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Abstract

Emerging integrative analysis of genomic and anatomical imaging data which has not been well 

developed, provides invaluable information for the holistic discovery of the genomic structure of 

disease and has the potential to open a new avenue for discovering novel disease susceptibility 

genes which cannot be identified if they are analyzed separately. A key issue to the success of 

imaging and genomic data analysis is how to reduce their dimensions. Most previous methods for 

imaging information extraction and RNA-seq data reduction do not explore imaging spatial 

information and often ignore gene expression variation at the genomic positional level. To 

overcome these limitations, we extend functional principle component analysis from one 

dimension to two dimensions (2DFPCA) for representing imaging data and develop a multiple 

functional linear model (MFLM) in which functional principal scores of images are taken as 

multiple quantitative traits and RNA-seq profile across a gene is taken as a function predictor for 

assessing the association of gene expression with images. The developed method has been applied 

to image and RNA-seq data of ovarian cancer and kidney renal clear cell carcinoma (KIRC) 

studies. We identified 24 and 84 genes whose expressions were associated with imaging variations 

in ovarian cancer and KIRC studies, respectively. Our results showed that many significantly 

associated genes with images were not differentially expressed, but revealed their morphological 

and metabolic functions. The results also demonstrated that the peaks of the estimated regression 
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coefficient function in the MFLM often allowed the discovery of splicing sites and multiple 

isoforms of gene expressions.
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model

INTRODUCTION

There is increasing consensus that imaging measures show closer associations with genomic 

variants and the penetrance of an individual genomic variant is expected to be higher at the 

imaging level than at the clinical diagnostic and outcome level. Imaging measures as an 

endophenotype have a higher power to identify genomic variants that significantly 

contribute to the development of diseases [1,2]. Integrated genomic and imaging data 

analysis is a new powerful approach used to uncover the individual variability and 

mechanism of disease development [3]. Both imaging and genomics generate a huge amount 

of data that present critical bottlenecks in their analysis. Despite its great success, integrative 

analysis of unprecedented high dimensional imaging and genomic data faces great 

conceptual and computational challenges [4].

A key issue to the success of imaging and genomic data analysis is how to reduce 

dimensions of both imaging and genomic data. Previously investigated methods for imaging 

information extraction include single region-of-interest (ROI) methods, voxelwise 

approaches, principal component analysis (PCA), singular value decomposition, self-

organizing Map (SOM) and multidimensional scaling (MDS) [5]. However, these 

multivariate dimension reduction methods do not explore imaging spatial information. They 

take the set of spectral images as an unordered set of high dimensional pixels [6]. Spatial 

information is very important for image cluster and classification analysis. To overcome 

limitations of multivariate dimension reduction and to utilize spatial information of the 

image signal, we extend the widely used one dimensional functional principal component 

analysis (FPCA) [7] to high dimensional FPCA to extract imaging signals.

The traditional methods for assessing the relationship between gene expressions measured 

by microarray and phenotypes are linear regressions [8,9]. However, the rapidly developed 

next-generation sequencing (NGS) technologies have become the platform of choice for 

gene expression profiling. RNA-seq for expression profiling offers a comprehensive picture 

of the transcriptome, with less background noise and a wider dynamic range of expression 

[10]. Unlike microarrays for measuring gene expression, RNA-seq provides multiple layers 

of resolutions and transcriptome complexity: the expression at exon, SNP, and positional 

level, splicing, transcription start sites, polyadenylation sites, post-transcriptional RNA 

editing across the entire gene, and isoform and allele-specific expression [11]. The current 

linear regression for modeling association of gene expressions with phenotypes quantifies 

the expression level of a gene/transcript by a single number that summarizes all the reads 

mapped to that gene/transcript. A single number measuring gene expression level ignores 
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gene expression variation at the genomic positions. Therefore, linear regression is 

appropriate for microarray expression data, but may not be good for RNA-seq data.

To overcome these limitations, we propose a multiple functional linear model (MFLM) in 

which functional principal component scores of images are taken as multiple quantitative 

traits and RNA-seq profile across a gene is taken as a function predictor for assessing the 

association of gene expression with imaging signals which can take gene splicing and 

expression variation at genomic positional levels into account.

RESULTS

To evaluate its performance, the proposed MFLM for integrative imaging and RNA-seq data 

analysis was applied to images and RNA-seq datasets of ovarian cancer (OV) and kidney 

renal clear cell carcinoma (KIRC) which were downloaded from the The Cancer Genome 

Atlas (TCGA) datasets. The ovarian cancer dataset consists of 231 tumor tissue samples 

with histology images and RNA-seq profiles of 16,598 genes (after quality control). The 

KIRC dataset consists of 188 (121 tumor and 67 normal tissue samples) with histology 

images and RNA-seq profiles of 16,775 genes (after quality control). RNA-seq data were 

created by Illumina HiSeq 2000 PE paired-end RNA sequencing. More detailed information 

can be downloaded from the TCGA website (http://cancergenome.nih.gov/).

The pathology images are used to study the manifestations of disease. Some tissue samples 

from the patients are obtained by either surgery, biopsy or autopsy. These tissues are either 

frozen or placed in formaldehyde for fixation which stabilizes the tissues to prevent decay. 

Then the fixed samples are sectioned into thin slices and stained with one or more dyes. 

Finally, the prepared pathology slides are placed under the optical microscope and captured 

by the charged-couple device (CCD) camera. The pathology images have the ability to 

identify the pathological change of the patient’s tissue at the cellular level such as the shape 

of the nucleus and the texture of the cell.

FPCA for imaging signal extraction

In our study, we compared our two dimensional FPCA with the traditional PCA by 

capturing space variation of image signals. To evaluate the performance of the two methods 

on image compression, we compared the original histology images and reconstructed images 

by two dimensional FPCA and PCA. The result clearly demonstrated that the reconstructed 

images by FPCA were much closer to the original images than that by PCA (Figure S1). In 

addition, 90.3% of the total imaging variation could be explained by the top 30 functional 

principal components, while only 63.6% of the total imaging variation was explained by the 

top 30 traditional principal components. Therefore, two dimensional FPCA is a better and 

more authentic image compression algorithm for image signal capturing, with minimal loss 

of information and fewer principal components usage than traditional PCA.

Behavior of the MFLM for integrative analysis of RNA-seq and imaging data

In the process of integrative analysis of RNA-seq and image data, histology image data were 

compressed with our proposed two dimensional FPCA, and the FPC scores were taken as 

phenotypes. We considered gene expression values at single-base resolution and represented 
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the expression profile of a gene by a functional curve, called a “gene expression function”. 

The pipeline for RNA-seq data processing is given as follows. Bam files were obtained from 

the TCGA project and raw reads for each gene were extracted from Samtools [12] (revised 

version to recode the reads into binary data to decrease the storage memory). We used “easy 

RNASeq” to perform quantile normalization for normalizing the read counts and imputation 

[13]. We used the Karhunen-Loeve decomposition [7] to decompose the random gene 

expression function into orthogonal FPCs. The multiple FPC scores for imaging signal 

extraction were regressed on the FPC scores that were obtained from decomposition of the 

gene expression functions. In other words, we proposed to use MFLM for integrative 

analysis of RNA-seq and imaging data (Materials and Methods). Two FPCs that accounted 

for 81.7% and 88.6% variation of imaging signals for ovarian and KIRC, respectively, were 

selected as phenotypes. The number of selected FPCs for the RNA-seq which accounted for 

95% of the variation of gene expression ranges from 2 to 60. P-values for declaring 

significant association after applying the Bonferroni correction for multiple tests in ovarian 

cancer and KIRC analysis were 3.012 × 10−6 and 2.98 × 10−6, respectively. To indirectly 

examine the validity of MFLM for assessing the association of gene expression with the 

histology images, we plotted a QQ plot of the test in the MFLM (Figure 1). The QQ plots 

clearly showed that the false positive rates of the MFLM for detection of the association of 

gene expression with histology images in both ovarian cancer and KIRC studies were 

controlled.

MFLM for integrative analysis of RNA-seq and histology images

Three statistical methods: MFLM with FPC scores as phenotypes, MFLM with image 

descriptors [14] as phenotypes and multivariate regression model with FPC score as 

phenotypes and a single gene expression value (level 3 in TCGA datasets) as a regressor 

were applied to the ovarian cancer and KIRC datasets. For the ovarian cancer dataset, 

MFLM with FPC scores as phenotypes, MFLM with image descriptors and multivariate 

regression identified 24, 2 and 0 genes whose expressions were associated with image 

signals, respectively. Similarly, for the KIRC dataset, MFLM with FPC scores as 

phenotypes, MFLM with image descriptors and multivariate linear model (MLM) identified 

84, 6 and 1 genes whose expressions were associated with image signals, respectively. The 

results were summarized in Tables 1 and 2.

Several remarkable features from these results were observed. First, the P-values calculated 

from the MFLM with FPC scores as phenotypes were much smaller than that calculated 

from the MFLM with image descriptors as phenotypes. Two methods assumed the same 

functional linear model (FLM) for RNA-seq data, but with a different approach to imaging 

signal reduction. The FPCA can reduce the dimensions of the imaging data more 

substantially than the traditional image descriptors. Therefore, the degrees of the test statistic 

in the MFLM with FPC score as phenotypes were much smaller than that in the MFLM with 

descriptors as phenotypes, which lead to the smaller P-values of the tests in the MFLM with 

the FPC scores as phenotypes. Second, we observed very few significant associations of the 

gene expression in the MLM. The MLM used the same FPCA for imaging data reduction, 

but model the gene expression level in a gene as a single value. The results demonstrated 

that the widely used single value representation of the expression level in the gene 
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overlooked the expression variation across the gene, which led to large P-values of the tests. 

Third, expressions of genes which were associated with the imaging signal may or may not 

be differentially expressed (Table S1, Figure S2). In other words, significant association of 

gene expression with imaging signals can provide additional information which differential 

expressions cannot offer. For example, genes NOTCH1, ARHGEF11 and BRD4 that were 

associated with imaging signals, but not differentially expressed between tumor and normal 

tissues were reported to regulate interactions between physically adjacent cells and induce 

G2/M arrest and trigger apoptosis in renal cell carcinoma [15], associated with kidney injury 

in the Dahl salt-sensitive rat [16] and kidney disease [17]. Fourth, the MFLM with FPC 

scores as phenotypes could identify associated genes that showed alternative splicing 

expression patterns.

To illustrate this, we presented average expression of microtubule associated tumor 

suppressor 1 (MTUS1) in the KIRC study (Figure 2). So far, seven isoforms of MTUS1 have 

been discovered. We observed from Figure 2 that a higher expression level in exon 1, exon 2 

and exon 15 in the normal samples than that in tumor samples, and alternatively spliced 

transcript variations encoding different isoforms between tumor and normal samples were 

substantial. This might indicate that splicing sites affect the tissue structure variation which 

was measured by imaging signals. MTUS1 is interacted with microtubules to control cellular 

architecture and organize microtubule arrays. Express variation of MTUS1 influences 

variation in microtubule structure, which in turn causes variation of histology images. 

Disruption of microtubule-dependent processes is involved in cancer development and 

metastasis [18]. We should point out that many methods and tools have already been 

proposed to analyze alternative splicing in RNA-seq between samples, such as DEXseq and 

DSGseq [19,20]. Fifth, imaging data convey relatively closer association with the disease 

than traditional phenotypes [21]. The genes significantly associated with imaging will have 

profound implication in cellular function and disease development.

In the ovarian cancer study, among the 24 significantly associated genes with histology 

images, protein tyrosine phosphatase receptor type G (PTPRG) that regulate a variety of 

cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic 

transformation, is a functional tumor suppressor gene and involved in ovarian tumorigenesis 

[22,23]. Cytoplasmic polyadenylation element binding protein 3 (CPEB3) that controls cell 

cycle progression, regulates senescence, establishes cell polarity, promotes tumorigenesis 

and metastasis [24], and plays a role in ovarian cancer development [25]. In the KIRC study, 

integrin, alpha 9 (ITGA9) that participates in regulation of myotube formation [26], is 

reported to be involved in renal carcinomas [27], NOTCH1 that regulates interactions 

between physically adjacent cells, is reported to trigger apoptosis in renal cell carcinoma 

[28], and Rho guanine nucleotide exchange factor (ARHGEF11) whose expression induces 

the reorganization of the actin cytoskeleton and the formation of membrane ruffling and 

filopodia, is associated with kidney injury [29] and key regulators of tumorigenesis [30].

Image associated gene form protein-protein interaction networks

A large proportion of genes whose expression variation was associated with imaging signal 

variation formed protein-protein interaction networks (Figure 3). In the ovarian cancer 
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study, 30 out of 130 proteins significantly associated genes identified by false discovery rate 

0.05 are interacted with each other to form a network. Hub gene SETDB1, encoding a 

histone methyltransferase in the network, is an oncogene and is involved in the development 

of several cancers [31]. Another hub gene Glul that catalyzes the synthesis of glutamine 

from glutamate and ammonia is involved in cell proliferation, inhibition of apoptosis, and 

cell signalling, and plays key roles in several cancers [32]. We also observed from the KIRC 

study that 28 out of the 84 proteins significantly associated genes with imaging signals are 

interacted to form a network, in which 10 genes are differentially expressed between tumor 

and normal tissues. A hub gene REV3L with 11 degrees in the network is the catalytic 

subunit of DNA translesion synthesis polymerase ζ. It involves a variety of DNA-damaging, 

genome stability, cytotoxicity, and resistance to chemotherapeutic agents. Surprisingly, 

although REV3L is not differentially expressed, it is reported to be associated with lung, 

breast, colon cancers and gliomas [33-35]. The interacted genes KCNN3, ANKRD17, BRD4, 

NOTCH1, SMAD2, ZMIZ1, UFD1L, and MINK1 are associated with various cancers 

[36-42]. Most of these genes are not differentially expressed, but are involved in the 

formation of cell and tissue structures. Their gene expression variations cause imaging 

signal variations and are thereby captured by integrative RNA-seq and imaging analysis.

Image associated genes and alternative splicing

We performed FPCA on RNA-seq profiles of each image associated gene and obtained their 

FPC scores in the ovarian cancer and KIRC studies. Then, we used a hierarchical algorithm 

to cluster genes based on their FPC scores. The results were shown in Figure 4 and Figure 

S3. We used DAVID (the Database for Annotation, Visualization and Integrated Discovery) 

Bioinformatics Resources [43], to extract biological features/meaning of the genes including 

the role of the gene in metabolization and cell growth regulation as well the gene function 

location such as membrane, cytoplasm or nuclear. DAVID bioinformatics gene function 

annotation analysis showed that most image associated genes play important roles in 

alternative splicing (Figure 2 and Figure S2). We observed that the genes with the similar 

patterns of alternative splicing sites are grouped together (Figure S4). As Figure S4 showed, 

the four genes of TTC23, CPEB3, CAPN14 and PHKA1 were clustered together since all 

these genes have large numbers of splicing sites in the end of the genes (3′), and another 

four genes of CDCA2, TRAPPC11, PTPRG and ITGA10 were clustered together because all 

these genes have large number of splicing sites in the start of the genes (5′). There is 

increasing consensus that alternative splicing may affect large and conservative regions of 

the protein structures and often leads to changes in cell morphologies and phenotypes such 

as actin cytoskeleton remodeling, regulation of cell-cell junction formation and regulation of 

cell migrations [44,45]. Variations in alternative splicing of gene expression leads to 

variations in cell morphologies and phenotypes, thus influencing variations of imaging 

measures of the cells. This opens a new pathway to cancer development and progression.

Image associated genes and ingenuity pathway analysis

We used the Ingenuity Pathway Analysis (IPA) (Ingenuity® Systems, (http://

www.ingenuity.com)) that is a web-based functional analysis tool for comprehensive omic 

data to study the function of genes significantly associated with image. In other words, the 

list of the identified genes which were significantly associated with imaging signals were 

Jiang et al. Page 6

Quant Biol. Author manuscript; available in PMC 2016 January 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.ingenuity.com
http://www.ingenuity.com


input into the IPA. The IPA transforms a list of genes (with or without accompanying 

expression information) into a set of relevant networks based on extensive records 

maintained in the Ingenuity Pathways Knowledge Base (IPKB) [1,2]. This knowledge base 

has been abstracted into a large network, called the Global Molecular Network, composed of 

thousands of genes and gene products that interact with each other. In the ovarian cancer 

study, unloading 24 significantly associated genes with imaging into the IPA software, the 

identified network with the highest score 27 (P-value < 10−27) is the cancer network. We 

observed that 11 out of the 24 genes were included in the cancer network (Figure 5). Figure 

5 showed that these genes are mostly regulated by miR-128, miR-92, miR-34 and miR-27a. 

These microRNAs play an important role in tumorigenesis and cancer development, 

especially in ovarian cancer [46-50]. Figure 5 also showed that the gene CPEB3 was a 

translation regulator and played an important role in the development of ovarian cancer [51]. 

In the KIRC study, IPA analysis of 84 genes that were significantly associated with imaging 

identified the network of cellular function and maintenance, hematological system 

development and function, and inflammatory response with the highest score 54 (Figure S5). 

We observed that 23 out of the 84 genes were included in the network. Genes SMAD2, 

NOTCH1, ERCC6 and NSD1 are transcription regulators that mediate multiple signaling 

pathways. It was reported that SMAD2 might serve as novel prognostic markers in clear cell 

renal cell carcinoma patients [52], NOTCH1 played an important role in oncogenesis of the 

KIRC [53]. Translation regulator CELF1 regulate pre-mRNA alternative splicing resulting 

in multiple transcript variants encoding different isoforms. CELF1 suppressed the 

proliferation of cancer [54]. Figure S5 also showed that most genes in this network interact 

with the Akt, p38MARK, PI3K, and NFkB complex. The PI3K/Akt, NF-κB, and MAPK 

pathways have been reported to be involved in nephrogenesis, and these pathways are 

activated in human renal cell carcinoma [55-58].

DISCUSSION

The current major focus of RNA-seq data analysis is to identify differentially expressed 

genes [59] and the major paradigm of RNA-seq data analysis is to test differences in gene 

expression level that is measured by a single value summarizing statistic. However, there is 

increasingly recognition that the differential expression feature of genes may not be a unique 

source to cause disease. Changes in cell morphologies and motility can also influence 

development and progression of diseases. In this paper we have presented a MFLM with 

FPC scores of imaging measures as phenotypes for the integrative analysis of imaging and 

RNA-seq data and offered a new alternative paradigm for RNA-seq data analysis. We have 

also shifted the paradigm of RNA-seq data analysis from the single value representation of 

gene expression to the random function representation of RNA-seq profiles which takes 

gene expression variation at the genomic positional level into account. Our study has made 

several remarkable findings.

The first finding is that imaging and RNA-seq analysis can detect cancer susceptibility genes 

that are not differentially expressed. Changes in cell morphologies, motility and phenotypes 

play important roles in the development and progression of the cancer. Genes causing these 

changes may not be differentially expressed between tumor and normal tissue samples and 
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hence cannot be detected by gene differential expression analysis. The integrative analysis 

of imaging and RNA-seq data opens a new avenue for identifying cancer causing genes.

The second finding is that the function feature of image associated genes is alternative 

splicing. Surprisingly, we found that the peaks of regression coefficient functions in the 

MFLM of imaging and RNA-seq data analysis were located in the splicing sites. Alternative 

splicing often changes the protein structures, cell morphologies and phenotypes [44,45]. 

These changes generate variation of histology images of tumor tissues, which in turn 

provide information for discovery of image associated genes.

The third finding is that the widely used single value representation of the expression level 

in the gene overlooks the expression variation at the genomic positional level across the 

gene and hence has great limitations to identify image associated genes.

As demonstrated in the real data analysis, the MFLM showed great promise as a tool for 

integrative analysis of imaging and RNA-seq data. However, to date, very few integrative 

analyses of imaging and RNA-seq data have been performed. The results presented in this 

paper are among the first such studies and hence are considered preliminary. The number of 

selected orthogonal basis functions in the expansion of RNA-seq function will influence the 

performance of the integrative analysis of imaging and RNA-seq data. Genome-wide 

imaging and RNA-seq data analysis still pose great challenges. The main purpose of this 

paper is to stimulate discussion on the optimal strategies for genome-wide imaging and 

RNA-seq data analysis.

MATERIALS AND METHODS

Two dimensional functional principal component analysis

One dimensional functional principal component analysis (FPCA) has been well developed 

(7). Now we extend one dimensional FPCA to two dimensional FPCA. Consider a two 

dimensional region. Let s and t denote coordinates in the s axis and t axis, respectively. Let 

x(s, t) be a centered image signal located at s and t of the region. The signal x(s, t) is a 

function of locations s and t.

Consider a linear combination of functional values:

where β(s, t) is a weight function. To capture the variations in the random functions, we 

chose weight function β(s, t) to maximize the variance of f, which, after imposing a 

constraint to make the solution unique, leads to the following optimization problem:

[1]
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where R(s1, t1, s2, t2,) = cov(x(s1, t1), x(s2, t2)) is the covariance function of the image signal 

function x(s, t). By variation calculus [60], we obtain the eigenequation as a solution to the 

optimization problem [1]:

[2]

for an appropriate eigenvalue λ, where βj (s, t) is an eigenfunction. The random functions xi 

(s, t) can be expanded in terms of eigenfunctions as

[3]

where , i = 1,…,N, j = 1,…,J are FPC scores (See 

Supplementary Materials 1).

Multivariate functional linear model for integrative analysis of imaging and RNA-seq data

We take K FPC scores as K quantitative traits. Assume that n individuals are sampled. Let 

yik, k = 1,2,…, K, be K trait values of the i -th individual. Consider a genomic region [a, b]. 

Let xi(t) be a RNA-seq profile, the number of reads as a function of the genomic position t of 

the i-th individual defined in the regions [a, b]. The multivariate functional linear model 

(MFLM) for integrative analysis of imaging and RNA-seq data can be defined as

[4]

where α0k is an overall mean, αk (t) is a regression coefficient function for the k -th trait, k = 

1, …, K, εik are independent and identically distributed normal variables with mean of zero 

and covariance matrix Σ.

We assume that both trait values and RNA-seq profiles are centered. The RNA-seq profiles 

xi (t) are expanded in terms of the orthonormal basis function as:

[5]

where φj(t) are sequences of the orthonormal basis functions. Substituting equation [5] into 

equation [4], we obtain

[6]

where . The parameters αkj are referred to as genetic additive effect 

scores for the k -th trait.

Equation [6] can be rewritten in a matrix form:
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The standard least square estimators of α and the variance covariance matrix Σ are given by

Denote the matrix (ξT ξ)−1 ξT by A. Then, the estimator of the parameter α is given by

The variance-covariance matrix of the estimator of the parameter α is given by

[7]

An essential problem in the QTL analysis or in the integrative analysis of imaging and 

RNA-seq data is to test the association of a gene with imaging phenotype. Formally, we 

investigate the problem of testing the following hypothesis:

which is equivalent to testing the hypothesis:

Define the test statistic for testing the association of a gene with K quantitative traits as

[8]

Then, under the null hypothesis H0 : α = 0, T is asymptotically distributed as a central 

or  distribution if J components are taken in the expansion equation [5] (Supplementary 

Materials 2).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. QQ plot for the KIRC dataset and Ovarian Cancer dataset
(A) QQ plot for the KIRC dataset. (B) QQ plot for the Ovarian Cancer dataset.
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Figure 2. Expression of gene MTUS1
(A) RNA-seq curve of Gene MTUS1. Number of reads of gene MTUS1 as a function of the 

genomic position in the KIRC study, where the green line represents the gene expression 

profile of normal and the red line represents the gene expression profile of the cancer 

patient, dashed vertical lines represent exon recombination site where the splicing occurs. 

Introns were excluded in the plot. (B) Regression coefficient function of gene MTUS1 in the 

MFLM.
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Figure 3. Protein-protein interaction networks in the ovarian cancer study and KIRC study
(A) Protein-protein interaction networks in the ovarian cancer study. Proteins of 30 out of 

130 significantly associated genes identified by false discovery rate 0.05 are interacted with 

each other to form a network in the ovarian cancer study. (B) Protein-protein interaction 

networks in the KIRC study. Proteins of 28 out of 84 significantly associated genes with 

images are interacted each other in protein-protein database to form a network in the KIRC 

study where genes in yellow color were differentially expressed between tumor and normal 

tissues and dotted vertical lines denote location of splicing sites.
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Figure 4. Clusters of image associated genes in the ovarian cancer study by-means clustering 
algorithms. Dendrogram of the differential expressed or image-significant associated genes 
based on FPCA scores
The result showed that the majority of these genes were related with alternative splicing.
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Figure 5. The top protein-protein physical/functional interaction network generated by 
Ingenuity Pathway Analysis for ovarian cancer
Genes in red node were identified as significantly associated genes with imaging signals in 

our study.
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Table 1

P-values of three statistics for testing association of expression with images in ovarian cancer study.

Gene P-value

MFLM_FPC MFLM_Descriptor MLM

ZNF805 2.31E-10 0.434406 0.932869

LOC653501 3.86E-09 0.024875 0.904242

TMEM170B 1.23E-08 0.006176 0.91104

DRP2 2.38E-08 0.097565 0.589285

OR6V1 5.27E-08 0.002066 0.176132

GPR113 7.09E-08 3.67E-07 0.569642

LOC389765 1.51E-07 0.076075 NA*

ZNF484 4.47E-07 0.006771 0.934051

DNAL1 7.00E-07 0.006636 0.859388

ITGA10 8.72E-07 0.200773 0.6412

NBEAL1 9.43E-07 0.007667 0.711715

IBA57 1.03E-06 0.006602 NA

C16orf52 1.13E-06 0.021002 0.905685

PHKA1 1.31E-06 0.027968 0.715083

PTPRG 1.39E-06 0.949854 0.657859

IFT88 1.64E-06 1.09E-05 0.810783

PARD3B 1.78E-06 0.889289 0.448784

TRAPPC11 1.85E-06 0.367912 NA

LIMD1 2.11E-06 0.468624 0.871478

FAM73A 2.13E-06 0.003969 0.927942

CAPN14 2.45E-06 0.01782 0.479734

CPEB3 2.55E-06 0.026235 0.987898

CDCA2 2.80E-06 0.972605 0.374079

PUS3 3.08E-06 0.78059 0.921797

*
NA: Expression (level 3) data were not available.
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