP2 and repressed its expression (Horiguchi et al. 2012). Interestingly, ESRP1 and 

ESRP2 appear to effect alternative splicing by different mechanisms (Ishii et al. 2014). 

Knockdown of ESRP1 in head and neck cancer cell lines induced the expression of Rac1b, 

which is also known to increase Snail-induced EMT, (Radisky et al. 2005), thus affecting 

actin cytoskeleton dynamics. On the other hand, knockdown of ESRP2 caused a decrease in 

cell-cell adhesion by increasing the expression of EMT-related transcription factors δEF1 

and SIP1, but not SNAIL, SLUG or TWIST (Ishii et al. 2014), suggesting that ESRP1 and 

ESRP2 might be redundant, or prevent EMT by different mechanisms.

Besides ESRP1 and 2, another splicing factor, the Serine/arginine-rich Splicing Factor 1 

protein (SRSF1, or SF2/ASF), is also involved in the cell’s decision to proceed with EMT 

(Valacca et al. 2010). Valacca and colleagues showed that SRSF1 is regulated during EMT 

and its reverse process mesenchymal to epithelial transition (MET) by alternative splicing, 

specifically through the splicing regulator KHDRBS1 (Sam68) (Valacca et al. 2010). 

Further, KHDRBS1 modulation of SRSF1 splicing appears to be controlled by epithelial 

cell-derived soluble factors that act through the ERK1/2 signaling pathway to regulate 
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KHDRBS1 phosphorylation (Valacca et al. 2010). When overexpressed, some splice 

variants can act as hyper-oncogenic proteins, which often correlate with poor prognosis. For 

example, the matrix metalloproteinase 3 (MMP3) induces alternative splicing of the small 

GTPase Rac1, switching expression to Rac1b, its longer, more active form containing 19 

additional amino acids. Rac1b in turn increases levels of reactive oxygen species, leading to 

increased expression of the transcription factor Snail, resulting in EMT (Radisky et al. 

2005).

A global view of the EMT splicing program was provided in a study (Shapiro et al., 2011), 

where the authors overexpressed the EMT- inducing transcription factor, Twist1, in the 

human mammary epithelial cell line (HMLE) to induce EMT (Shapiro et al. 2011). They 

showed that several types of splicing factors, including ESRPs, RNA binding protein, fox 

(RBFOX) family members, muscleblind-like splicing regulator 1 (MBNL), Elav-like family 

(CELF), heterogeneous nuclear ribonucleoprotein (hnRNP), and phosphotyrosine-binding 

domain (PTB) family members regulated alternative splicing events in Twist1-induced EMT 

(Shapiro et al. 2011). Perhaps the most clinically relevant finding of their paper was that 

EMT-associated alternative transcripts correlated with the aggressive and metastatic 

phenotype of breast cancer cell lines, and were also found to be expressed in primary human 

breast cancer samples. Given the vast array of splicing factors involved in alternative 

splicing, it will be of great importance to delineate their respective roles during the process 

of EMT.

Chromatin and alternative splicing during EMT

Despite substantial independent evidence for the involvement of chromatin in EMT, and 

alternative splicing in EMT, there are no studies to date that link chromatin and alternative 

splicing together in the context of EMT. Yet, they are probably very closely connected, and 

determining the role of chromatin and epigenetic proteins in alternative splicing during EMT 

will undoubtedly shed light on the mechanisms driving EMT and cancer metastasis. Here, 

we will discuss what is known regarding the involvement of chromatin and alternative 

splicing during EMT, and attempt to connect the two mechanisms together.

1. Nucleosome positioning—Studies based on genome-wide analyses demonstrated that 

nucleosomes are preferentially positioned in exons (Andersson et al. 2009; Hon et al. 2009; 

Nahkuri et al. 2009; Schwartz et al. 2009; Spies et al. 2009; Tilgner et al. 2009; Wilhelm et 

al. 2011; De Conti et al. 2013), and that this positioning was conserved across species, 

which supported the idea that nucleosome positioning may play a role in alternative splicing. 

Two groups (Schwartz et al. 2009; Tilgner et al. 2009) used computational approaches to 

analyze experimental micrococcal nuclease sequencing (MNase-Seq) datasets to determine 

the distribution of nucleosomes in the human genome. Both found that the exons had much 

sharper peaks of nucleosome occupancy, while the introns were relatively less occupied, 

irrespective of gene transcription (Schwartz et al. 2009; Tilgner et al. 2009). Using 

computational prediction models for nucleosome occupancy, exonic regions were found to 

be enriched for sequences that favored nucleosome positioning, while the sequences 

flanking the exons were depleted of these high-affinity nucleosome sequences (Schwartz et 

al., 2009). As most exons are short (~150bp or so), and also have high GC content (Zhu et 
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al. 2009), it was suggested that nucleosomes, which occupy ~147bp of DNA and also have 

higher occupancy over GC-rich regions (Kiyama and Trifonov 2002; Segal et al. 2006; 

Peckham et al. 2007), were preferentially placed over exonic regions.

The question then arises as to whether nucleosomes are simply present over exons due to 

sequence preferences, or do they actually play a role in splicing? If the idea that 

nucleosomes actually play a role in splicing is right, then a single nucleosome should be 

sufficient to demarcate an exon boundary, and suggest a direct mechanism connecting 

splicing with nucleosome positioning. This would also mean that the strength of the 

nucleosome positioning would dictate splicing- and exons that are conditionally spliced 

would have well-positioned nucleosomes. The analyses suggested that nucleosome 

positioning changed relative to the size of exonic sequence: while short exons (less than 

90bp) had poor nucleosome occupancy, as the size of exon increased to ~250 nt, the 

nucleosome occupancy peak increased, and was centered in the middle of the exon (Tilgner 

et al., 2009). Secondly, the exons with stronger splice acceptor sites were found to have less 

clearly demarcated peaks of nucleosome occupancy, relative to the weaker sites, when 

comparing exons of similar size (Tilgner et al., 2009). These observations suggested that 

nucleosomes are not simply placed over exons by chance, and potentially play a regulatory 

role. Additional support for the hypothesis that nucleosome positioning over exons plays a 

role in splicing was provided by a recent study that showed more stable positioning of 

nucleosomes over exons that were preferentially spliced when breast cancer cells were 

stimulated with progesterone. The exons that were excluded or skipped following hormone 

treatment were (a) depleted of positioned nucleosomes, and (b) contained binding sites for 

the splicing regulator heterogeneous nuclear ribonucleoprotein A/B (hnRNPAB), depletion 

of which by siRNA prevented hormone-induced alternative splicing (Iannone et al. 2015).

One hypothesis is that nucleosomes could act as roadblocks to help slow down the rate of 

Pol II elongation, thus providing more time for the spliceosome machinery to 

cotranscriptionally recognize splice signals. Support for the nucleosome roadblock 

hypothesis was provided by a study that used optical tweezers to follow individual Pol II 

complexes transcribing through nucleosome-dense DNA. The nucleosomes were found to 

serve as effective barriers to Pol II, as they slowed down elongating Pol II complexes 

(Hodges et al. 2009). While the above results point to the notion that chromatin structure 

primes alternative splicing events, additional studies are needed to clearly distinguish 

between the nucleosome occupancy over exons as simply correlative versus playing an 

active role in alternative splicing. To date, there is no published literature on nucleosome 

positioning changes during EMT, and how this changes during alternative splicing. It would 

undoubtedly be of interest to determine whether the genes that undergo alternative splicing 

during EMT also undergo changes in nucleosome positioning.

2. Histone modifications—An alternative explanation for the question of why 

nucleosomes are positioned over exons could be that these nucleosomes are associated with 

certain types of histone modifications that help to regulate splicing. In support of this idea, 

different groups working with various types of cells have identified several histone 

modifications over exons. The histone mark H3K36Me3 was shown to correlate with 

nucleosome occupancy over exonic regions (Andersson et al. 2009; Nahkuri et al. 2009; 
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Schwartz et al. 2009; Spies et al. 2009; Tilgner et al. 2009; Zhou et al. 2012; Simon et al. 

2014). Additional marks that were shown to be enriched over exons include H2BK5Me1, 

H3K27me1, H3K27me2, H3K27me1, and H3K79me1 (Andersson et al. 2009), H3K4Me1 

(Spies et al. 2009) and H4K20me1 (Hon et al. 2009). However, another group claimed that 

H4K20me1 was not correlated with nucleosome positioning (Tilgner et al. 2009). The 

histone mark H3S10p, which was shown to interact with the serine/arginine-rich proteins 

SRSF1 and SRSF3 (also known as SRp20) is also thought to be involved in regulating 

alternative splicing, possibly via this interaction (Loomis et al. 2009). H3K9A and 

H3K36Me3 were shown to be associated with exon skipping events (Schor et al. 2009), 

while H3K9Me2 and H3K27Me3 were associated with alternative splicing and reduced Pol 

II (Allo et al. 2009).

Given the vast array of histone marks that are correlated with alternative splicing events, the 

question then arises as to whether all these histone marks influence alternative splicing, or 

are they simply ‘along for the ride’, and are more a consequence of splicing changes? If 

histone marks truly play a role in modulating splicing, then it stands to reason that 

manipulating the writers of the marks should cause a change in alternative splicing. Indeed, 

Luco et al found exactly that- by modulating levels of SET2 (H3K36me3 methyltransferase) 

and ASH2 (H3K4me3 methyltransferase) they found that loss of these histone marks over 

the exons also changed the splicing patterns (Luco et al. 2010).

The observations that intron-containing genes contain higher levels of H3K4Me3 and 

H3K36Me3 than do intronless genes are consistent with splicing affecting the location and 

intensity of these two histone marks (de Almeida et al. 2011; Bieberstein et al. 2012). Pre-

mRNA splicing regulates SetD2 recruitment and H3K36me3 levels along the body of 

transcribed genes (de Almeida et al. 2011; Kim et al. 2011). The splicing inhibitors, 

meayamycin or spliceostatin A, reduced H3K36me3 levels and position along the gene body 

without altering elongation rates or chromatin-associated RNA (de Almeida et al. 2011; Kim 

et al. 2011). H3K4Me3 and H3K9ac are located primarily at the first exon-intron boundary 

(Bieberstein et al. 2012). Similar to H3K36Me3, the intensity and location of H3K4Me3 

along the gene body is dependent on pre-mRNA splicing (Bieberstein et al. 2012). Inhibition 

of pre-mRNA splicing with spliceostatin A resulted in the loss of the H3K4me3 located at 

the exon 1 5′ splice site (Bieberstein et al. 2012).

Similar to the histone code, is there a ‘splicing code’ that exists? In other words, are there 

sets of histone marks that change specifically during alternative splicing? To address this 

question, Podlaha and colleagues used computational methods, to analyze the correlation 

between histone modifications, transcription start-site switching and splicing on a genome-

wide level using published RNA-seq data from 9 normal and cancer cell lines (Podlaha et al. 

2014). Histone variants and marks including histone H2A.Z, histone marks H3K4me1, 

H3K4me2, H3K4me3, H3K9ac, H3K9me3, H3K27ac, H3K27me3, H3K36me3, 

H3K79me2, and H4K20me were analyzed across all exons in the same cell line, and across 

the same exon in all cell lines. Similar to other groups, the authors found strong positive 

correlation of the histone H3K36Me3 mark with splicing in protein-coding genes; while 

H3K4me2 and H3K4me3 were most negatively correlated with alternative splicing.
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Using the patterns of histone marks found associated with splicing, the authors attempted to 

predict splicing patterns in a different cell line based on just ChIP-seq data using the histone 

marks that were correlated with splicing. Interestingly, these computer-based methods 

enabled the prediction of alternative splicing patterns with great accuracy based simply on 

epigenetic patterns (Podlaha et al. 2014). The idea that we can use histone marks to 

accurately predict alternative-splicing patterns is a powerful one, and could be used to 

predict early changes in tumor progression, for instance. Interestingly, some of the histone 

marks that are predicted to be changing during alternative splicing also change during EMT. 

The first genome-wide study to look at epigenetic changes during the course of EMT was by 

MacDonald et al, who showed that global changes in histone marks during EMT that were 

mainly localized to large organized heterochromatin K9 modifications (LOCKs) (McDonald 

et al. 2011). The authors used the non-cancerous mouse AML12 cell line induced to undergo 

EMT by addition of TGF-β, and determined genome-wide epigenetic changes. They found a 

global reduction in the heterochromatin mark H3K9Me2, and an increase in the euchromatin 

mark H3K4Me3 and in the transcriptional mark H3K36Me3 (McDonald et al. 2011). Given 

the large number of alternative splicing events that occur during EMT (Shapiro et al. 2011), 

it would be interesting to determine whether the global increase seen in H3K36me3 in the 

AML12 cell line occurs over exonic regions that are alternatively spliced during EMT. 

Would these marks be retained and transmitted to daughter cells, as the tumors divide? 

Further, it would be extremely interesting to determine whether there is a temporal order to 

these histone marks during the process of EMT, and specifically in the context of splicing 

during EMT.

3. Chromatin remodeling factors—Given the correlation between nucleosome 

positioning over exonic regions, it is conceivable that proteins and mechanisms that regulate 

nucleosome positioning should also affect alternative splicing. For instance, chromatin 

remodeling factors such as the Brahma (Brm) subunit of the chromatin remodeling factor 

SWI/SNF (switch/sucrose non- fermentable) can interact with Pol II, spliceosomal snRNPs 

U1 and U5, and the RNA-binding protein KHDRBS1, and as a result, promote exon 

inclusion into the mRNA of the CD44 gene (Batsche et al. 2006). KHDRBS1, when it is 

phosphorylated by the extracellular-regulated kinase (ERK) mitogen-activated protein 

(MAP) kinase, can bind to and regulate the splicing of the CD44 gene, although it is 

unknown whether this can occur in the context of EMT (Batsche et al. 2006), although it has 

been suggested. However, KHDRBS1 is also known to play a role in EMT, by regulating 

levels of the alternative splicing factor SRSF1 through alternative splicing via the nonsense-

mediated mRNA decay pathway (Valacca et al. 2010).

To date, no one has drawn a direct correlation between a chromatin remodeler that is 

responsible for alternative splicing during EMT. However, there are likely to be several 

chromatin remodelers that are directly involved in altering splicing isoforms during EMT. 

For instance, BAF250/ARID1, a large subunit of the mammalian SWI/SNF complex, is 

known to exist in two isoforms BAF250a/ARID1a and BAF250b/ARID1b, of which 

BAF250b was shown to interact with Smad2/3 in response to the cytokine transforming 

growth factor β (TGF-β); however whether this occurs in the context of EMT is unknown. 

CHD1 (chromatin remodeling ATPase) can bind to spliceosomal components and 
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knockdown of CHD1 along with reduction of H3K4Me3, which CHD1 binds to, was shown 

to alter splicing efficiency (Sims et al. 2007; Teoh and Sharrocks 2014). Little is known 

about the functional consequence of CHD1 and spliceosome interactions during EMT.

Perhaps the most well-studied chromatin remodeling complex in the context of EMT is the 

Histone deacetylase (HDAC) family. Many studies implicated Snail and Slug in the 

repression of E-cadherin during EMT by recruitment of HDAC- containing complexes to the 

promoter (Bolos et al. 2003; Peinado et al. 2004; Peinado et al. 2007). Khan et al showed 

that HDAC1 and HDAC2 were recruited to the Myeloid Cell Leukemia 1 (MCL1) gene and 

catalyzed dynamic histone acetylation of the exon 2 nucleosome (Khan et al. 2014). The use 

of HDAC inhibitors caused a loss of HDACs and hence increased histone acetylation at 

exon 2, resulting in exclusion of the MCL1 exon2. The shorter form of MCL1 that was 

produced as a result of this alternative splicing was pro-apoptotic. Additionally, they showed 

by mass spectrometry and subsequent validation by immunoprecipitation, that HDAC1 and 

the non-phosphorylated form of HDAC2 co-precipitated with SRSF1 (Khan et al. 2014).

In addition to their role in splicing, several chromatin remodeling proteins have isoforms 

that are themselves generated by alternative splicing (some of these are listed in Table 1). 

For example, the histone methyltransferase capabilities of two human enzymes, G9A and 

Suppressor of Variegation 3–9 Homolog 2 (SUV39H2) were affected by alternative splicing 

in a variety of cell lines (Mauger et al. 2015). Given its involvement in repression of genes 

during EMT in cancer, it would be interesting to see whether G9A is alternatively spliced in 

the context of EMT (Dong et al. 2012; Liu et al. 2015). The coactivator-associated arginine 

methyltransferase 1 (CARM1; also called PRMT4) was shown to have several isoforms that 

are regulated by alternative splicing, and it also serves to regulate alternative splicing of 

CD44; however, whether this happens in the context of EMT is not yet known (Matsuda et 

al. 2007; Wang et al. 2013). HDAC6 has two splice variants, hHDAC6p131 and 

hHDAC6p114 that are involved in TGF-β signaling during EMT. Similar studies implicated 

other chromatin complexes in the repression of E-cadherin during EMT, including Enhancer 

of Zeste Homolog 2 (EZH2) -containing Polycomb repressive complex 2 (PRC2) complex 

(Herranz et al. 2008), the Ajuba/Lim-domain proteins (Langer et al. 2008; Hou et al. 2010), 

Lysine specific demethylase (LSD1) (Lin et al. 2010a; McDonald et al. 2011; Ferrari-

Amorotti et al. 2013) and more recently Protein arginine Methyltransferase 7 (PRMT7) 

(Yao et al. 2014). However, none of these so far have been implicated in alternative splicing 

during the process of EMT. Further studies will undoubtedly uncover novel roles for these 

alternatively spliced chromatin modifiers in EMT and other processes.

4. DNA methylation—DNA methylation, the addition of a methyl group to the cytosine 

base of DNA, correlates with closed chromatin structures and, as a consequence, with 

reduced transcription (Lorincz et al. 2004). Genome-wide analyses in plants and human cells 

revealed an enrichment of DNA methylation (5-methyl cytosine, 5-mC) in nucleosome-

associated DNA and thus also in exonic compared to intronic regions (Hodges et al. 2009; 

Chodavarapu et al. 2010). Although the function of DNA methylation in gene promoter 

regions was well established to play a role in transcriptional repression, the function of the 

evolutionarily conserved widespread distribution of DNA methylation in gene body regions 

was incompletely understood until recently.
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A mechanism by which DNA methylation regulates alternative splicing by preventing 

CCCTC-binding factor (CTCF) binding was proposed by Shukla et al (2011), who 

investigated DNA methylation-induced skipping of CD45 exon 5 during lymphocyte 

development (Shukla et al. 2011). Binding of the chromatin insulator protein CTCF, which 

recognizes specific DNA sequences within CD45 exon 5, was shown to slow down RNA 

polymerase II elongation, thus promoting exon 5 inclusion in CD45 pre-mRNA. They 

demonstrated that DNA methylation prevented CTCF binding, thus allowing faster RNA 

polymerase II elongation, which caused exon 5 skipping (Shukla et al. 2011). The 

prevention of CTCF binding by DNA methylation was not merely specific to CD45, 

however, as genome-wide analyses of CTCF binding and splicing changes following CTCF 

depletion suggest that the interplay between CTCF binding and DNA methylation at the 5′ 

of exons can regulate a substantial number of alternative splicing events (Shukla et al. 

2011).

Keiji Zhao and colleagues demonstrated that DNA methylation was enriched in exons that 

were included as a result of alternative splicing, and that inhibition of DNA methylation 

resulted in aberrant splicing of these exons (Maunakea et al. 2013). Further, they showed 

that the methyl-CpG-binding protein (MeCP2), was enriched in the alternatively spliced 

exons, particularly those that are also highly methylated, and inhibition of DNA methylation 

disrupts specific targeting of MeCP2 to exons. Loss of MeCP2 was accompanied by 

increased histone acetylation over the exonic regions, and aberrant alternative splicing. A 

similar effect was seen when HDAC inhibitors were used, thus also increasing histone 

acetylation over exons, indicating that intragenic DNA methylation and/or histone 

deacetylation enhance exon recognition by the splicing machinery. Alternatively spliced 

exons were found to display lower enrichment of 5-mC compared to constitutive ones 

(Gelfman et al. 2013), reinforcing the idea that DNA methylation can contribute to mark 

exon recognition by the spliceosome. The global impact of DNA methylation was 

investigated recently in embryonic stem cells, and it was determined that DNA methylation 

could either enhance or silence exon recognition. Interestingly, a subset of these exons with 

DNA methylation were bound by Heterochromatin protein 1 (HP1), which regulated 

alternative splicing of the exon in a DNA methylation dependent manner, by recruiting 

splicing factors to the exon (Yearim et al. 2015). Overall, these studies highlight the role of 

DNA methylation in alternative splicing, and suggest that it can drive alternative splicing in 

two ways: (a) by preventing binding of proteins such as CTCF, thus inhibiting Pol II 

elongation; and (b) by increasing binding of proteins like HP1 and MeCP2, which can 

potentially target the spliceosome to those exons.

The first genome-wide study to look at epigenetic changes during the course of EMT did not 

detect changes in DNA methylation(McDonald et al. 2011). However the study only 

considered a short time (24h) during the EMT process. Changes in DNA methylation during 

EMT were however shown in a recent study using ovarian cancer cells that were triggered to 

undergo EMT by addition of TGF-β (Cardenas et al. 2014). The authors used the Infinium 

HumanMethylation450 BeadChip to identify several genes that were hypermethylated at 48 

and 120 h after TGF-β stimulation, and also showed changes in gene expression 

corresponding to the change in methylation (Cardenas et al. 2014). Another study using 
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Twist-induced EMT as a model system demonstrated hypermethylation in some genomic 

regions, and widespread global DNA hypomethylation (Malouf et al. 2013).

Besides cytosine methylation, 5-hydroxycytosine methylation (5hmC) has also been shown 

to be involved in alternative splicing. For instance, the DNA coding for constitutive exons in 

the frontal cortex of the human brain were shown to contain higher levels of 5hmC relative 

to exons that were alternatively spliced (Khare et al. 2012). More recently, loss of Tet 

methylcytosine dioxygenase 1 (TET1) following cocaine administration was shown to result 

both in loss of 5hmC and, surprisingly, gain of 5hmC at several genomic locations, and the 

change in 5hmC correlated with differences in alternative splicing (Feng et al. 2015). 

Specifically, an increase in 5hmC was correlated with upregulation of alternative splice 

isoforms, while loss of 5hmC at splice sites was more likely to be associated with isoforms 

downregulated after cocaine administration (Feng et al. 2015).

TET1, which regulates 5-hmC (see section on DNA methylation) was also shown to regulate 

hypoxia-induced EMT by acting as a co-activator for the hypoxia-inducible factors (HIF-1α 

and HIF-2α), to enhance their transactivation activity (Tsai et al. 2014). The TET family of 

methylcytosine dioxygenases can also interact with the microRNA miR-22, which targets it 

to the promoter of the anti-metastatic miR-200, thereby silencing it, leading to metastasis 

and poor patient outcome (Song et al. 2013). To date, none of these studies directly 

examined the interplay between DNA methylation or hydroxymethylation and alternative 

splicing events during EMT. Given the evidence for the involvement of DNA methylation in 

alternative splicing, and the fact that alternative splicing plays significant roles in driving the 

EMT phenotype, it stands to reason that these mechanisms might be linked.

5. MicroRNAs and other Noncoding RNAs—MicroRNAs (miRNAs) are small, 21–

24nt regulatory RNAs that influence the stability and translational efficiency of target 

mRNAs, thus altering gene expression profiles (Eulalio et al. 2008; Bartel 2009; Adams et 

al. 2014). As many miRNA genes are located in intronic regions, the miRNA processing 

machinery and the spliceosome machinery often interact, and there is possibly a lot of 

interplay between the two. In support of this idea, the microRNA processing proteins Drosha 

and DiGeorge Syndrome Critical Region Gene 8 (DGCR8) were found to co-sediment with 

the supraspliceosome, (Agranat-Tamir et al. 2014) a ~21 MDa complex of four native 

spliceosomes connected by the pre-mRNA (Azubel et al. 2006; Shefer et al. 2014). The 

authors focused their study on two alternative splicing events, which extend exon 14 of the 

gene coding for the mini chromosome maintenance 7 protein (MCM7), where the 

miR-106b-25 cluster is located. If the miRNAs were included in the splicing event as the 

extended exon 14, then they were not made into miRNAs. On the other hand, inhibiting 

splicing resulted in increased miRNAs expression, as this region was not excluded, and was 

processed into miRNA. Similarly, knockdown of Drosha increased splicing. Interestingly, 

the members of the miR-106b-25 cluster are key modulators of the TGF-β signaling 

pathway in tumors, and also induce EMT (Petrocca et al. 2008; Smith et al. 2012). Thus, it 

would be interesting to determine whether this alternative splicing event also occurs during 

EMT.
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Additionally, miRNAs and noncoding RNAs themselves can regulate alternative splicing 

events by modulating expression of splicing factors. For instance, during heart development, 

miR-23a/b was shown to downregulate vital regulators of splicing events in the heart, 

CELF1 (CUGBP) and embryonically lethal abnormal vision-type RNA binding protein 3 

(ETR-3) -like factor (Kalsotra et al. 2010). The microRNA miR-132 targets polypyrimidine 

tract-binding protein 2 (PTBP2), a splicing factor that is involved in neurodevelopment 

(Smith et al. 2011). A study by Ameyar-Zazoua et al., 2012 found that the Argonaute 

protein, which is involved in miRNA gene silencing, regulates alternative splicing by 

interacting with splicing factors and chromatin remodelers to help with spliceosome 

placement at splice sites and modifying RNA polymerase transcription rates (Ameyar-

Zazoua et al. 2012; Batsche and Ameyar-Zazoua 2015).

Several microRNAs have been identified as playing important pathophysiological roles in 

cancer, and more specifically, in EMT (Bullock et al. 2012; Diaz-Lopez et al. 2014). For 

instance, the miR-200 family of microRNAs, which is downregulated in breast tumors, was 

shown to repress expression of the Snail and Zeb family members (Burk et al. 2008; 

Gregory et al. 2008a; Liu et al. 2014; Perdigao-Henriques et al. 2015), which induce EMT. 

The microRNA miR-10b is highly expressed in metastatic tumors and is upregulated by 

Twist, an EMT protein (Ma et al. 2007). Interestingly, miR-10b was shown to also regulate 

alternative splicing events that are critical for retinoic acid-induced SH-SY5Y 

neuroblastoma cell differentiation by targeting the SRSF1 splicing factor (Meseguer et al. 

2011). Further, miR-10b was required for the associated changes in migration, invasion, and 

in vivo metastasis. Therefore, it might very well be important for regulating similar 

alternative splicing events in the EMT process. Importantly, an antagonist of miR-10b 

(antagomir) was used successfully to inhibit tumor growth and metastasis formation in a 

mouse model of breast cancer (Ma et al. 2007). Other antagomirs have been used 

successfully to inhibit tumor growth and metastasis formation (reviewed in Gregory et al. 

2008b; Wright et al. 2010; Zhang and Ma 2012; Diaz-Lopez et al. 2014). Given the success 

of antagomir-based therapy, combined therapies targeting both miRNAs and/or splicing 

factors could have improved effects on cancer metastasis.

Lastly, long non-coding RNAs (lncRNAs), a class of RNAs longer than 200 nt have been 

reported to be involved in the regulation of transcription, chromatin remodeling, post-

transcriptional RNA processing and cancer metastasis (Tano and Akimitsu 2012; Adams et 

al. 2014; Yang et al. 2014; Holoch and Moazed 2015). Several of these long non-coding 

RNAs have been associated with EMT and metastasis (De Craene and Berx 2013; Hu et al. 

2014; Richards et al. 2015). For instance, metastasis associated lung adenocarcinoma 

transcript 1 (MALAT1, an 8000 nt lncRNA) was shown to increase bladder cancer 

metastasis by induction of EMT (Ying et al. 2012; Fan et al. 2014). Interestingly, MALAT1 

is also a modulator of alternative splicing- by regulating the levels of phosphorylated SR 

proteins, it can control the concentration gradient of how much SR proteins are available to 

the splicing machinery (Tripathi et al. 2010). This is possibly true during the process of 

EMT as well. Another lncRNA, HOX transcript antisense RNA (HOTAIR, 2200 nt), is 

required for EMT, and to maintain cancer cells in a stem-cell like state (Padua Alves et al. 

2013). It is also associated with poor prognosis in colon (Wu et al. 2014) and cervical (Kim 

et al. 2015) cancer progression. HOTAIR is thought to act by downregulating the expression 
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of miR-7, a tumor suppressor protein (Zhang et al. 2014), thereby leading to cancer 

progression. Recently, six transcript variants of HOTAIR were identified, and it was 

suggested that these could be functionally very different based on the presence or absence of 

the PRC2-interacting domain (Mercer et al. 2012; Loewen et al. 2014). Genome-wide 

profiling of lncRNAs during TGF-β induced (Richards et al. 2015) or Twist-induced (Hu et 

al. 2014) EMT has resulted in the identification of several more lncRNAs that are regulated 

in EMT. Whether these lncRNAs are involved in alternative splicing, however, remains to 

be determined.

CONCLUSIONS

EMT is an extremely complex process, involving multiple layers of regulation that are 

tightly controlled by various factors. Given that so many different aspects are involved in 

EMT, from transcription to cellular movement to loss of apico-basal polarity, proper 

coordination of these events is essential for the transition from epithelial to mesenchymal 

cell state. At the level of transcription alone, the master regulators have to actively 

coordinate recruitment of chromatin remodelers to the promoters of genes such as E-

cadherin at the right time, to start the process of EMT. Many different chromatin remodelers 

have been shown to be involved during the EMT process, and all of these were shown to be 

critical for repression at the E-cadherin locus alone (Peinado et al. 2004; Herranz et al. 2008; 

Langer et al. 2008; Lei et al. 2010; Lin et al. 2010a; Yang et al. 2010; Dong et al. 2012; 

Yang et al. 2012; Yao et al. 2014; Fukagawa et al. 2015; Liu et al. 2015). Can so many 

factors all be present at one locus at the same time? We believe that this is probably a highly 

dynamic process, as suggested for the dynamics of TFs at other loci (Sung et al. 2014; Voss 

and Hager 2014). Further, the ability of cancer cells to not rely on one factor alone, but 

count on alternative factors to substitute for the absence of any one factor, might be 

beneficial to their survival. Additionally, alternative splicing might be a really easy way to 

change the function of a protein, e.g. from pro-apoptotic to anti-apoptotic, as we saw in the 

case of Bcl-x (Massiello et al., 2006). Therefore, from the clinical viewpoint, it is important 

to think about attacking these cells on multiple fronts to be able to fully confront the 

problem of cancer metastasis.

Like transcription and chromatin remodeling, alternative splicing is tightly controlled during 

the process of EMT. For instance, alternative splicing of a subset of genes has to be 

regulated such that they exclude exons and switch from longer to shorter isoforms [e.g. 

SLC37A2, KIF13A, FLNB, and MBNL1 genes, (Shapiro et al. 2011)] during EMT, while 

other groups of genes do the reverse and show a greater degree of exon inclusion [e.g. 

PLEKHA1, MLPH, ARHGEF11, CLSTN1 and PLOD2 genes; (Shapiro et al. 2011)]. Yet 

other genes undergo a variety of other types of splicing changes, including alternative splice 

site selection, retaining introns or using alternative exons (Shapiro et al. 2011) during EMT. 

How do these events occur simultaneously within a cell? One possibility is that different 

types of splicing events might recruit different types of chromatin remodelers, e.g. exon 

inclusion events might require remodeler A, vs. exon exclusion events, which might require 

remodeler B. Alternatively, there might be certain transcription factors that can specifically 

target different sets of chromatin remodelers to different genes. Intriguingly, despite being 

closely related, there are no studies to date that directly link alternative splicing and 
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chromatin together in the context of EMT. We believe that determining the role of 

chromatin and epigenetic proteins in alternative splicing during the EMT process will help 

define the mechanisms driving EMT and cancer metastasis, thus setting the stage for novel 

clinical interventions of this devastating disease.
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Figure 1. Interplay between chromatin remodelers, RNA Pol II and the splicing machinery 
during EMT
The kinetic model of alternative splicing posits that the spliceosome cannot keep up with the 

fast-moving RNA Pol II, therefore it has to choose between the splice sites presented to it 

and exon 2 (in this example) gets excluded. On the other hand, DNA methylation 

(represented by black lollipops), nucleosome positioning or histone modification changes, or 

microRNAs can all influence the rate of RNA Pol II elongation, slowing it down so that the 

spliceosome can now keep up with transcription. This results in all the exons being included. 

During EMT, many different types of slicing events can occur.
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Figure 2. Examples of some splicing events during EMT
During EMT, many different types of slicing events occur. For example, p120 catenin 

switches from a short form to a longer form that includes additional exons. FGFR2 switches 

between isoforms containing two mutually exclusive exons, Exon IIIb or IIIc. CD44 

produces multiple splice variants from 11 different exons, while after EMT, only the short 

variant (CD44s) is produced due to exon skipping.
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