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Metabolic plasticity in CLL: adaptation to the hypoxic niche

KM Koczula', C Ludwig', R Hayden?, L Cronin? G Pratt', H Parry’, D Tennant', M Drayson®, CM Bunce??, FL Khanim>* and
UL Gunther'

Metabolic transformation in cancer is increasingly well understood. However, little is known about the metabolic responses of
cancer cells that permit their survival in different microenvironments. We have used a nuclear magnetic resonance based approach
to monitor metabolism in living primary chronic lymphoid leukemia (CLL) cells and to interrogate their real-time metabolic
responses to hypoxia. Our studies demonstrate considerable metabolic plasticity in CLL cells. Despite being in oxygenated blood,
circulating CLL cells are primed for hypoxia as measured by constitutively low level hypoxia-inducible factor (HIF-1a) activity and
modest lactate production from glycolysis. Upon entry to hypoxia we observed rapid upregulation of metabolic rates. CLL cells that
had adapted to hypoxia returned to the ‘primed’ state when re-oxygenated and again showed the same adaptive response upon
secondary exposure to hypoxia. We also observed HIF-1a independent differential utilization of pyruvate in oxygenated and
hypoxic conditions. When oxygenated, CLL cells released pyruvate, but in hypoxia imported pyruvate to protect against hypoxia-
associated oxidative stress. Finally, we identified a marked association of slower resting glucose and glutamine consumption, and
lower alanine and lactate production with Binet A0 stage samples indicating that CLL may be divided into tumors with higher and

lower metabolic states that reflect disease stage.
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INTRODUCTION
Chronic lymphocytic leukemia (CLL) is the most common form of
leukemia in Western countries' which despite recent improve-
ments in prolonging survival, remains incurable."* CLL patients
present with elevated lymphocyte counts in the peripheral blood.
In most patients these lymphocyte numbers increase progres-
sively over months and years. However, these circulating cancer
cells are out of cell cycle and superficially highly quiescent.
Despite this, isotopic labeling studies have determined that
peripheral blood CLL cells have undergone a number of divisions
and also that rates of cell death within the tumor are high.> The
picture that emerges is that circulating CLL cells represent a large
pool of non-dividing cancer cells that are able to enter and exit
tissue sites, predominantly lymph nodes, spleen and bone
marrow, wherein they proliferate and drive the progressive
expansion of the tumor.® Entry into tissue sites provides important
survival signals that protect against chemotherapeutics and thus
lead to relapsed disease.® Therefore, understanding how periph-
eral blood CLL cells can survive transitions between normoxic and
hypoxic conditions is likely to identify novel strategies to tackle
this disease. Furthermore, studying CLL as an unusual cancer
where a large proportion of cells within the tumor exhibit motility
between different sites in the body may permit the potential
discovery of mechanisms pertinent to metastasis of other cancers.
Studies of cancer cell metabolism have enjoyed a recent
renaissance with the recognition that altered cancer cell
metabolism is a critical component of the tumor phenotype that
can provide opportunities for biomarker discovery and the
derivation of novel therapeutic approaches.”'® The renewed
interest in cancer metabolism has been fueled by the advent of

metabolomics technologies, in particular, the ability to perform
complex simultaneous and non-targeted analyses of multiple
metabolites using either nuclear magnetic resonance (NMR) or
mass spectrometry (MS) platforms. To date, the majority of studies
have focused on the interrogation of cell extracts. Performing
time-course analyses in this way requires sufficient biological
material to permit multiple extractions. Although possible with cell
lines, this is a limiting factor for studies using primary human cells.
Studies based on extracts are also less able to study the dynamics
of cell plasticity to changing environmental factors and their
interaction with their metabolic environment. Here we present an
NMR based technology that allows the real-time study of
metabolism in primary patient blood-derived CLL cells. To our
knowledge, this is the first report of real-time NMR measurements
using non-modified or cultured primary patient cancer cells. We
have used NMR to study real-time metabolism in CLL cells in
response to changing oxygenation levels. Using one-dimensional
'"H-NMR spectra we achieve a time resolution of 5-8min.
We observe that ‘quiescent’ CLL cells appear to be primed for
hypoxia and display remarkable plasticity of metabolic adaptation
that is associated with hypoxia-inducible factor-1 (HIF-1a) activity
and which displays functional changes in the protective utilization
of pyruvate. Our data also suggest that it may be possible to
identify that CLL cell metabolism differs with disease stage.

MATERIALS AND METHODS

Primary CLL cells

Patients with B-cell CLL attending the outpatient clinic at Birmingham
Heartlands Hospital and Queen Elizabeth Hospital were randomly selected
for this study. The patients had been diagnosed according to standard
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morphologic, immunophenotypic and clinical criteria (Oscier, Dearden
et al. 2012) and samples were obtained following informed consent and
ethical committee approval (10/H1206/58).

Our studies used a total of 76 samples provided by 63 individual
patients. Sixty of the 76 samples were from 50 patients who had never
undertaken treatment for their CLL. A further two samples came from
patients believed to be untreated but for whom the records were
incomplete. Ten samples came from patients who had historical treatment
but were untreated for 17 months to 14 years before sampling. Only four
samples were from patients on active management; one had three courses
of bendamustine in the 6 months before sampling; one had received
R-CHOP within 12 months of sampling, one was having intermittent
chlorambucil and the fourth patient intermittent chlorambucil/fludarabine.

Mononuclear cells were isolated from venous blood using Leucosep
tubes (Greiner Bio-one, Gloucester, UK) loaded with 15-ml Ficoll-Paque plus
(G.E Healthcare, Amersham, UK) according to manufacturer’s instructions.
CLL cells were not further purified to avoid their activation. All but three
mononuclear cell samples contained >80% CLL cells as determined by
CD19 positivity. The non-CD19 positive cells in each sample where not
characterized. Mononuclear cells were cultured at 5x 10° cells/ml in RPMI
1640 (Invitrogen Gibco, Paisley, UK) supplemented with 1% ITS+ (BD
Biosciences, Oxford, UK), 100 U/ml penicillin and 100 pg/ml streptomycin
(Invitrogen Gibco) in a humidified incubator at 37 °C and 5% CO,. Cell
viability was assessed using annexin V and propidium iodide co-staining
using an AV-FITC kit (BD), according to manufacturer’s instructions. Stained
samples were analyzed on a BD FACSCalibur (BD) using the BD CellQuest
software.

Real-time NMR sample preparation

CLL samples with >80% Annexin V negativity were selected for NMR
experiments. Cells were suspended at 5 x 107 cells/ml or 1x 107 cells/ml in
1ml 0.1% w/v low melting agarose (Sigma-Aldrich, Dorset, UK) in serum
free, bicarbonate buffered RPMI 1640 medium, in a CO,-free atmosphere,
supplemented with 1% v/v ITS+ (BD Biosciences) and 1 mm sodium
3-(trimethylsilyl)propionate-2,2,3,3-d4 (Cambridge Isotope Laboratories,
Tewksbury, MA, USA) as an NMR chemical shift standard and 10% D,O
(GOSS  Scientific Instruments Ltd., Crewe, UK) for lock stabilization.
A volume of 600 pl of cell suspension was loaded into NMR tubes and
an oxygen sensor connected to a Fiber Optic Oxygen Meter (World
Precision Instruments, Hitchin, UK) inserted through the hole in the NMR
cap before sealing.

Real-time NMR measurements

One-dimensional NOESY spectra were acquired at 37 °C, using a 500 MHz
Bruker spectrometer (Bruker, Coventry, UK) equipped with a cryogenically
cooled probe. The spectral width of the acquired spectra was 12 p.p.m.,
with 32,768 acquired complex data points. The transmitter frequency
offset was 4.696 p.p.m. and the water resonance was suppressed by
presaturation. For apodization, an exponential multiplication window
function with a line broadening of 0.3 Hz was used and the NMR data was
zero filled to 32,768 points. Measurements were carried out with
deuterium frequency locking after shimming. For time course experiments,
a series of 144 one-dimensional spectra were acquired over 24 h. Each
spectrum was obtained within ~ 10 min of sample injection to the magnet
acquiring 64 transients.

NMR time-course data analysis

NMR data was processed using NMRLab'''? in the MATLAB
(The Mathworks, Natick, MA, USA) programming environment. During
data processing, spline baseline was applied to all of the 170 spectra using
the Metabolab software.'? All spectra were aligned to the 3-(trimethylsilyl)
propionate-2,2,3,3-d4 signal. NMR resonances of metabolites were
assigned and concentration of pyruvate calculated using the Chenomx
software (http://www.chenomx.com) and HMBD (Human Metabolite
Database, http://www.hmdb.ca). Kinetic modeling was carried out using
MATLAB (Mathworks, Cambridge, UK).

NMR pH measurement

The difference between the chemical shifts corresponding to imidazole
ring protons H2 and H5 (attached to C2 and C5) of histidine was used to
calculate the pH value as previously described.” To calculate the pH for
each NMR spectrum a calibration curve for the H2 and H5 histidine protons
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was determined in a solution of RPMI medium adjusted to pH 3-8.5
(Supplementary Figures S4A and B). The pH value was calculated using the
equation: pH= 549+log10 ((6 — 1272)/(0.7004 - §)).

Flow cytometry

Reactive oxygen species assay: carboxy-H,DCFDA (Molecular Probes,
Invitrogen, UK) was dissolved in dimethyl sulfoxide (DMSO) to yield a
10 mM stock and stored under nitrogen at — 20 °C. Carboxy-H,DCFDA was
added to 500 pl CLL cell suspension to a final concentration of 10 uM and
incubated at 37 °C for 45 min. After incubation, cells were analyzed by flow
cytometry (emission wavelength 517-527 nM) (Becton Dickinson FACSCa-
libur using Becton Dickinson CellQuest software). Mitochondrial super-
oxide assay: MitoSOX Red (Molecular Probes, Paisley, UK) was used to
assess the presence of mitochondrial superoxide . Before use, MitoSOX Red
was freshly dissolved in DMSO to yield a 5 mM stock and subsequently
diluted to a working concentration of 5uM in warm phosphate-buffered
saline. CLL cells were centrifuged, washed with warm phosphate-buffered
saline and resuspended in 200 pl of staining solution before incubation at
37 °C for 10 min. Mitochondrial superoxide accumulation was analyzed by
flow cytometry (emission wavelength 580 nm) (Becton Dickinson FACSCa-
libur using Becton Dickinson CellQuest software).

Western blotting

Cells were lysed (5x 10°) CLL in RIPA buffer and 30 ug proteins separated
by SDS-polyacrylamide gel electrophoresis. Proteins were transferred to
Immobilon-P membrane (Millipore Corp, Bedford, MA, USA) and probed
with primary antibody overnight at 4 °C (anti-HIF-1a—BD Biosciences, anti-
GLUT1- Santa Cruz Biotechnology (Dallas, TX, USA), anti-VEGF- Abcam
(Cambridge, UK), anti-LDHA-Abcam, anti-B-actin-Sigma-Aldrich) followed
by secondary anti rabbit (Sigma-Aldrich) or anti mouse conjugated with
horseradish peroxidase (Sigma-Aldrich). Signal was developed using
Supersignal West Pico Chemiluminescent substrate (Pierce, Northumber-
land, UK) and detected by exposure to Kodak Xomat imaging film
(Sigma-Aldrich). Films were developed using an AGFA CURIX 60
(Agfa, Mortsel, Belgium).

RNA isolation and quantitative real time PCR

Total RNA was isolated using the RNeasy kit as per manufacturer’s
instructions (Qiagen, Manchester, UK). SuperScript Il Reverse Transcriptase
(Invitrogen, Paisley, UK) and random hexamers were used for synthesis of
complementary DNA. Quantitative real time PCR reactions were performed
using an ABI Prism 7700 sequence detector (Applied Biosystems, Paisley, UK)
using SensiFast SYBR Hi-Rox kit (Bioline, London, UK) and gene-
specific Quantitect primers (Qiagen): VEGF (Hs_VEGFA_1_SG), GLUT1
(Hs_SLC2A1_1_SG) and LDHA (Hs_LDHA_1_SG). Three biological replicates
were used for each of the target genes, with each sample assessed in
triplicate. Results were normalized to the internal reference gene 18S rRNA.

Treatments

Chetomin (CTM) (Sigma-Aldrich) was dissolved in DMSO and used at
concentrations 10-100 nm. Cells were pre-treated with CTM in media at
37 °C for 3 h before transferring into hypoxic conditions for a further 21 h.
Alpha-cyano-4-hydroxycinnamate (Sigma-Aldrich) was dissolved in DMSO
and used at concentrations 2-5 mM. Cells were pre-treated for 3 h before
transferring into hypoxic conditions. Sodium pyruvate (Sigma-Aldrich) was
prepared in deionized water and used at a final concentration of 5 mm.

Statistical analysis
Student’s t-test was used for statistical analyzes where indicated.

RESULTS

Real-time metabolism monitored by NMR

NMR experiments were conducted in 5-mm NMR tubes using
5-10% 107 primary CLL cells suspended in 0.1% agarose in serum-
free RPMI growth medium to prevent their sedimentation during
the acquisition of spectra over 24 h. We obtained line widths of
1-1.5Hz in 0.1% agarose (Figure 1a) suggesting that this matrix
preserves the mobility of small molecules, probably arising from
large cavities in the polymer. Using "H-NMR spectra we obtained
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Figure 1.

CLL cells survive NMR analyzes and display marked metabolic activity. Primary-CLL mononuclear cells were monitored for 24 h in the

NMR at 37°C. (a) Representative one-dimensional-'H NMR spectrum of CLL cells in 0.1% agarose in serum-free bicarbonate buffered RPMI
1640 growth medium. Metabolites assigned: 1-formate, 2-hypoxanthine*, 3-histidine, 4-phenylalanine, 5-tyrosine, 6-glucose, 7-trans-4-
hydroxyl-L-proline, 8-uridine, 9-pyroglutamate, 10-serine, 11-myo-inositol, 12-glycine, 13-phosphocholine, 14-choline, 15-lysine, 16-asparagine,
17-aspartate, 18-methionine, 19-glutamine, 20-succinate, 21-pyruvate, 22-glutamate, 23-arginine, 24-alanine, 25-lactate, 26-3-hydroxybutyrate,
27-ethanol, 28-valine, 29-isoleucine and 30-leucine. *hypoxanthine was detectable after a few hours of the time course. Data shown is
representative of > 25 primary CLL samples. Viability of CLL cells was assessed pre- and post-NMR analysis by (b) monitoring cell morphology
of Jenner-Giemsa stained cell cytopsins, and (c) Annexin V/propidium iodide (Pl) staining and flow cytometry. Viable cells are identifiable as
Annexin V/PI negative (lower left quadrant). Percentage viable cells is indicated in the scatter plot. Data shown is representative of >25
samples. (c) Viability data for 10 primary CLL samples. (d) Representative three-dimensional view of an NMR time course experiment. The
control sample contained RPMI medium with ITS+ and 0.1% low melting point agarose (no cells), whereas the second panel contained
additionally 5x10” CLL cells/ml. Metabolite intensity is highlighted by a color gradient and height. The tallest visible orange peak
corresponds to lactate. Data shown are representative of three CLL samples.

sufficient sensitivity to obtain one-dimensional spectra in
5-10min in a standard 5-mm NMR tube from which ~35
metabolites could be identified (Supplementary Figure S1).

Importantly, the cells recovered from the NMR tube after 24 h
displayed no significant changes in viability or morphology
(Figures 1b and c). The ability to recover viable cells during the
time course of each experiment not only verified the validity of
our approach but also meant that cells could be used for
subsequent downstream analyzes such as western blotting and
quantitative real time PCR.

Out of cycle CLL cells show high metabolic activity

Primary peripheral blood CLL cells are out of cell cycle
(Supplementary Figure S2) and have a relatively scant cytoplasm
(Figure 1b), features commonly associated with quiescence.
Despite this, we observed marked metabolic activity in these cells
over 24 h, evidenced most notably by growth in signals for lactate

© 2016 Macmillan Publishers Limited

(Figure 1d). Control spectra recorded for media and agarose
without cells confirmed that the observed changes in intensities
arose from metabolic activity of the CLL cells (Figure 1d). The
volume of 0.6-3 x 107 primary CLL cells is <5 pl in the NMR tube
(~0.5-1% total sample volume) suggesting that NMR detects
predominantly extracellular metabolites. This was confirmed by
comparing the final one-dimensional-'"H-NMR spectra recorded
from CLL cells in media+agarose with the spectra acquired from
media alone after cells and agarose had been removed by
centrifugation. The spectra obtained were almost identical
(Supplementary Figure S3).

Other studies have focused on extracellular acidification rate
that is recognized to be driven by lactate. As would be expected,
lactate production in our studies was associated with progressive
acidification of the medium. We used the chemical shift of
histidine signals,'®> a component of RPMI medium, to determine
the in situ changes in pH during each acquisition (Supplementary
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Figures S4A and B). As shown in Supplementary Figure S4C,
pH decreased from ~7.8 to 6.5 over a 24-h time course and
inversely correlated with accumulation of lactate. NMR experi-
ments with CLL cells in bicarbonate buffered RPMI agarose
medium supplemented with 25 mM HEPES buffer demonstrated
that lactate production was unaffected by the stabilization of
extracellular pH (Supplementary Figure S4C).

Primary CLL cells adapt to and tolerate extreme hypoxia

Oxygen levels were measured in the NMR tube over the 24h
period using oxygen electrodes. As can be seen in Figure 2a, there
was a cell number dependent decrease in oxygen levels with [O5]
dropping below 3% within 1.5h and ~6h when 5x 107 per ml
cells or 1x10” per ml cells were used, respectively. The oxygen
consumption rate appeared linear whilst oxygen was available.
Consistent with the transition to hypoxia, western blot analysis
showed detectable HIF-1a protein levels in CLL cells between 1
and 2h in the NMR tube (Figure 2b) and levels continued to
increase over the next 5 h. QRT-PCR analysis showed that mRNA
expression of HIF-1a target genes (LDHA, VEGF and GLUT1) was
detectable in CLL cells both in oxygenated and hypoxic conditions
and that the expression increased in hypoxia (Figure 2c). The
mRNA levels of GLUT1 and LDHA in oxygenated conditions were
sensitive to the HIF-Ta inhibitor CTM whereas expression of VEGF
was not (Figure 2d). However, the elevated expression of all three
mRNAs in hypoxia was sensitive to inhibition by CTM (Figure 2e).
These data were corroborated at the protein level by detection of
high levels of LDHA, VEGF and LDHA protein in primary CLL cells
even under oxygenated conditions and reduction in protein levels
for all three HIF-1a targets in the presence of increasing amounts
of CTM (Figure 2f). This is consistent with previous reports that
HIF-1a is active in circulating CLL cells despite the normoxic

environment of peripheral blood." However, they also demon-
strate that the HIF-1a axis is rapidly and sensitively elevated upon
transition to hypoxia. Immunofluorescence and immunohisto-
chemical staining of primary CLL cells confirmed low levels of
HIF-1a in normoxic CLL cells with significantly elevated HIF-1a
nuclear staining in hypoxia (Supplementary Figures S5 and S6).

Primary CLL cells exhibit reversible metabolic plasticity during the
transition between different oxygen environments

Real-time measurements over 24 h identified that levels of certain
metabolites changed over time, for example, glucose, alanine,
lactate, glutamine and 3-hydroxybutyrate (Figure 3a and
Supplementary Figure S7). Glutamate variably accumulated across
all the samples with one sample displaying particularly marked
accumulation (Figure 3a). Other metabolites, including lysine,
arginine and tyrosine, were remarkably stable during the
acquisition of spectra (Supplementary Figure S7). The production
of lactate was inversely correlated with glucose consumption
(Figure 3a) with some CLL samples consuming glucose more
rapidly than others. Concordantly, the production of lactate was
reciprocally greatest in those samples that consumed most
glucose.

Interestingly, of the six CLL samples with the slowest glucose
consumption, five were clinical Binet stage AO, the least advanced
CLL stage whereas there was only one A0 sample in the mid-
glucose turnover group (Supplementary Table S1). Furthermore,
all A0 CLL samples clustered in the low glutamine consumption
group. Production of alanine also mirrored the extent of glucose
consumption and lactate production. Similarly the consumption of
glutamine mirrored glucose consumption and lactate production,
suggesting that tricarboxylic acid (TCA) cycle activity depends at
least in part on anaplerotic glutamine catabolism. Although
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Figure 2. Level of HIF-1a increases in hypoxia together with the expression of its target genes that can be blocked by CTM. (a) Oxygen levels
in NMR tubes were measured every 10 min using an oxygen probe placed inside the NMR tube throughout time-course experiments. Data are
shown for one CLL sample at cell densities of 1x 10” and 5 x 107 cells per ml and is representative of N> 6 samples. (b) HIF-1a protein levels
were determined at different time points. Cells were incubated in agarose matrix in an NMR tube at 37 °C and Laemmli buffer added directly
to the tube at different timepoints to lyse cells without exposing them to oxygen. Western blot was performed using the anti-HIF-1«
antibodies. Representative data from N=4 CLL samples. (c) QRT-PCR analysis of VEGF, GLUT1 and LDHA expression in CLL cells incubated in
normoxia or hypoxia (in the NMR tube) for 24 h. Values are normalized to the normoxia control =1. Data are mean +s.e.m. of N=5 CLL
samples; *P < 0.05 by unpaired t student’s test. QRT-PCR analysis of VEGF, GLUT1 and LDHA expression in CLL cells pre-treated for 3 h with
increasing doses of CTM before incubating for 24 h in (d) normoxia or hypoxia (e). Values are normalized to the normoxia control without
CTM. Data are mean +s.e.m. of N=5 CLL samples. (f) CLL cells were either incubated in normoxia, or pre-treated with a dose-titration of CTM
for 3h and then incubated for 21 h in hypoxia, before western blot analysis of VEGF, GLUT1 and LDHA protein levels. Data shown are
representative of N=3 CLL samples.
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Figure 3. Real-time changes in metabolite peak intensities during 24 h primary CLL NMR time-course. (@) Representative superimposed

fragments of spectra of a 24-h time course is shown for some metabolites. The first spectra were colored in red and the last spectra in blue.
The black bar indicates the location of each peak that was used for kinetic analysis. Graphs show the intensity difference between the first and
the following peaks from the spectra acquired over 24 h for 11 primary CLL samples. (Additional metabolites are shown in Supplementary
Figure S7). (b) Schema of an experiment that demonstrates metabolic plasticity of CLL cells. Primary-CLL mononuclear cells were isolated from
peripheral blood and incubated for 24 h in normoxia. Then the sample was split into two, one-half was analyzed in the NMR for 24 h (hypoxia)
(first cycle) and the other half of the sample was incubated for 24 h in a hypoxic incubator, then for another 24 h in normoxia and finally
analyzed in the NMR (hypoxia) for a further 24 h (2nd cycle). (c) Viability data for five primary CLL samples following completion of NMR after
having undergone either one or two hypoxic cycles. (d) Representative NMR time-course data for one CLL sample of N=6. Intensity change
for lactate, glucose, glutamine and alanine are shown for the cells during the first and the second hypoxic cycle. The dashed line represents
oxygen concentration in the NMR tube during the experiment. (Additional metabolites shown in Supplementary Figure S8. Kinetic values
corresponding to the time course are shown in Supplementary Table S2).
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sample numbers were too small for a general conclusion, these
observations appear to indicate that CLL may be divided into
tumors with higher and lower metabolic states that reflect disease
stage (Figure 3a).

Key metabolites displayed discontinuity in their kinetics as
oxygen became depleted (Figures 3d and 4). This discontinuity is
indicative of a rapid adaptation of metabolism to lower oxygen
levels with response times of minutes or less. These rate changes
included increased accumulation of lactate and increased extra-
cellular acidification rate with a transition to elevated anaerobic
glycolysis indicating that CLL cells display depending on oxygen
availability, an adaptive Warburg effect. There was also a marked
onset of alanine synthesis upon entry into hypoxia (Figures 3 and 4).
These rate changes appeared to be tightly associated with the
transition to hypoxia.

The above observations indicate that CLL cells adapt to an
environment of depleted oxygen using coordinated changes in
metabolism and activation of HIF-1a. It is however important to
note that lactate production was observed before entry into
hypoxia, an observation that is again consistent with basal HIF-1a
in oxygenated CLL cells. The kinetics in the increase of lactate
production post entry into hypoxia appeared more rapid than the
increases in HIF-1a protein levels but this may relate to differences
in the sensitivity of the different measurements.

In vivo, CLL cells circulate between hypoxic (lymph nodes,
spleen and bone marrow) and normoxic (blood) tissue compart-
ments. Thus, if the changes observed in our experiments are
physiologically relevant it would be expected that they are also
reversible. To test this we performed real time NMR on cells from
the same CLL sample that had either been: (1) transferred into an
NMR tube for 24 h after an initial period at normoxia (cycle 1) or

A 20 T,
o120 5,

(2) after incubation in oxygenated conditions, transferred to a
hypoxia incubator for 24 h then returned to oxygenated condi-
tions for 24 h before finally placing them in the NMR tube for
analysis of a second transition into hypoxia (cycle 2) (Figure 3b).
Remarkably, viability of primary CLL cells was unaffected by
transition between oxygen states (Figure 3c). As shown in
Figure 3d and S8 (Supplementary Table S2), the kinetics of
glucose and glutamine consumption, as well as lactate, glutamate
and alanine production during between cycle 1 and cycle 2
treated cells were comparable. These observations indicate that
CLL cells can repeatedly adapt to an environment of depleted
oxygen using coordinated changes in metabolism.

HIF-1a inhibition reverses changes in metabolism associated with
hypoxia

To clarify whether this adaptation is HIF-1a dependent we used
the HIF-1a inhibitor CTM. Consumption of glutamine was
enhanced by CTM whereas consumption of glucose was
attenuated by HIF-1a inhibition (Figure 4). We attempted to
determine whether CTM caused preferential killing of CLL cells in
hypoxia. However, exposure of CLL cells to CTM for 48-72h
induced cell death in the presence or absence of hypoxia
(Supplementary Figure S9). This may relate to the aforementioned
activity of HIF-1a in CLL cells in both normoxia and hypoxia.'
Furthermore, CTM inhibits the formation of functional HIF-1a/
HIF-1B/p300(CBP) transcriptional complexes by acting upon the
p300 coactivator.'> The actions of p300 as a coactivator are not
restricted to HIF signaling and other p300 signaling pathways in
CLL include the NFkB pathway.'® Therefore, the CLL cell death
associated with CTM treatment may also be attributed to this or
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Figure 4. Metabolic adaptation of CLL cells to hypoxia involves HIF-1a. Representative NMR time-course data for a CLL pre-treated for 3 h with
either 0, 20 or 100 nM CTM, before transferring into NMR for a further 24 h. Dashed lines on the lactate graph show oxygen levels inside the
NMR tube. The top left panel shows an expanded view of lactate kinetics during the first 6 h with a visible shift after oxygen depletion which is
inhibited by CTM. Data shown are representative of a minimum of N=3 CLL samples.
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Pyruvate reduces mitochondrial superoxide and reactive oxygen species (ROS) level in CLL cells. (@) Real-time NMR analysis of

pyruvate in CLL cells transitioning into hypoxia. Representative plot of extracellular pyruvate concentration together with the oxygen
decrease during a CLL real time live cell NMR time course experiment. Data shown are mean of N=6 CLL samples. (b-d) CLL cells were
incubated for 24 h with/without 10 mM H,0, and/or 5mM sodium pyruvate in normoxia or hypoxia (0.1% O,) before staining with (b)
MitoSOX-Red for detection of mitochondrial superoxide; (c) DCFDA for detection of other ROS, or (d) Annexin V/PI to determine cell viability.
Data are the mean +s.e.m. from N=5 CLL samples; *P < 0.05 by unpaired Student’s t-test.

some other non-HIF function of p300 that is invariant between
normoxia and hypoxia.

Pyruvate is a key metabolite in the transition of CLL cells to
hypoxia

Lactate continued to accumulate over the 24 h that we recorded
spectra and reciprocally glucose was continually consumed.
Similarly, once initiated in hypoxia, alanine accumulation con-
tinued throughout the experiment. In stark contrast, pyruvate
kinetics were more complex. During the early stages, before
oxygen depletion, pyruvate signals were seen to increase and
subsequently to fall again during the period in hypoxia (Figure 5a),
suggesting a key differential functional importance of this
metabolite in oxygenated and hypoxic conditions. These observa-
tions were made after correcting the pyruvate peak intensity for
an underlying glutamate resonance by calculating the glutamate
peak intensity from other glutamate peaks in the spectra
(Supplementary Figure S10).

Interestingly, exposure of CLL cells to CTM indicated the
transition in pyruvate dynamics was largely independent of HIF
activation (Supplementary Figure S11). NMR metabolic footprint
analysis of media taken from CLL cells cultured in either
oxygenated conditions or hypoxia demonstrated that CLL cells
release pyruvate in the presence of oxygen but not in hypoxia
indicating that the fall in pyruvate in hypoxia relates to reuptake
of pyruvate into CLL cells (data not shown). Consistent with this,
incubation of CLL cells with "*C-pyruvate in hypoxia demonstrated
pyruvate uptake by CLL cells with transfer of '*C label to both
lactate and alanine (data not shown).

Pyruvate has been demonstrated by others to directly protect
cells against hypoxic stress.'”'® We therefore hypothesized that
CLL cells utilize pyruvate in hypoxia as a form of defense against
hypoxia induced oxidative stress. To test the ability of CLL cells to
utilize exogenous pyruvate for protection against oxidative stress
we treated CLL cells with H,O, inducing oxidative stress in the

© 2016 Macmillan Publishers Limited

presence and absence of exogenously added pyruvate. As shown
in Figures 5b and c and Supplementary Figure S12, exposure of
CLL cells to 10 mM H,0, resulted in elevated reactive oxygen
species, including mitochondrial superoxide, both in hypoxia and
normoxia. However, supplementation of the media with exogen-
ous sodium pyruvate significantly diminished reactive oxygen
species levels back to those observed in untreated cells. This effect
is independent of whether cells are under normoxic or hypoxic
conditions. Likewise, provision of exogenous pyruvate reversed
H,0,-induced CLL cell killing (Figure 5d). This observation
supports the view that pyruvate reduces oxidative stress and that
this causes the time course of pyruvate levels observed in our
experiments. It would also indicate that it is the generation of
oxidative stress that is, the driver of pyruvate reuptake rather than
the transition to hypoxia per se.

DISCUSSION

An increasing number of studies have shed light on specific
characteristics of cancer metabolism. However, nothing is known
about the kinetic changes involved in these metabolic adaptations
and in particular the adoptive adaptations associated with
changing microenvironments. This study shows that NMR is
uniquely capable of monitoring such changes in real time using
primary patient cells. Such experiments open new avenues for
studying drug responses using primary patient cells.

These studies are important in CLL for which there remains no
cure. However, CLL represents an excellent generic model of wider
human B-cell malignancies. Their accessibility provides a unique
opportunity to study primary cancer cells. Many agents that are
effective in CLL are also effective in B-cell lymphomas, for example
the CD20 targeting antibody rituximab.'® Therefore, studies in CLL
are likely to inform the development of therapies in settings
beyond this disease. Effective inhibition of metabolic processes is
likely to add to current treatment opportunities. However, we
would argue that CLL cells provide a wider model of human
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cancer and in particular a model in which to understand the
processes of metastasis.

Although circulating CLL cells are arrested in GO/G1, most of
these cells have undergone previous cell divisions within
malignant lymph nodes.?® This indicates that CLL cells can
oscillate between being ‘in” and ‘out’ of cell cycle. Cells out of
cell cycle are often described as ‘quiescent’. However, in the age of
metabolomics, the definition of quiescence is likely to change. In
terms of cell cycle, ‘quiescence’ relates to being in a cell cycle state
termed Gg, Curiously, cells that are in Go are not necessarily
metabolically quiescent. Evidence that cell cycle quiescence may
not be associated with metabolic quiescence has also been shown
in ‘out of cycle’ fibroblasts that maintain comparable metabolic
rates to the proliferating cells.'

Our experiments demonstrate that primary CLL cells, which are
non-cycling also maintain a high level of metabolic activity
involving glycolysis and TCA cycle activity with associated O,
consumption and TCA cycle activity. Moreover, CLL cells reveal an
unexpected metabolic plasticity even when in GO/G1, specifically a
reversibly adaptive Warburg response where glucose consump-
tion and lactate production is present in oxygenated conditions
but rates change reversibly upon transition to hypoxia
(Supplementary Figure S12).

Although oxygen was available, the TCA cycle appeared to be
supported by glutaminolysis as evidenced by consumption of
glutamine and O,, associated with the production of glutamate,
pyruvate, lactate and alanine. It is interesting to note that HIF-1a
inhibition using CTM impacted upon CLL cells in hypoxia,
accelerating glutamine consumption and glutamate production,
whereas diminishing glucose consumption and lactate produc-
tion. These findings suggest that hypoxia induced HIF-1a activity
acts to sustain glycolysis, as CLL cells transit from oxygenated to
hypoxic environments and that lactate production is largely
mediated by the consumption of glucose.

Importantly, real-time NMR time-courses of glucose, lactate,
alanine and glutamine (Figure 3) revealed potential metabolic
subtypes among the CLLs. In A0 CLL samples, the least aggressive
subtype of CLL associated with lymphocytosis but no lymphade-
nopathy, glucose consumption was low, glutamine consumption
was equally low and lactate/alanine production showed equally
low metabolic activity. For one patient sample we observed
exceedingly high glutamate production. Although not the aim of
this study, these data suggest that metabolic subtypes exist which
may correlate with clinical phenotype and may provide informa-
tion regarding biomarkers. However, patient numbers are still too
small in this study to demonstrate this unequivocally.

We also observed HIF-1a independent differential utilization of
pyruvate in oxygenated and hypoxic conditions. When oxyge-
nated, CLL cells exported pyruvate. However, as oxygen concen-
tration dropped below 1%, CLL cells imported pyruvate. Our data
would indicate that this pyruvate import is in response to hypoxia-
associated oxidative stress rather than hypoxia per se, as CLL cells
imported pyruvate when treated with H,O, under normoxic
conditions. In the environs of the CLL lymph node, the tumor cells
may not be the only source of pyruvate.

Our study is one of a growing number of studies that have
analyzed metabolism in living cells**** and to our knowledge the
first to study real-time metabolism in primary patient cancer cells.
Using these cells, we observed fast metabolic adaptation to niche
conditions using a simple model of oxygen depletion.
By embedding cells in a dilute agarose matrix in an NMR tube
we restricted oxygen access while preserving cells in a non-
proliferating viable state. The agarose matrix prevents sedimenta-
tion of cells thus preserving homogeneity of the NMR sample, an
important prerequisite to obtain high-resolution NMR spectra.
A low density agarose matrix does not affect the mobility of small
molecules in any significant way thus preserving small line widths.
Using this experimental arrangement a time resolution of
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5-10 min is feasible to observe extracellular metabolites using a
600 MHz spectrometer, sufficient to see metabolism arising from
5-10x 10° primary blood cancer cells.

However, equally important has been the integration in our
study of NMR methodology with cancer biology, revealing
previously unknown plasticity of primary CLL cell metabolism,
an observation that is likely to open new therapeutic avenues in
CLL cells. Moreover the properties of CLL cells that permit
metabolic plasticity in different microenvironments may be
recapitulated in metastatic cells of other cancers. Beyond this,
we have identified potential evidence that CLL cells basal
metabolism displays heterogeneity from patient to patient; an
observation that would not be possible using established cell
lines. A future larger scale study would permit correlation of
metabolic activity with disease parameters such as disease stage,
prior or ongoing treatment, as well as correlative studies with
disease progression and association with prognostic markers.

Finally, the methodology presented here has considerable
potential for applications in personalized medicine. Unlike most
other analytical technologies, NMR is completely non-invasive and
preserves cells. This opens new avenues to test the effect of
treatment options ‘ex vivo' using primary patient cells, which can
afterwards be further characterized.
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