Abstract
The ionic current underlying the upstroke of axonal action potentials is carried by rapidly activating, voltage-dependent Na+ channels. Termination of the action potential is mediated in part by the rapid inactivation of these Na+ channels. We previously demonstrated that an influx of Na+ plays a critical role in the cascade leading to irreversible anoxic injury in central nervous system white matter. We speculated that a noninactivating Na+ conductance mediates this pathological Na+ influx and persists at depolarized membrane potentials as seen in anoxic axons. In the present study we measured the resting compound membrane potential of rat optic nerves using a modified "grease-gap" technique. Application of tetrodotoxin (2 microM) to resting nerves ([K+]o = 3 mM) or to nerves depolarized by 15 or 40 mM K+ resulted in hyperpolarizing shifts of membrane potential. We interpret these shifts as evidence for a persistent, noninactivating Na+ conductance. This conductance is present at rest and persists in nerves depolarized sufficiently to abolish classical transient Na+ currents. PK/PNa ratios were estimated at 35.5, 23.2, and 88 in 3 mM, 15 mM, and 40 mM K+, respectively. We suggest that this noninactivating Na+ conductance may provide an inward pathway for Na+ ions, necessary for the operation of Na+, K(+)-ATPase. Under pathological conditions, such as anoxia, this conductance is the likely route of Na+ influx, which causes damaging Ca2+ entry through reverse operation of the Na(+)-Ca2+ exchanger. The presence of this conductance in white matter axons may provide a therapeutic opportunity for diseases such as stroke and spinal cord injury.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alzheimer C., Schwindt P. C., Crill W. E. Modal gating of Na+ channels as a mechanism of persistent Na+ current in pyramidal neurons from rat and cat sensorimotor cortex. J Neurosci. 1993 Feb;13(2):660–673. doi: 10.1523/JNEUROSCI.13-02-00660.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Attwell D., Cohen I., Eisner D., Ohba M., Ojeda C. The steady state TTX-sensitive ("window") sodium current in cardiac Purkinje fibres. Pflugers Arch. 1979 Mar 16;379(2):137–142. doi: 10.1007/BF00586939. [DOI] [PubMed] [Google Scholar]
- Barrett E. F., Barrett J. N. Intracellular recording from vertebrate myelinated axons: mechanism of the depolarizing afterpotential. J Physiol. 1982 Feb;323:117–144. doi: 10.1113/jphysiol.1982.sp014064. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bennett M. R., Burnstock G. Application of the sucrose-gap method to determine the ionic basis of the membrane potential of smooth muscle. J Physiol. 1966 Apr;183(3):637–648. doi: 10.1113/jphysiol.1966.sp007889. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bostock H., Grafe P. Activity-dependent excitability changes in normal and demyelinated rat spinal root axons. J Physiol. 1985 Aug;365:239–257. doi: 10.1113/jphysiol.1985.sp015769. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Catterall W. A. Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes. Annu Rev Pharmacol Toxicol. 1980;20:15–43. doi: 10.1146/annurev.pa.20.040180.000311. [DOI] [PubMed] [Google Scholar]
- Chiu S. Y., Ritchie J. M., Rogart R. B., Stagg D. A quantitative description of membrane currents in rabbit myelinated nerve. J Physiol. 1979 Jul;292:149–166. doi: 10.1113/jphysiol.1979.sp012843. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen M. W. The contribution by glial cells to surface recordings from the optic nerve of an amphibian. J Physiol. 1970 Oct;210(3):565–580. doi: 10.1113/jphysiol.1970.sp009227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Connors B. W., Ransom B. R. Chloride conductance and extracellular potassium concentration interact to modify the excitability of rat optic nerve fibres. J Physiol. 1984 Oct;355:619–633. doi: 10.1113/jphysiol.1984.sp015442. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edwards C. The selectivity of ion channels in nerve and muscle. Neuroscience. 1982 Jun;7(6):1335–1366. doi: 10.1016/0306-4522(82)90249-4. [DOI] [PubMed] [Google Scholar]
- Erecińska M., Silver I. A. ATP and brain function. J Cereb Blood Flow Metab. 1989 Feb;9(1):2–19. doi: 10.1038/jcbfm.1989.2. [DOI] [PubMed] [Google Scholar]
- Foster R. E., Connors B. W., Waxman S. G. Rat optic nerve: electrophysiological, pharmacological and anatomical studies during development. Brain Res. 1982 Mar;255(3):371–386. doi: 10.1016/0165-3806(82)90005-0. [DOI] [PubMed] [Google Scholar]
- French C. R., Sah P., Buckett K. J., Gage P. W. A voltage-dependent persistent sodium current in mammalian hippocampal neurons. J Gen Physiol. 1990 Jun;95(6):1139–1157. doi: 10.1085/jgp.95.6.1139. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gordon T. R., Kocsis J. D., Waxman S. G. Electrogenic pump (Na+/K(+)-ATPase) activity in rat optic nerve. Neuroscience. 1990;37(3):829–837. doi: 10.1016/0306-4522(90)90112-h. [DOI] [PubMed] [Google Scholar]
- Gordon T. R., Kocsis J. D., Waxman S. G. Evidence for the presence of two types of potassium channels in the rat optic nerve. Brain Res. 1988 Apr 26;447(1):1–9. doi: 10.1016/0006-8993(88)90959-6. [DOI] [PubMed] [Google Scholar]
- Huguenard J. R., Hamill O. P., Prince D. A. Developmental changes in Na+ conductances in rat neocortical neurons: appearance of a slowly inactivating component. J Neurophysiol. 1988 Mar;59(3):778–795. doi: 10.1152/jn.1988.59.3.778. [DOI] [PubMed] [Google Scholar]
- Inoue I. Voltage-dependent chloride conductance of the squid axon membrane and its blockade by some disulfonic stilbene derivatives. J Gen Physiol. 1985 Apr;85(4):519–537. doi: 10.1085/jgp.85.4.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jirounek P., Straub R. W. The potential distribution and the short-circuiting factor in the sucrose gap. Biophys J. 1971 Jan;11(1):1–10. doi: 10.1016/S0006-3495(71)86191-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kettenmann H., Ransom B. R. Electrical coupling between astrocytes and between oligodendrocytes studied in mammalian cell cultures. Glia. 1988;1(1):64–73. doi: 10.1002/glia.440010108. [DOI] [PubMed] [Google Scholar]
- Kostyuk P. G., Veselovsky N. S., Tsyndrenko A. Y. Ionic currents in the somatic membrane of rat dorsal root ganglion neurons-I. Sodium currents. Neuroscience. 1981;6(12):2423–2430. doi: 10.1016/0306-4522(81)90088-9. [DOI] [PubMed] [Google Scholar]
- Kuffler S. W., Nicholls J. G., Orkand R. K. Physiological properties of glial cells in the central nervous system of amphibia. J Neurophysiol. 1966 Jul;29(4):768–787. doi: 10.1152/jn.1966.29.4.768. [DOI] [PubMed] [Google Scholar]
- Llinás R. R. The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science. 1988 Dec 23;242(4886):1654–1664. doi: 10.1126/science.3059497. [DOI] [PubMed] [Google Scholar]
- Llinás R., Sugimori M. Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J Physiol. 1980 Aug;305:171–195. doi: 10.1113/jphysiol.1980.sp013357. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LoPachin R. M., Castiglia C. M., Saubermann A. J. Elemental composition and water content of myelinated axons and glial cells in rat central nervous system. Brain Res. 1991 May 24;549(2):253–259. doi: 10.1016/0006-8993(91)90465-8. [DOI] [PubMed] [Google Scholar]
- Nakao M., Gadsby D. C. [Na] and [K] dependence of the Na/K pump current-voltage relationship in guinea pig ventricular myocytes. J Gen Physiol. 1989 Sep;94(3):539–565. doi: 10.1085/jgp.94.3.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neumcke B., Schwarz J. R., Stämpfli R. A comparison of sodium currents in rat and frog myelinated nerve: normal and modified sodium inactivation. J Physiol. 1987 Jan;382:175–191. doi: 10.1113/jphysiol.1987.sp016362. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ogata N., Tatebayashi H. Sodium current kinetics in freshly isolated neostriatal neurones of the adult guinea pig. Pflugers Arch. 1990 Jul;416(5):594–603. doi: 10.1007/BF00382695. [DOI] [PubMed] [Google Scholar]
- STAMPFLI R. A new method for measuring membrane potentials with external electrodes. Experientia. 1954 Dec 15;10(12):508–509. doi: 10.1007/BF02166189. [DOI] [PubMed] [Google Scholar]
- Shoukimas J. J., French R. J. Incomplete inactivation of sodium currents in nonperfused squid axon. Biophys J. 1980 Nov;32(2):857–862. doi: 10.1016/S0006-3495(80)85021-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sontheimer H., Ransom B. R., Cornell-Bell A. H., Black J. A., Waxman S. G. Na(+)-current expression in rat hippocampal astrocytes in vitro: alterations during development. J Neurophysiol. 1991 Jan;65(1):3–19. doi: 10.1152/jn.1991.65.1.3. [DOI] [PubMed] [Google Scholar]
- Sontheimer H., Waxman S. G. Ion channels in spinal cord astrocytes in vitro. II. Biophysical and pharmacological analysis of two Na+ current types. J Neurophysiol. 1992 Oct;68(4):1001–1011. doi: 10.1152/jn.1992.68.4.1001. [DOI] [PubMed] [Google Scholar]
- Stafstrom C. E., Schwindt P. C., Chubb M. C., Crill W. E. Properties of persistent sodium conductance and calcium conductance of layer V neurons from cat sensorimotor cortex in vitro. J Neurophysiol. 1985 Jan;53(1):153–170. doi: 10.1152/jn.1985.53.1.153. [DOI] [PubMed] [Google Scholar]
- Strupp M., Grafe P. A chloride channel in rat and human axons. Neurosci Lett. 1991 Dec 9;133(2):237–240. doi: 10.1016/0304-3940(91)90578-h. [DOI] [PubMed] [Google Scholar]
- Stys P. K., Ransom B. R., Waxman S. G. Compound action potential of nerve recorded by suction electrode: a theoretical and experimental analysis. Brain Res. 1991 Apr 12;546(1):18–32. doi: 10.1016/0006-8993(91)91154-s. [DOI] [PubMed] [Google Scholar]
- Stys P. K., Ransom B. R., Waxman S. G. Tertiary and quaternary local anesthetics protect CNS white matter from anoxic injury at concentrations that do not block excitability. J Neurophysiol. 1992 Jan;67(1):236–240. doi: 10.1152/jn.1992.67.1.236. [DOI] [PubMed] [Google Scholar]
- Stys P. K., Waxman S. G., Ransom B. R. Ionic mechanisms of anoxic injury in mammalian CNS white matter: role of Na+ channels and Na(+)-Ca2+ exchanger. J Neurosci. 1992 Feb;12(2):430–439. doi: 10.1523/JNEUROSCI.12-02-00430.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sweadner K. J. Isozymes of the Na+/K+-ATPase. Biochim Biophys Acta. 1989 May 9;988(2):185–220. doi: 10.1016/0304-4157(89)90019-1. [DOI] [PubMed] [Google Scholar]
- Waxman S. G., Ransom B. R., Stys P. K. Non-synaptic mechanisms of Ca(2+)-mediated injury in CNS white matter. Trends Neurosci. 1991 Oct;14(10):461–468. doi: 10.1016/0166-2236(91)90046-w. [DOI] [PubMed] [Google Scholar]