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Modulations of human alpha oscillations (8--13 Hz) accompany
many cognitive processes, but their functional role in auditory
perception has proven elusive: Do oscillatory dynamics of alpha
reflect acoustic details of the speech signal and are they indicative
of comprehension success? Acoustically presented words were
degraded in acoustic envelope and spectrum in an orthogonal design,
and electroencephalogram responses in the frequency domain were
analyzed in 24 participants, who rated word comprehensibility after
each trial. First, the alpha power suppression during and after a
degraded word depended monotonically on spectral and, to a lesser
extent, envelope detail. The magnitude of this alpha suppression
exhibited an additional and independent influence on later compre-
hension ratings. Second, source localization of alpha suppression
yielded superior parietal, prefrontal, as well as anterior temporal
brain areas. Third, multivariate classification of the time--frequency
pattern across participants showed that patterns of late posterior
alpha power allowed best for above-chance classification of
word intelligibility. Results suggest that both magnitude and
topography of late alpha suppression in response to single words
can indicate a listener’s sensitivity to acoustic features and the
ability to comprehend speech under adverse listening conditions.
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Introduction

The seeming ease with which listeners comprehend speech

contrasts with the sparsely understood neural mechanisms

enabling it. The functional neuroanatomy important for

speech perception and comprehension in humans has been

mapped out increasingly over the past decade (for review, see

Hickok and Poeppel 2007; Rauschecker and Scott 2009). In

parallel but separate from this, oscillatory rhythms in the

human brain have gained interest mainly in vision and

attention research (e.g., Engel et al. 2001; Jensen et al. 2007;

Klimesch et al. 2007; Lakatos et al. 2008; Schroeder et al. 2008;

Fries 2009). Unfortunately, there is much less known about

oscillatory perturbations in auditory and speech perception

(for review, see Weisz et al. 2011). Speech is a prime test

case for studying any neural mechanism of perception and

comprehension, as it notoriously happens in acoustically

compromised circumstances that range in severity from

phone lines and noisy environments to degraded hearing

and cochlear implants.

In the current study, we explore the degradation of

spectrotemporal acoustic features in the speech signal (Rosen

1992; Shannon et al. 1995), how they affect speech compre-

hension, and which oscillatory brain rhythms respond to it. In

particular, we foresee a role for alpha rhythms (approximately

8--13 Hz) in speech comprehension: Alpha activity is receiving

renewed interest and has been tied, mostly in visual experi-

ments, to changing task demands and cognitive effort. In par-

ticular, alpha power is seen decreasing in brain areas required

to actively process information, for example, in response to

words at the point when access of the mental lexicon or the

word meaning is likely to happen (for review, see Klimesch

et al. 2007).

A parsimonious framework for changes in alpha power and

their role in cognitive processing has been suggested by Jensen

and colleagues (Osipova et al. 2008; Jensen and Mazaheri 2010),

who see the general function of alpha oscillations in ‘‘gating by

inhibition.’’ In this framework, high-amplitude alpha oscillations

are suited to gate or suppress spontaneous or task-irrelevant

higher frequency (i.e., Gamma) oscillations in neural networks;

similarly, a relative ‘‘silencing’’ of alpha oscillations takes away

this inhibitory gating and allows for Gamma oscillations to

occur. In line with this assumption, the few studies targeting

Gamma oscillations in speech and language perception report

increased Gamma power when access of the mental lexicon

(in words) or integration of meaning (in sentences or cross-

modally) becomes facilitated (e.g., Hannemann et al. 2007;

Schneider et al. 2008; Shahin et al. 2009; Obleser and Kotz

2011).

Advantageously, the functional inhibition framework offers

a link between the easily discernible and reliably estimable

changes in alpha (8--13 Hz) power and the cognitive operations

triggered by speech input. In this experiment, we test whether

parametric degradations of acoustic detail known to affect

intelligibility of speech (Obleser et al. 2008) parametrically

drive the power of alpha oscillations in the human electroen-

cephalogram (EEG). Using the noise-vocoding technique

(Shannon et al. 1995; mostly used to mimic cochlear implan-

tation and often used in imaging studies, for example, Davis and

Johnsrude 2003; Scott et al. 2006; Obleser et al. 2008), we can

parametrically vary fine temporal (i.e., spectral) and coarse

temporal (i.e., envelope) detail available to the listener, which

both will directly affect speech intelligibility (e.g., Rosen 1992;

Xu et al. 2005; Lorenzi et al. 2006).

We specifically hypothesize that the degree of alpha

suppression during and after auditory presented words should

increase with increasing intelligibility of these words; as

outlined above, this would reflect less need for functional

inhibition and less effortful speech processing (Klimesch et al.

2007; Jensen and Mazaheri 2010; Weisz et al. 2011). Further-

more, we will also be able to test potential differential efficacy

of spectral and envelope detail to modulate neural oscillations.

A multivariate pattern classifier trained and tested on the

time--frequency representations of degraded words will allow

us assessing the predictive power of oscillatory changes on

speech intelligibility.
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Methods and Materials

Participants
Twenty-four healthy participants (12 female; mean 23.8 years of age ±
2.2 years standard deviation [SD]) took part in this study. All were

monolingual speakers of German, had normal hearing and no history of

neurological or language-related problems. They were naı̈ve toward

noise-vocoded speech. Participants received a financial compensation

of 15 V. The procedure was approved of by the local ethics committee

and in accordance with the declaration of Helsinki.

Stimuli
Stimuli were randomly drawn from a 560-item pool of recordings of

spoken German mono-, bi-, and trisyllabic nouns (Kotz et al. 2002;

Obleser et al. 2008). Words were recorded in a soundproof chamber by

a trained female speaker and digitized at a 44.1 kHz sampling rate. Off-

line editing included downsampling to 22.05 kHz, cutting at zero-

crossings before and after each word, and normalization of root mean

squared amplitude. The large pool of word stimuli allowed us to

entirely avoid repetition of word items for any given participant.

From each word’s final audio file, parametrically degraded versions

were created using a Matlab-based noise band--vocoding algorithm.

Noise vocoding is an effective technique to manipulate the spectral or

fine temporal detail while preserving the amplitude envelope of the

speech signal (Shannon et al. 1995). This renders the signal more or less

intelligible in a graded and controlled way, depending on the number of

bands used and more bands yielding a more intelligible speech signal.

The technique has been used widely in behavioral and brain imaging

studies before (Scott et al. 2000; Faulkner et al. 2001; Davis and

Johnsrude 2003; Scott et al. 2006; Obleser et al. 2007). Usually, in noise

vocoding, the spectral degradation is varied by specifying the number

of spectral bands extracted, and the extracted amplitude envelopes in

each band are carefully smoothed (low-pass filtered) by a value that is

unlikely to affect intelligibility, for example, 250 Hz, as the relevant

temporal envelope perturbations that contribute to intelligibility in

speech mainly lie below 20 Hz (Xu et al. 2005).

For this study, however, we also systematically varied the coarse

temporal features of the speech signal by smoothing the amplitude

envelopes (Fig. 1A) over a range previously identified to have a distinct

influence on intelligibility (for usage of this approach in a functional

magnetic resonance imaging [fMRI] study, see Obleser et al. 2008). It is

noteworthy that, with this additional dimension of signal processing,

noise vocoding enables an orthogonal manipulation of the spectral and

envelope variations in any given signal. This would be hard to achieve

with other techniques because it allows splitting the signal into an

arbitrary number of frequency bands and then smoothing the

excitatory envelopes of each band with an arbitrary low-pass filter

cutoff. For example, simply low-pass filtering a speech signal (as it has

been used previously in studies of speech intelligibility) would remove

fast perturbations from the envelope but of course it would also affect

the overall spectral content available. As shown in Figure 1A, this is not

the case in the orthogonal manipulations devised here.

Procedure
During EEG acquisition, participants were seated in front of a black

screen computer monitor in a dimly lit and soundproof EEG cabine,

wearing Sennheiser HD-280 headphones. Sounds were presented at 60

dB(A) sound pressure level.

During EEG recording, participants performed a comprehension-

rating task to keep them in an alert listening mode without forcing

their attention on particular linguistic or acoustic aspects of the

stimulus material: Participants were required to listen attentively to the

stimuli words and to indicate by way of a 4-way button system how

comprehensible a given trial’s word stimulus had been. This rating

technique shows remarkable consistency with actual recognition

scores (see also Davis and Johnsrude 2003, where rating and

recognition scores within participants showed a correlation score of

0.98) and was also used with this material in an fMRI experiment before

(Obleser et al. 2008). Other own EEG experiments showed that the

rating task is able to accurately replicate known comprehension effects

(Obleser and Kotz 2011; Fig. 1B).

A single trial was timed as follows: Three seconds after each stimulus

(with spoken word stimuli’s duration varying naturally; average file

length was 0.6 ± 0.12 s SD), a question mark occurred on the screen

prompting for the participant’s button press. The question mark

disappeared after the button press (time-out after 2 s). The response

period was followed by a 2-s period (indicated by an eye symbol

present for 0.5 s) during which participants were instructed to blink if

necessary. Then, with a random stimulus onset asynchrony of 0.5--1.5 s,

the next trial began.

Button-to-value assignment was counterbalanced across subjects

(with 4 buttons in total and 2 buttons per hand, the ‘‘very intelligible’’

response was either mapped to the leftmost or the rightmost digit).

After a brief (15-trial) familiarization period, the actual experiment was

started which was broken down in 3 runs, yielding a total experimental

time of about half an hour.

In total, 320 trials of interest were acquired (trials for one additional

condition with monaural stimulation were also acquired, see the design

of Obleser et al. 2008; these trials were not part of this analysis,

however). That is, for every of the 16 conditions in the spectral 3

envelope design (Fig. 1), 20 trials were presented. Note that in

principle all analyses were designed to find parametric effects of the 2

manipulated stimulus dimensions, ‘‘spectral detail’’ and ‘‘envelope

detail.’’ Thus, all analyses were run on the marginal averages over the

design’s cells, and 8 marginal conditions resulted from averaging, each

with a maximum of 80 averages and each reflecting a level of spectral

detail (2, 4, 8, or 16 bands in vocoding) or envelope detail (2, 4, 8, or 16

Hz low-pass filtering applied to the vocoding bands).

Electroencephalographic Recording and Data Analysis
The EEG was recorded from 64 Ag--AgCl electrodes mounted on

a custom-made cap (Electro-Cap International), according to the

modified and expanded 10--20 system. Signals were recorded contin-

uously with a passband of direct current to 200 Hz and digitized at

a sampling rate of 500 Hz. The reference electrode was the left mastoid.

Bipolar horizontal and vertical electrooculograms were recorded for

artefact rejection purposes. Electrode resistance was kept under 5 kX.

All data were analyzed using the Fieldtrip software (http://

www.ru.nl/fcdonders/fieldtrip; Oostenveld et al. 2011), an open source

Matlab toolbox for EEG and magnetoencephalogram (MEG) data

analysis developed at the F. C. Donders Centre for Cognitive Neuro-

imaging as well as custom Matlab (Mathworks) scripts. After each

recording session, individual electrode positions were tracked using

a Polhemus FASTRAK electromagnetic motion tracker (Polhemus,

Colchester, VT, USA).

Off-line analysis followed the protocol of defining the data samples of

interest (1 s pre- to 2 s poststimulus onset); re-referencing all data to

average reference; applying a high-pass filter of 0.3 Hz (including 2-s

padding of all trials before filtering); automatically rejecting trials

affected by ocular or muscle artefacts, using the fieldtrip-implemented,

z score--based rejection routines. On average, less than 25% of all trials

and in no subject or condition more than 48% per subject and

condition were rejected; each condition- and subject-specific average

contained on average 53.4 trials. A 2 3 4 repeated measures analysis of

variance on rejection rates with factors degradation level (1--4) and

spectral/envelope showed no significant effect whatsoever; all F < 1,

ensuring the absence of systematic signal to noise ratio differences

between conditions).

The resulting clean data were submitted to a time--frequency analysis

of ‘‘induced’’ or non--phase-locked changes in brain oscillations. For the

time--frequency analysis, we used the Fieldtrip-implemented version of

the Wavelet approach using Morlet wavelets (Tallon-Baudry et al. 1997;

Tallon-Baudry and Bertrand 1999), with which the time series were

convolved. Wavelet-based approaches to estimating time--frequency

representations of EEG data form a good compromise between

frequency and time resolution (here, a constant resolution factor m =
f/rf of 7 was used). We convolved the signal with the wavelets in

the frequency domain from –0.5 to 1 s in 20-ms steps and from 2 to 48

Hz in 2-Hz steps. The resulting power estimates in each time--frequency

bin poststimulus onset were transformed into estimates of relative
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power change compared with power estimates in a baseline window

(–0.5 to –0.1 s). Average time--frequency representations per participant

and condition were thus gained, reflecting ‘‘relative’’ changes in [split it

as ‘‘(de-)syn - chonization’’] in response to a given condition, relative to

an equally long silent presentence (–500 to 0 ms) baseline. The ensuing

parametrical statistical tests (see below) were run using the absolute

power estimates again, that is, on the potentially more sensitive direct

comparisons of the different conditions (Maris and Oostenveld 2007).

Statistical Analysis
Subject- and condition-specific averages of the time--frequency

representations were submitted to parametric 2-sided regression

t-tests, embedded in a massed permutation test (as outlined in Maris

and Oostenveld 2007; 1000 iterations). In essence, this procedure

checks for time--frequency--electrode clusters (here: clusters of at least

3 adjacent electrodes in size) that show parametric effects of either

a power ‘‘decrease’’ or an ‘‘increase’’ covarying with the manipulated

stimulus dimension. The permutation tests included all bins from 0.1 to

0.9 s across a broad range of frequencies (2--48 Hz) as well as across 46

channels (covering symmetrically the left and right scalp, leaving out

the midline and most eccentric electrodes). Such a test effectively

controls for an inflated multiple comparisons error at the cluster level,

ensuring a type I error probability smaller than 0.05. The resulting test

statistic is a cluster Tsum value, summing the t values within a time--

frequency--electrode cluster (Maris and Oostenveld 2007).

Source Localization
Sources of alpha activity were also localized using an adaptive spatial

filter (Dynamic Imaging of Coherent Sources, DICS; Gross et al. 2001)

in the frequency domain. The DICS technique is based on the

Figure 1. (A) Stimulus design of spectral and envelope variation. Arrows indicate the 2 dimensions along which the signal was degraded. (B) Comprehension rating results
during EEG. Note the 2 main effects of spectral and envelope degradation. (C) Time--frequency power changes poststimulus onset per conditions. Spectral (top row) and envelope
(bottom row) manipulations affect mainly the magnitude of late alpha suppression. The panels reflect averages over the posterior--central channels that were part of the statistical
clusters shown in Figure 2.
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cross-spectral density matrix, which was obtained in every trial and

condition by applying a multitaper fast fourier transform estimate of the

time windows and frequencies of interest (Here yielding estimates

centered at 11 Hz with a 3 Hz spectral smoothing and a window length

of 400 ms centered at 750 ms poststimulus onset). A realistically shaped

3-layer boundary elements model of the brain was used, adjusted to the

individual EEG electrode locations gathered (which were warped off-

line using the Fieldtrip function ‘‘ft_electroderealign,’’ applying a rigid-

body transformation) and a standard template MRI. The resulting

volume in each individual was then divided into a grid with a 1-cm

resolution, and the lead field was calculated for each grid point. Using

the cross-spectral density matrices and the individual lead field, a spatial

filter was constructed for each grid point, and the spatial distribution of

power was estimated for each condition in each subject. A common

filter was constructed from all baseline and posttrigger segments (i.e.,

based on the cross-spectral density matrices of the combined

conditions). Subject- and condition-specific solutions were spatially

normalized to Montreal Neurological Institute (MNI) space and

averaged across subjects, for display on an MNI template (using

SPM8). Figure 4 shows the result of cluster-based statistical tests

(essentially the same tests as used for the electrode-level data before)

that yielded voxel clusters for covariation of source power with

spectral and envelope degradation, respectively. This was mainly done

for illustration purposes, and unlike the tests for channel--time--

frequency clusters outlined above, no strict cluster-level significance

testing was applied. T values are plotted on a standard MR template, and

MNI coordinates mentioned in-text refer to brain structures that

showed local maxima of activation.

Multivariate Classification
As an additional stage in data analysis, we sought to analyse the

information contained in local channel--time--frequency patterns rather

than significant power differences. Adopting a protocol from functional

MRI research (‘‘searchlight’’ approach; Kriegeskorte et al. 2006;

Kriegeskorte and Bandettini 2007), a linear classifier (support vector

machine [SVM], using the ‘‘libsvm’’ matlab toolbox, v2.89) was trained

on decoding certain stimulus attributes (see below) from local time--

frequency patterns. Many studies in cognitive neuroscience have

recently reported accurate classification performance on functional

MRI voxel pattern using an SVM classifier (e.g., Haynes and Rees 2005;

Formisano et al. 2008), and SVM is one of the most widely used

classification approach across research fields. For our main classifica-

tion question (accurate classification of high vs. low intelligibility using

the very salient spectral or number of bands variation), a feature vector

was obtained using the power change estimates from a set of time--

frequency bins (see searchlight approach below) as feature values.

In brief, a linear SVM separates training data points x for 2 different

given labels (e.g, ‘‘intelligible,’’ 8- and 16-band speech vs. ‘‘unintelligi-

ble,’’ 2- and 4-band speech) by fitting a hyperplane w
T
x + b = 0 defined

by the weight vector w and an offset b. The classification performance

(accuracy) was tested using a leave-one-out cross validation across

participants’ data sets: The classifier was trained on n – 1 data sets,

while an n th subject’s data set was left out for later testing the classifier

in ‘‘predicting’’ the labels from the local time--frequency activation

pattern, ensuring strict independence of training and test data.

Classification accuracies were obtained by comparing the predicted

labels with actual data labels and averaged across the 16 leave-one-out

iterations afterward, resulting in a mean classification accuracy value

per channel--time--frequency bin.

Importantly, we chose a multivariate so-called searchlight approach

to assess the local discriminative pattern over the entire channel--time--

frequency space measured (Kriegeskorte et al. 2006): Multivariate

pattern classifications were conducted for each position in the

channel--time--frequency space, with the searchlight feature vector

containing the power estimates for that time--frequency bin and

a defined group of its closest neighbors. Here, a searchlight radius of 2

adjacent bins in time and frequency and averaging across up to 5

neighboring channels was selected (maximal distance 5 cm; analogous

to the neighbor selection used in the cluster statistics above). This

yielded about 12 time--frequency bins per searchlight position. Thus,

any significant bin shown in the figures will represent a robust local

pattern of on average 12 nearest-neighbor bins (averaged across up to 5

adjacent channels). ‘‘Robustness’’ was ensured by constructing boot-

strapped (n = 1000) confidence intervals (CIs) for all bins’ mean

accuracy and thresholding the maps to only show those time--

frequency bins whose lower 95% confidence limit of mean accuracy

did not cover the 50% chance level.

As an additional control for a possible inflated alpha error due to

multiple comparisons (which is often neglected when using CIs;

Benjamini and Yekutieli 2005), we used a procedure suggested in

analogy to the established false discovery rate (FDR; e.g., Genovese et al.

2002), called ‘‘false coverage-statement rate’’ (FCR). In brief, we

‘‘selected’’ those time--frequency bins whose 95% CI for accuracy did

not cover the 50% (chance) level in a first pass (see above). In a second

correcting pass, we (re-)constructed FCR-corrected CIs for these select

bins at a level of 1 – R 3 q/m, where R is the number of selected bin at

the first pass, m is the total number of time--frequency bins tested, and

q is the tolerated rate for false coverage statements, here 0.05

(Benjamini and Yekutieli 2005). Effectively, this yielded FCR-corrected

bin-wise confidence limits at a ~ 0.004 rather than 0.05. The FCR

correction procedure as well as the across-subjects leave-one-out-

validation is described in detail in Obleser et al. (2010).

Results

The behavioral rating results gathered after each EEG trial

accurately reproduce the known effect of more acoustic detail

improving word comprehension (Fig. 1B). Both manipulations

affected the comprehension rating (spectral detail, 2--16 bands

of vocoding: F1.72,39.52 = 1114, P < 0.0001; envelope detail, 2--16

Hz low-pass filtering of the vocoding envelopes: F2.62,60.20 =
980.1, P < 0.0001). Also in line with previous tests using these

materials (see Obleser et al. 2008), the interaction proved also

significant (F5.76,132.42 = 972.7, P < 0.0001) and is best explained

by the ‘‘primacy’’ of spectral detail: With low-spectral detail (2

bands), comprehension ratings were on average never better

than approximately 1.5 on a 1--4/‘‘not’’--‘‘well’’ scale, irrespec-

tive of envelope detail in the signal; with high-spectral detail

(16 bands), ratings never dropped below 2.5 instead (Fig 1B).

Our EEG analyses focused on the induced (i.e., not strictly

phase locked but time locked) changes in power of alpha

frequency oscillations, depending on the 2 dimensions of

acoustic detail that we manipulated (spectral or fine temporal

detail vs. envelope or coarse temporal detail) and the 4 levels of

degradation along each dimension.

Overall, the time--frequency grand averages shown in Figure

1C illustrate a pattern that is typical for auditory stimulation: At

first, strong initial enhancement or synchronization of power

(relative to the average of the baseline period) in lower theta

and alpha frequencies occurs. It extends up into the lower

Gamma-band range and is most prominent at parietocentral

channels of the scalp (around Cz). It is also strongly reflecting

the mainly phase-locked parts of the signal (i.e., the evoked

potential one observes when averaging in the time domain).

From approximately 300 ms post sound onset on, this initial

enhancement is followed by a pronounced and temporally as

well as spatially wide-spread suppression or resynchronization

that has its peak in the alpha frequency range but extends to

the beta range and lasts up to 1 s after sound onset.

Time--Frequency Clusters Covarying With Acoustic Detail

The first statistical analysis sought for monotonic changes in

power covarying with the increase of spectral detail. Positive

time--frequency--channel clusters resulting from this test would

indicate increases of power as the signal contains more spectral
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or fine structure detail, that is, as the signal changes from

2- over 4- and 8-band to 16-band vocoding. Negative clusters

would accordingly indicate decreases or suppression of power.

As shown in Figure 2A (upper row), a significant cluster of

power suppression was found over mostly left parietocentral

channels and later extending also to left frontal channels; it

extended from about 500--900 ms post word onset and peaked

in the alpha band (8--13 Hz) range (P < 0.0001). The bar graph

in the upper right panel illustrates the monotonic decrease in

alpha power (relative to the prestimulus baseline) within

a representative channel of this cluster (TP7) with increasing

spectral detail (and hence, increasing comprehension of

speech, cf. the behavioral results in Figure 1B).

Testing for clusters of monotonic change with the increase

of envelope detail yielded 2 negative clusters (P < 0.003 and

P < 0.03). Both reflected a parietocentral peak in the alpha

band and also began after 500 ms and broadened across the

scalp. It is of note that the much stronger, first negative cluster

of envelope detail changes has its peak over right parietocen-

tral clusters. However, the later broadening to the left scalp

(reflected statistically by the second cluster) as well as the

absence of a clear-cut hemisphere 3 manipulation interaction

supports best the general conclusion that parietocentral alpha

suppression is monotonically dependent on the amount of

acoustic detail. The strength differences of the clusters (Fig. 2A)

are in line with the behavioral data (Fig. 1B), which all put

forward a stronger leverage of spectral detail on both, alpha

suppression and subjective comprehension ratings.

In a similar vein, the only significant positive cluster (i.e.,

a monotonic increase in power with more acoustic detail being

present) was also observed with increasing spectral but not

envelope detail: Power was enhanced in the theta frequency

(4--7 Hz) range from about 300 to 500 ms (P < 0.02). This is

shown in Figure 2B and the lower left bar graph. Note that this

effect preceded the alpha suppression effects in time.

Influence of Alpha Power on Comprehension Ratings

Across conditions and participants, there was a notable

correlation of the extent of posterior--central alpha power

suppression and subjective comprehension ratings expressed

after the trial by participants (Pearson’s r = –0.30, P < 0.01;

when using Spearman’s rank correlation to better account for

the ordinal scaling of the rating data, r = –0.29, P < 0.01).

To properly account for the between- and within-subject

sources of variance, a mixed regression model was run, with

ratings as the dependent measure and alpha power as well as

spectral degradation as predictors, plus subject as a random

term. This confirmed the strong influence of alpha power onto

the rating (F1,92 = 337, P < 10
–4). Figure 3 illustrates this in

the left panel, showing a scatter plot of all condition- and

participant-specific alpha power estimates (average of 800--900

ms over channels P5/P6, PO3/PO4, and PO7/PO8) versus the

average comprehension ratings in these conditions and

participants. Additionally, the model confirmed that the actual

spectral degradation level (2--16 bands) has a very strong

Figure 2. Time--frequency--electrode cluster statistics. (A) Alpha power changed as a function of both spectral (top row) and envelope (middle row) detail, as also indicated by
the bar graph on the right. Over time (500--900 ms shown), stronger decreases in alpha power occurred for more acoustic detail being present. (B) Theta power at left
frontotemporal channels increased in the 300--500 ms time range as a function of spectral detail. See Results for details.
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influence on the rating (F1,92 = 909.7, P < 10
–4; shown in the

right panel of Fig. 3). Importantly, however, the interaction

term of spectral degradation and alpha power was not

significant (P = 0.23)—this indicates that, while spectral

degradation drives the late alpha suppression, both had an

independent strong influence on post-trial rating behavior.

Lastly, late alpha power was also negatively correlated to

the power of preceding theta, indicating an inverse relation-

ship of theta power and ensuing alpha suppression in these

data (Pearson’s r = –0.27, P < 0.01). Overall, the alpha

suppression effect appears most tightly coupled to compre-

hension ratings.

Source Localization of Alpha Power Changes

In order to infer tentatively on the most likely source

localization of the late alpha suppression, data from the time--

frequency window of interest were submitted to a DICS

beamformer routine (centered at 750 ms post word onset and

11 Hz; see Materials and Methods for details). The source space

representations of relative alpha change compared with

baseline were then also tested for voxel clusters covarying

with the monotonic increase in spectral and envelope detail,

respectively. The results are shown in Figure 4. Voxels co-

varying most strongly with both spectral and envelope detail

manipulations were located in bilateral superior parietal cortex

(MNI peak coordinates [26, –60, 58] in the right and [–21, –34,

71] in the left hemisphere), extending also into the right

occipital cortex; in the left inferior prefrontal cortex (–47, 39,

2); and bilaterally in the anterior superior temporal cortex (left

temporal pole, [–46, 21, –26], right superior temporal gyrus/

planum polare [56, 2, –6]). When running separate source

analyses for covariation with spectral and with envelope

degradation (not shown), it can be shown that the strongest

source peaks (jt23j > 2) are driven by the spectral changes;

envelope detail changes, which had a lesser influence on

comprehension also contribute only jt23j values lower than 2.

Multivariate Searchlight Classification of Intelligibility
from Time--Frequency Data

Classification accuracies in the across-subjects leave-one-out

classification procedure performed across time--frequency bins

(averaged across up to 5 adjacent electrodes) confirmed that

the alpha frequency range (approximately 8--13 Hz) in the peri-,

and poststimulus time window at posterior electrodes

contained characteristic information about the 2 broad

categories of speech intelligibility (high spectral detail in 8-

and 16-band speech vs. low-spectral detail in 2- and 4-band

speech); allowing for significant above-chance classification. The

multiplot of time, frequency, and electrodes in Figure 5 has been

masked to show only time--frequency bins whose accuracy CIs

(corrected formultiple comparisons; seeMaterials andMethods)

do not cover chance level (50%). It is evident that the highest

classification accuracies (classifying data of an n th subject after

training with n – 1 independent data sets) appear in the alpha

frequency range at 600--900 ms post word onset particularly at

posterior sites. The scalp topography of classification accuracies

in this time--frequency rage further illustrates this (Fig. 5, bottom

panel).

Task-Dependent Versus Task-Independent Aspects of
Alpha Suppression

Lastly, we aimed to quantify how much of the late alpha

suppression effect and its dependence on acoustic detail might

have been induced by the comprehension-rating task that had

been performed following each trial. To this end, we reinvited

2 participants (S5 and S23; both had initially produced strong

parametric alpha effects) after a period of more than 1 year.

They underwent the identical experiment, however, instead of

engaging in an active comprehension-rating task they were

only asked to ‘‘listen attentively to the more or less compre-

hensible words’’ and were prompted afterward with on-screen

digits 1--4 (instead of a question mark) to press the respective

button. All this was performed entirely in keeping with the

original experiment’s trial timing, number of trials, recording,

and analysis parameters.

Figure 6 illustrates the effect of task presence versus absence

on the alpha effect for increasing spectral detail, based on

2 sessions (task presence vs. absence) from 2 participants.

Using data from the 2 respective sessions of these 2 subjects

and calculating F-statistics at the source level over single trials,

we performed 2 tests on the source localizations of the

respective late alpha-band power: First, which voxels would

show an effect of spectral detail increase (see main result),

irrespective of task? Active voxels in this test would reflect

task-independent effects of spectral detail. It turned out that

this effect had contributions from superior parietal cortex

bilaterally as well as superior temporal cortex also in this small

sample of only 2 subjects (F3,837 > 2.6). This corroborated the

group result reported here as well as an earlier single-subject

report (Weisz et al. 2011).

Second, however, we tested which voxels would show an

effect of task presence versus absence, irrespective of spectral

Figure 3. Influence of alpha power and spectral detail on comprehension. A negative correlation of alpha late power at posterior channels and ratings of comprehension was
observed (left panel, P \ 0.01). The right panel further illustrates the influence of spectral detail onto these rating. Mixed regression models (accounting for within- and between-
subject variance, see Results) indicated that alpha power and spectral detail exhibit independent influences on the comprehension ratings.
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detail. This test result yielded very strong activation in

attention- and task-monitoring regions in the anterior cingulate

as well as the posterior cingulate/cuneal cortex (Fig. 6,

activation shown in red; F1,835 > 8). These areas exhibited

stronger alpha modulation when an active task was following

the trial. In sum, and despite some overlap mainly in right

parietoocciptial cortex (shown in green), the effect of task has

an underlying source topography that is distinct from the

spectral degradation effect that forms the main focus of our

study.

Discussion

Acoustic degradations of the spectral and envelope detail are

able to severely compromise the intelligibility of speech. The

present study sought to establish a potential link between

oscillatory power in alpha (8--13 Hz) power of the human

scalp potential and the (dis-)ability to comprehend speech

despite such acoustic degradation. To this end, we analyzed

the time--frequency oscillatory changes occurring in auditory

presentation of parametrically degraded words.

Main findings can be summarized as follows: First, the strong

alpha power suppression observed from about 500 ms post

word onset on depended parametrically on spectral and

envelope detail. The fewer acoustic detail was present in

a stimulus (i.e., the less likely that the stimulus would be

comprehended), the relatively more alpha power was observ-

able over posterior scalp electrodes.

Second, spectral and envelope degradation differed in their

specific leverage on alpha power and on comprehension, with

spectral changes having a more potent influence on essentially

all parameters tested: In line with 2 previous experiments using

the same manipulations (Obleser et al. 2008), spectral

degradation had a stronger leverage on comprehension ratings.

Concomitantly, changes in spectral detail were most closely

tied to alpha power change at left scalp electrode sites (and

Figure 4. Source localization statistics on the alpha suppression effect. The panels show source localization of the acoustic degradation effect on late alpha power (source-level
regression T statistic) plotted onto axial slices ( z 5 �34 to 80) of a standard T1-weighted MR image. It confirms the strong contribution of superior parietal cortex but also
highlights a right dorsolateral prefrontal source and bilateral anterior temporal lobe sources. See text for details.
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superior parietal cortical generators), while envelope detail

was slightly less tight-coupled to alpha power changes, which

appeared first more right lateralised and later bilaterally.

Changes in spectral detail were additionally yielding a theta

power increase, with most intelligible words yielding strongest

theta power over left electrodes. (This preceded the alpha

power decrease and was, across conditions and participants,

negatively correlated with it.)

Third, when training and testing a machine learning

algorithm on the electrode--time--frequency patterns from

independent participant data sets, it were the late alpha power

changes at posterior electrodes that classified best patterns

associated with trials likely to be comprehended from patterns

of trials more unlikely to be comprehended.

Alpha and Theta Oscillations in the Comprehension of
Speech

The data presented fill a missing piece in at least 2 puzzles,

which are mostly studied separately: the neural mechanisms of

speech perception and comprehension and the role of neural

oscillations in cognition. As for the former, only comparably

few studies have exploited the temporal precision of M/EEG

Figure 5. Results of multivariate pattern classification. The channel--time--frequency array in the middle plots significant above-chance bins that allow classifying hardly intelligible
(2- and 4-band speech) from likely intelligible (8- and 16-band speech) speech (see schematic display in top panel). Only clusters with a multiple-comparisons-corrected accuracy
confidence limit that does not cover chance level (50%) and a cluster extent of at least 6 adjacent bins are plotted. The bottom panel shows a scalp map for the top-accuracy
time--frequency area, the late (600--900 ms) alpha (8--13 Hz) range. See Materials and Methods and Results for details.
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for studying oscillatory dynamics in auditory perception (e.g.,

Weisz et al. 2007; Kerlin et al. 2010) and speech comprehen-

sion (e.g., Luo and Poeppel 2007; Shahin et al. 2009; Obleser

and Kotz 2011), and considerable emphasis has been put on the

gross functional neuroanatomy of speech comprehension

instead. As for the latter, increasing amounts of data are

gathering that put forward analogous roles of alpha and other

oscillations in audition as described in much greater detail

already for other modalities (for a review on audition and alpha,

see Weisz et al. 2011). The current study is to our knowledge

the first that directly tests spectrotemporal specifics of speech

intelligibility and their respective imprints on alpha oscillations.

Two particular findings deserve elaboration here: Presence

or absence of the spectral detail of speech signals, often

referred to as ‘‘temporal fine structure’’ (Rosen 1992; Gilbert

and Lorenzi 2010), proved to be the critical and determining

parameter that affected not only comprehension most directly

but also almost all brain parameters reported in the present

study. Presence or absence of the slower temporal, or

‘‘envelope,’’ detail was much less effective in driving compre-

hension as well as concomitant brain parameters. This is

particularly notable, as the slow temporal amplitude envelope

of speech receives a lot of attention in current models of

speech perception (Luo and Poeppel 2007; Chandrasekaran

et al. 2009), and it is the one of the few speech parameters for

which simple yet testable models of neural processing exist:

The envelope of speech is mainly driven by syllable rate, usually

3--7 Hz, which happens to be a theta rhythm. Thus, phase

locking of the cerebral theta rhythm to the envelope of speech

is a first potent mechanism for ‘‘syncing’’ the receiving brain to

the emitted signal (Luo and Poeppel 2007; Lakatos et al. 2008;

Schroeder et al. 2008; Ghitza and Greenberg 2009).

The present results complicate this view somewhat: With

respect to behavior, they again demonstrate the fact that

envelope cues alone are certainly helpful but not sufficient for

speech comprehension (e.g., Shannon et al. 1995; Xu et al.

2005), and that speech without any envelope cues can be

intelligible as well (Lorenzi et al. 2006). Instead, with respect to

neural oscillations, they show that all tested parameters

(degree of alpha suppression, but also theta enhancement)

depend more on spectral than on envelope detail. This does not

detract from a possible role for theta--envelope phase locking

Figure 6. Task in of the spectral degradation effect. For n 5 2 subjects and k 5 2 sessions (with and without the active comprehension task), the effect of task versus no task
(in red), the effect of spectral degradation (in blue), and their overlap (in green) are shown. Axial slices ( z 5 �34 to 80) of a standard T1-weighted MR image are shown. The
active task enhances the observed alpha power suppression (source-level F-statistic for task vs. no task over trials; shown in red). However, irrespective of task, the main finding
of alpha suppression as a function of spectral detail replicates (source-level F-statistic with a linear contrast for spectral detail over trials, shown in blue). Overlap is strongest in
right superior parietooccipital cortex.
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in speech processing, though, as our study used single word

rather than longer utterances and thus does not allow valid

conclusions on theta phase-locking behavior over longer

periods of time. A tentative hypothesis for further studies could

be that (1) spectral cues are ultimately more essential than

envelope cues for intelligibility (i.e., the auditory system’s ability

to match speech sound features onto meaning; see evidence

cited above), and that (2) on the utterance or discourse level,

theta phase locking to the envelope should vary as a function of

intelligibility, that is, spectral cues being present that render the

speech signal intelligible in the first place (Ahissar et al. 2001;

M. H. Davis, personal communication).

The Functional Network of Alpha Suppression in
Degraded Speech

The relative late occurrence of the observed alpha differences

is not very surprising, given the word length of on average 600

ms and the time that slow alpha modulations can take to

develop (200--300 ms). The time point of maximal alpha

suppression nevertheless speaks to a high-hierarchical, in-

tegrative rather than a very low-hierarchical, sensory process-

ing stage.

A closer look at the brain areas implied to be involved in this

alpha oscillatory network also can be interpreted in favor of

such a late processing stage of degraded speech input,

spanning across wide-spread brain areas: The peak of alpha

suppression originates in the superior parietal cortex, which

has been linked closely to executive and attention processes in

many previous studies (e.g., Buschman and Miller 2007;

Medendorp et al. 2007; Koenigs et al. 2009) and which belongs

to the ‘‘dorsal attention network’’ (Sadaghiani et al. 2010).

A capture of the attention system by auditory stimulus features

has been demonstrated, in a much more low-level beep/flash

design, for example, by Foxe et al. 1998. The strong modulation

of alpha power in these regions might reflect a differential (dis-)

engagement of the parietooccipital (primary visual) attention

system depending on speech intelligibility.

However, the localization results also indicate subpeaks of

alpha suppression in far ‘‘downstream’’ auditory processing

areas (Rauschecker and Scott 2009; Obleser et al. 2011) in

the anterior temporal cortex and inferior frontal cortex: In

particular, the peak in right anterior superior temporal gyrus

collocates well with a hemodynamic (blood oxygenation, blood

oxygen level--dependent [BOLD]) increase reported for these

kinds of spectrotemporal degradation variations reported in

Obleser et al. (2008). Given the overriding evidence for

negative correlations of alpha power and BOLD increase (e.g.,

Laufs et al. 2006; Sadaghiani et al. 2010), this provides

a plausible link of the current EEG results to previous BOLD

data on the same materials and task. The inferior frontal alpha

suppression peak also aligns well with reports of increased

inferior frontal cortex BOLD activation in processing degraded

speech (e.g., Obleser and Kotz 2010; Davis et al. 2011).

In sum, the network suggested by the temporal and

neuroanatomical characteristics of the alpha suppression effect

is the following: Higher levels of intelligibility not only trigger

activation in downstream auditory processing areas but they

also strongly modulate a posterior attentional network. The

following section will lay out possible mechanisms of how

degraded speech triggers differential needs for attention and

functional inhibition in more detail.

Adverse Listening and the Role of Functional Inhibition

In terms of neural mechanisms, how can the observed alpha

power changes in adverse listening situations be interpreted?

The strongest suppression for the most intelligible condition

could be considered the ‘‘default’’ state in speech comprehen-

sion that has been observed in other studies before (e.g., Shahin

et al. 2009). We would like to argue that the relative decline in

alpha power is likely to reflect an increase in mental operations

performed on the speech signal, thus, more-attentive active

cognitive processing. This is what follows directly from a view

that associates high alpha power in broadly distributed neural

networks with functional inhibition of more local high-

frequency oscillations, which in turn are thought to reflect

neural computations (Fries 2009; Jensen and Mazaheri 2010).

A post hoc look at gamma power in the present data yielded

a trend-level increase of gamma power within the clusters

identified as alpha suppression clusters. This is in favor of

this interpretation (cf. Osipova et al. 2008), but any gamma

power difference might have been partly canceled out by the

acoustically somewhat variable stimuli (e.g., varying naturally in

exact length, see Materials and Methods), while the alpha

effects might have been more robust against such variance at

the stimulus level.

Viewed from a different angle, however, an alternative

hypothesis would be that the relative ‘‘lack’’ of such alpha

suppression in severely degraded speech reflects neural oscil-

lators that keep the alpha power high in order to ‘‘gate out’’

erroneous and misleading activations in language- and meaning-

related areas. This view can also be derived from the functional

inhibition framework: Relative increases of alpha power have

been reported during working memory retention (e.g., Jensen

et al. 2002; Leiberg et al. 2006), most likely reflecting inhibitory

control over items in memory (for review, see Klimesch et al.

2007). Also, it is very likely that listening to degraded speech

taxes the cognitive resources of working memory (Pisoni 2000)

and selective attention (Shinn-Cunningham and Best 2008).

Thus, at this stage, it cannot be entirely ruled out that the

observed alpha modulations do reflect relative ‘‘increases’’ in

alpha power for more degraded stimuli, reflecting the enhanced

need for executive control.

The stronger need for executive control in more severely

degraded speech is not to indicate a simple task- or response-

driven process: recall that the retest with 2 participants in an

almost passive task-free setup did affect the ‘‘overall’’ degree of

alpha suppression, but it showed the same ‘‘relative’’ suppres-

sion of alpha power dependent on acoustic detail. Thus, the

alpha modulation observed is not entirely explained by task- or

response-driven processes; it rather seems to depend to large

extents on stimulus-driven influences.

Conclusions

The data presented bear relevance to auditory neuroscience, as

there are so few previous human studies on neural oscillations

during speech comprehension. More importantly though, they

provide a new, additional neural parameter that can be

employed in further challenging scientific questions: Namely,

alpha power changes accompanying the perception of single

words and reflecting, to satisfying degrees, a listener’s ability

and effort to comprehend speech. Alpha power changes have

the advantage of being very prominent in the human EEG

power spectrum; for the present design, we were also able to
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run the classifier on single trials from a single subject (data not

shown), yielding also alpha power in the peri-, and poststimulus

time range over posterior channels as the most accurate

electrode--time--frequency site to tell low-spectral detail/in-

telligibility trials from high-spectral detail/intelligibility trials.

This, plus its monotonic dependency on spectral detail and

concomitant comprehension ratings, renders late alpha sup-

pression a possibly valuable parameter when studying pop-

ulations where M/EEG recording is the only neuroimaging

technique of choice (particularly in cochlear implant carriers

who are not eligible for functional MRI), as well as populations

where comprehension tasks and experiments optimized for

signal/noise ratio are not always feasible (hearing-impaired

children or elderly participants).

In conclusion, the present data suggest a major role for large-

scale alpha-frequency oscillatory networks in comprehending

speech under adverse conditions and coping with degradations

of its major acoustic feature dimensions. The results also show

that comparably late stages of peri- and poststimulus alpha

activity are surprisingly informative on the level of acoustic

detail and the degree to which listeners are able to utilize it for

speech comprehension.
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