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Abstract
Chromatin immunoprecipitation with massively parallel sequencing (ChIP-seq)
is widely used to identify the genomic binding sites for protein of interest. Most
conventional approaches to ChIP-seq data analysis involve the detection of the
absolute presence (or absence) of a binding site. However, an alternative
strategy is to identify changes in the binding intensity between two biological
conditions, i.e., differential binding (DB). This may yield more relevant results
than conventional analyses, as changes in binding can be associated with the
biological difference being investigated. The aim of this article is to facilitate the
implementation of DB analyses, by comprehensively describing a
computational workflow for the detection of DB regions from ChIP-seq data.
The workflow is based primarily on R software packages from the open-source
Bioconductor project and covers all steps of the analysis pipeline, from
alignment of read sequences to interpretation and visualization of putative DB
regions. In particular, detection of DB regions will be conducted using the
counts for sliding windows from the csaw package, with statistical
modelling performed using methods in the edgeR package. Analyses will be
demonstrated on real histone mark and transcription factor data sets. This will
provide readers with practical usage examples that can be applied in their own
studies.
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Introduction
Chromatin immunoprecipitation with sequencing (ChIP-seq) is a popular technique for identifying the genomic bind-
ing sites of a target protein. Conventional analyses of ChIP-seq data aim to detect absolute binding (i.e., the presence 
or absence of a binding sites) based on peaks in the read coverage. However, a number of recent studies have focused 
on the detection of changes in the binding profile between conditions (Pal et al., 2013; Ross-Innes et al., 2012). These 
differential binding (DB) analyses involve counting reads into genomic intervals, and then testing those counts for sig-
nificant differences between conditions. This defines a set of putative DB regions for further examination. DB analyses 
are easier to perform than their conventional counterparts, as the effect of genomic biases is largely mitigated when 
counts for different libraries are compared at the same genomic region. DB regions may also be more relevant as the 
change in binding can be associated with the biological difference between conditions.

The key step in the DB analysis is the manner in which reads are counted. The most obvious strategy is to count reads 
into pre-defined regions of interest, like promoters or gene bodies (Pal et al., 2013). This is simple but will not capture 
changes outside of those regions. In contrast, de novo analyses do not depend on pre-specified regions, instead using 
empirically defined peaks or sliding windows for read counting. Peak-based methods are implemented in the DiffBind 
and DBChIP software packages (Liang & Keles, 2012; Ross-Innes et al., 2012), which count reads into peak intervals 
that have been identified with software like MACS (Zhang et al., 2008). This requires some care to maintain statistical 
rigour, as peaks are called with the same data used to test for DB. Alternatively, window-based approaches count reads 
into sliding windows across the genome. This is a more direct strategy that avoids problems with data re-use and can 
provide increased DB detection power (Lun & Smyth, 2014). However, its correct implementation is not straightfor-
ward due to the subtleties with interpretation of the false discovery rate (FDR).

This article describes a computational workflow for performing a DB analysis with sliding windows. The aim is to 
facilitate the practical implementation of window-based DB analyses by providing detailed code and expected output. 
The workflow described here applies to any ChIP-seq experiment with multiple experimental conditions and with 
multiple biological samples within one or more of the conditions. It detects and summarizes DB regions between con-
ditions in a de novo manner, i.e., without making any prior assumptions about the location or width of bound regions. 
Detected regions are then annotated according to their proximity to annotated genes. In addition, the code can be easily 
adapted to accommodate batch effects, covariates and multiple experimental factors.

The workflow is based primarily on software packages from the open-source Bioconductor project (Huber et al., 2015). 
It contains all steps that are necessary for detecting DB regions, starting from the raw read sequences. Reads are first 
aligned to the genome using the Rsubread package (Liao et al., 2013). These are counted into sliding windows with 
csaw, to quantify binding intensity across the genome (Lun & Smyth, 2014). Statistical modelling is based on the 
negative binomial (NB) distribution with generalized linear models (GLMs) in the edgeR package (McCarthy et al., 
2012; Robinson et al., 2010), with additional sophistication provided by quasi-likelihood (QL) methods (Lund et al., 
2012). Code is also provided for filtering, normalization and region-level control of the FDR. Finally, annotation and 
visualization of the DB regions is described using Gviz and other packages.

The application of the methods in this article will be demonstrated on two publicly available ChIP-seq data sets. The 
first data set studies changes in H3K9ac marking between pro-B and mature B cells (Revilla-I-Domingo et al., 2012). 
The second data set studies changes in CREB-binding protein (CBP) binding between wild-type and CBP knock-out 
cells (Kasper et al., 2014). A separate workflow is described for the analysis of each data set, using the sliding window 
approach in both cases but with different parameter settings. The intention is to provide readers with a variety of usage 
examples from which they can construct DB analyses of their own data.

Aligning reads in the H3K9ac libraries
The first task is to download the relevant ChIP-seq libraries from the NCBI Gene Expression Omnibus (GEO) (Edgar 
et al., 2002). These are obtained from the data series GSE38046, using the Sequence Read Accession (SRA) numbers 
listed below. The experiment contains two biological replicates in total for each of the two cell types, i.e., pro-B and 
mature B. Multiple technical replicates exist for some of the biological replicates, and are indicated as those files with 
the same grouping.

sra.numbers <- c("SRR499718", "SRR499719", "SRR499720", "SRR499721",
    "SRR499734", "SRR499735", "SRR499736", "SRR499737", "SRR499738")
grouping <- c("proB-8113", "proB-8113", "proB-8108", "proB-8108",
    "matureB-8059", "matureB-8059", "matureB-8059", "matureB-8059", "matureB-8086")
all.sra <- paste0(sra.numbers, ".lite.sra")
data.frame(SRA=all.sra, Condition=grouping)
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##     SRA    Condition
## 1 SRR499718.lite.sra    proB-8113
## 2 SRR499719.lite.sra    proB-8113
## 3 SRR499720.lite.sra    proB-8108
## 4 SRR499721.lite.sra    proB-8108
## 5 SRR499734.lite.sra matureB-8059
## 6 SRR499735.lite.sra matureB-8059
## 7 SRR499736.lite.sra matureB-8059
## 8 SRR499737.lite.sra matureB-8059
## 9 SRR499738.lite.sra matureB-8086

These files are downloaded in the SRA format, and need to be unpacked to the FASTQ format prior to alignment. This 
can be done using the fastq-dump utility from the SRA Toolkit.

for (sra in all.sra) {
    code <- system(paste("fastq-dump", sra))
    stopifnot(code==0L)
}
all.fastq <- paste0(sra.numbers, ".fastq")

Technical replicates are merged together prior to further processing. This reflects the fact that they originate from a 
single library of DNA fragments.

by.group <- split(all.fastq, grouping)
for (group in names(by.group)) {
    code <- system(paste(c("cat", by.group[[group]], ">",
        paste0(group, ".fastq")), collapse=" "))
    stopifnot(code==0L)
}
group.fastq <- paste0(names(by.group), ".fastq")

Reads in each library are aligned to the mm10 build of the mouse genome, using the Rsubread package (Liao et al., 
2013). This assumes that an index has already been constructed with the prefix index/mm10. Here, a consensus 
threshold of 2 is used instead of the default of 3, to accommodate the shorter length of the reads (32 bp).

library(Rsubread)
bam.files <- paste0(names(by.group), ".bam")
align(index="index/mm10", readfile1=group.fastq, TH1=2,
    input_format="FASTQ", output_file=bam.files)

In each of the resulting BAM files, alignments are re-sorted by their mapping location. This is required for input into 
csaw, but is also useful for other programs like genome browsers that depend on sorting and indexing for rapid retrieval 
of reads.

library(Rsamtools)
for (bam in bam.files) {
    out <- suppressWarnings(sortBam(bam, "h3k9ac_temp"))
    file.rename(out, bam)
}

Potential PCR duplicates are marked using the MarkDuplicates tool from the Picard software suite. These are 
identified as alignments at the same genomic location, such that they may have originated from PCR-amplified copies 
of the same DNA fragment.
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temp.bam <- "h3k9ac_temp.bam"
temp.file <- "h3k9ac_metric.txt"
temp.dir <- "h3k9ac_working"
dir.create(temp.dir)
for (bam in bam.files) {
    code <- system(sprintf("MarkDuplicates I=%s O=%s M=%s \\
        TMP_DIR=%s AS=true REMOVE_DUPLICATES=false \\
        VALIDATION_STRINGENCY=SILENT", bam, temp.bam,
        temp.file, temp.dir))
    stopifnot(code==0L)
    file.rename(temp.bam, bam)
}

The behaviour of the alignment pipeline for this data set can be easily summarized with some statistics. Ideally, the 
proportion of mapped reads should be high, while the proportion of marked reads should be low.

diagnostics <- list()
for (bam in bam.files) {
    total <- countBam(bam)$records
    mapped <- countBam(bam, param=ScanBamParam(
 flag=scanBamFlag(isUnmapped=FALSE)))$records
    marked <- countBam(bam, param=ScanBamParam(
 flag=scanBamFlag(isUnmapped=FALSE, isDuplicate=TRUE)))$records
    diagnostics[[bam]] <- c(Total=total, Mapped=mapped, Marked=marked)
}
diag.stats <- data.frame(do.call(rbind, diagnostics))
diag.stats$Prop.mapped <- diag.stats$Mapped/diag.stats$Total*100
diag.stats$Prop.marked <- diag.stats$Marked/diag.stats$Mapped*100
diag.stats

##        Total  Mapped  Marked Prop.mapped Prop.marked
## matureB-8059.bam 16675372      7752077  1054591    46.48818   13.603980
## matureB-8086.bam  6347683      4899961   195100    77.19291    3.981664
## proB-8108.bam    10413135      8213980   297796    78.88095    3.625478
## proB-8113.bam    10724526      9145743   489177    85.27876    5.348685

Finally, the libraries are indexed for rapid retrieval by genomic location. This generates a number of index files at the 
same location as the BAM files.

indexBam(bam.files)

Obtaining the ENCODE blacklist for mm10
A number of genomic regions contain high artifactual signal in ChIP-seq experiments. These often correspond to 
genomic features like telomeres or microsatellite repeats. For example, multiple tandem repeats in the real genome 
are reported as a single unit in the genome build. Alignment of all (non-specifically immunoprecipitated) reads from 
the former will result in artificially high coverage of the latter. Moreover, differences in repeat copy numbers between 
conditions can lead to detection of spurious DB.

As such, these regions must be removed prior to further analysis. This can be done with an annotated blacklist of 
problematic regions in the mm9 build of the mouse genome. All reads in the blacklist will be ignored during process-
ing in csaw. The blacklist itself was constructed by identifying consistently problematic regions in the ENCODE and 
modENCODE data sets (ENCODE Project Consortium, 2012).

Recall that the alignments have been performed to the mm10 build, so the mm9 blacklist coordinates must be trans-
ferred to their mm10 equivalents. This is done using the liftOver function in the rtracklayer package (Lawrence 
et al., 2009). The chain file specifies the corresponding coordinates between the two builds and can be obtained here. 
The new blacklist coordinates are then saved to file for future use.
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library(rtracklayer)
ch <- import.chain("mm9ToMm10.over.chain")
original <- import("mm9-blacklist.bed")
blacklist <- liftOver(x=original, chain=ch)
blacklist <- unlist(blacklist)
saveRDS(file="mm10-blacklist.rds", blacklist)

An alternative approach is to use predicted repeat regions from the UCSC genome annotation (Rosenbloom et al., 
2015). This tends to remove a greater number of problematic regions (especially microsatellites) compared to the 
ENCODE blacklist. However, the size of the UCSC list means that genuine DB sites may also be removed. Thus, the 
ENCODE blacklist is preferred for most applications.

Testing for DB between pro-B and mature B cells
Setting up the analysis parameters
Here, the settings for the DB analysis are specified. Recall that the paths to the BAM files are stored in the bam.files 
vector after alignment. The cell type for each file can be conveniently extracted from the file name.

celltype <- sub("-.*",  "", bam.files)
data.frame(BAM=bam.files,  CellType=celltype)

##                BAM  CellType
## 1 matureB-8059.bam   matureB
## 2 matureB-8086.bam   matureB
## 3    proB-8108.bam      proB
## 4    proB-8113.bam      proB

In the csaw package, the readParam object determines which reads are extracted from the BAM files. The idea is to 
set this up once and to re-use it in all relevant functions. For this analysis, reads are only used if they have a mapping 
quality score above 50. This avoids spurious results due to weak or non-unique alignments. Reads are also ignored if 
they map within blacklist regions or if they do not map to the standard set of mouse nuclear chromosomes.

library(csaw)
param <- readParam(minq=50, discard=blacklist,
    restrict=paste0("chr", c(1:19, "X", "Y")))

Computing the average fragment length
Strand bimodality is often observed in ChIP-seq experiments involving sharp binding events like H3K9ac marking. 
This refers to the presence of distinct subpeaks on each strand and can be quantified with cross-correlation plots 
(Kharchenko et al., 2008). A strong peak in the cross-correlations should be observed if immunoprecipitation was suc-
cessful. The delay distance at the peak corresponds to the distance between forward-/reverse-strand subpeaks. This is 
identified from Figure 1 and is used as the average fragment length for this analysis.

x <- correlateReads(bam.files, param=reform(param, dedup=TRUE))
frag.len <- which.max(x) - 1
frag.len

## [1] 148

plot(1:length(x)-1, x, xlab="Delay (bp)", ylab="CCF", type="l")
abline(v=frag.len, col="red")
text(x=frag.len, y=min(x), paste(frag.len, "bp"), pos=4, col="red")

Only unmarked reads (i.e., not potential PCR duplicates) are used here. This tends to give better signal by reducing 
the size of the “phantom” peak at the read length (Landt et al., 2012). However, removal of marked reads is risky as it 
caps the signal in high-coverage regions of the genome. This can result in loss of power to detect DB, or introduction 
of spurious DB when the same cap is applied to libraries of different sizes. Thus, the marking status of each read will 
be ignored in the rest of the analysis, i.e., no duplicates will be removed in downstream steps.
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Counting reads into windows
csaw uses a sliding window strategy to quantify binding intensity across the genome. Each read is directionally extended 
to the average fragment length, to represent the DNA fragment from which that read was sequenced. The number of 
extended reads overlapping a window is counted. The window is then moved to its next position on the genome, and 
counting is repeated. This is done for all libraries such that a count is obtained for each window in each library. The 
windowCounts function produces a RangedSummarizedExperiment object containing these counts in matrix 
form, where each row corresponds to a window and each column represents a library.

win.data <- windowCounts(bam.files, param=param, width=150, ext=frag.len)
win.data

## class: SummarizedExperiment
## dim: 1569624 4
## exptData(4): spacing width shift final.ext
## assays(1): counts
## rownames: NULL
## rowRanges metadata column names(0):
## colnames: NULL
## colData names(4): bam.files totals ext param

To analyze H3K9ac data, a window size of 150 bp is used here. This corresponds roughly to the length of the DNA in 
a nucleosome (Humburg et al., 2011), which is the smallest relevant unit for studying histone mark enrichment. The 
spacing between windows is set to the default of 50 bp, i.e., adjacent window starts are 50 bp apart. By default, win-
dows with very low counts are removed to reduce memory use.

Filtering windows by abundance
Low-abundance windows contain no binding sites and need to be filtered out. This improves power by removing irrel-
evant tests prior to the multiple testing correction; avoids problems with discreteness in downstream statistical meth-
ods; and reduces computational work for further analyses. Here, filtering is performed using the average abundance 
of each window (McCarthy et al., 2012). This performs well as an independent filter statistic for NB-distributed count 
data (Lun & Smyth, 2014).

The filter threshold is defined based on the assumption that most regions in the genome are not marked by H3K9ac. 
Reads are counted into large bins and the median coverage across those bins is used as an estimate of the background 
abundance. Windows are only retained if they have abundances 3-fold higher than the background. This removes a 
large number of windows that are weakly or not marked and are likely to be irrelevant.

Figure 1. Cross-correlation function (CCF) against delay distance for the H3k9ac data set. The delay with the 
maximum correlation is shown as the red line.
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Figure 2. Histogram of average abundances across all 2 kbp genomic bins. The filter threshold is shown as the red 
line.

bins <- windowCounts(bam.files, bin=TRUE, width=2000, param=param)
filter.stat <- filterWindows(win.data,  bins, type="global")
min.fc <- 3
keep <- filter.stat$filter > log2(min.fc)
summary(keep)

##     Mode    FALSE    TRUE    NA’s
##  logical   906406  663218       0

The effect of the fold-change threshold can be examined visually in Figure 2. The chosen threshold is greater than the 
abundances of most bins in the genome – presumably, those that contain background regions. This suggests that the 
filter will remove most windows lying within background regions.

hist(filter.stat$back.abundances, xlab="Background abundance", main="", breaks=50)
threshold <- filter.stat$abundances[1] - filter.stat$filter[1] + log2(min.fc)
abline(v=threshold, col="red")

The actual filtering itself is done by simply subsetting the RangedSummarizedExperiment object.

filtered.data <- win.data[keep,]

Normalizing for library-specific trended biases
Normalization is required prior to any comparisons between libraries, to eliminate confounding library-specific biases. 
In particular, a trended bias is often observed between libraries in Figure 3. This refers to a systematic fold-difference 
in window coverage between libraries that changes according to the average abundance of the window.

win.ab <- filter.stat$abundances[keep]
adjc <- log2(assay(filtered.data)+0.5)
logfc <- adjc[,1] - adjc[,4]
smoothScatter(win.ab, logfc, ylim=c(-6, 6), xlim=c(0, 5),
     xlab="Average abundance", ylab="Log-fold change")
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Trended biases cannot be removed by scaling methods like TMM normalization (Robinson & Oshlack, 2010), as the 
amount of scaling required varies with the abundance of the window. Rather, non-linear normalization methods must 
be used. csaw implements a version of the fast loess method (Ballman et al., 2004) that is adapted to count data. This 
produces a matrix of offsets that can be used during GLM fitting.

offsets <- normalize(filtered.data, type="loess")
head(offsets)

##       [,1]       [,2]      [,3]      [,4]
## [1,] -0.5878496 -0.4019382 0.3954267 0.5943611
## [2,] -0.5673338 -0.3789731 0.3770978 0.5692091
## [3,] -0.6261679 -0.4720746 0.4397909 0.6584516
## [4,] -0.6528790 -0.5453416 0.4789700 0.7192507
## [5,] -0.6713098 -0.5838111 0.5015881 0.7535328
## [6,] -0.7028331 -0.6463783 0.5390876 0.8101237

The effect of non-linear normalization can be visualized with a mean-difference plot comparing the first and last librar-
ies. Once the offsets are applied to adjust the log-fold changes, the trend is eliminated from the plot (Figure 4). The 
cloud of points is also centred at a log-fold change of zero. This indicates that normalization was successful in remov-
ing the differences between libraries.

norm.adjc <- adjc - offsets/log(2)
norm.fc <- norm.adjc[,1]-norm.adjc[,4]
smoothScatter(win.ab, norm.fc, ylim=c(-6, 6), xlim=c(0, 5),
     xlab="Average abundance", ylab="Log-fold change")

The implicit assumption of non-linear methods is that most windows at each abundance are not DB. Any systematic 
difference between libraries is attributed to bias and is removed. This is not appropriate in situations where large-scale 
DB is expected, as removal of the difference would result in loss of genuine DB. However, there is no indication that 
such changes are present in this data set, so non-linear methods can be applied without too much concern.

Statistical modelling of biological variability
Introduction. Counts are modelled using NB GLMs in the edgeR package (McCarthy et al., 2012; Robinson et al., 
2010). The NB distribution is useful as it can handle low, discrete counts for each window. The NB dispersion param-
eter allows modelling of biological variability between replicate libraries. GLMs can also accommodate complex 
experimental designs, though a simple design is sufficient for this study.

Figure 3. Abundance-dependent trend in the log-fold change between two H3K9ac libraries (mature B over pro-B), 
across all windows retained after filtering.
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celltype <- factor(celltype)
design <- model.matrix(~0+celltype)
colnames(design) <- levels(celltype)
design

##    matureB  proB
##  1     1  0
##  2     1  0
##  3     0  1
##  4     0  1
##  attr(,"assign")
##  [1] 1 1
##  attr(,"contrasts")
##  attr(,"contrasts")$celltype
##  [1] "contr.treatment"

Estimating the NB dispersion. The RangedSummarizedExperiment object is coerced into a DGEList object 
(plus offsets) prior to entry into edgeR. Estimation of the NB dispersion is then performed. Specifically, a NB dispersion 
trend is fitted to all windows against the average abundance. This means that empirical mean-dispersion trends can be 
flexibly modelled.

library(edgeR)
y <- asDGEList(filtered.data)
y$offset <- offsets
y <- estimateDisp(y, design)
summary(y$trended.dispersion)

##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max.
##  0.03156  0.04174  0.04274  0.04168  0.04311  0.04371

The NB dispersion trend is visualized in Figure 5 as the biological coefficient of variation (BCV), i.e., the square root of 
the NB dispersion. A trend that decreases to a plateau with increasing abundance is typical of many analyses, including 
those of RNA-seq and ChIP-seq data. Note that only the trended dispersion will be used here – the common and tagwise 
values are only shown for diagnostic purposes.

plotBCV(y)

Figure 4. Effect of non-linear normalization on the trended bias between two H3K9ac libraries. Log-fold changes 
for all windows are shown after normalization.
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Figure 5. Abundance-dependent trend in the BCV for each window, represented by the blue line. Common and 
tagwise estimates are also shown.

Estimating the QL dispersion. Additional modelling is provided with the QL methods in edgeR (Lund et al., 2012). 
This introduces a QL dispersion parameter for each window, which captures variability in the NB dispersion around 
the fitted trend for each window. Thus, the QL dispersion can model window-specific variability, whereas the NB dis-
persion trend is averaged across many windows. However, with limited replicates, there is not enough information for 
each window to stably estimate the QL dispersion. This is overcome by sharing information between windows with 
empirical Bayes (EB) shrinkage. The instability of the QL dispersion estimates is reduced by squeezing the estimates 
towards an abundance-dependent trend (Figure 6).

fit <- glmQLFit(y, design, robust=TRUE)
plotQLDisp(fit)

The extent of shrinkage is determined by the prior degrees of freedom (d.f.). Large prior d.f. indicates that the disper-
sions were similar across windows, such that strong shrinkage to the trend could be performed to increase stability and 
power. Small prior d.f. indicates that the dispersions were more variable. In such cases, less squeezing is performed as 
strong shrinkage would be inappropriate. Also note the use of robust=TRUE, which reduces the sensitivity of the EB 
procedures to outlier windows.

summary(fit$df.prior)

##    Min.  1st Qu.   Median     Mean  3rd Qu.     Max.
##  0.4903  22.6900  22.6900  22.6900  22.6900  22.6900

Examining the data with MDS plots. Multi-dimensional scaling (MDS) plots can be used to examine the similarities 
between libraries. The distance between a pair of libraries on this plot represents the overall log-fold change between 
those libraries. Ideally, replicates should cluster together while samples from different conditions should be separate. In 
Figure 7, strong separation in the first dimension is observed between libraries from different cell types. This indicates 
that significant differences are likely to be present between cell types in this data set.

plotMDS(norm.adjc, labels=celltype,
     col=c("red", "blue")[as.integer(celltype)])
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Figure 6. Effect of EB shrinkage on the raw QL dispersion estimate for each window (black) towards the 
abundance-dependent trend (blue) to obtain squeezed estimates (red).

Figure 7. MDS plot with two dimensions for all libraries in the H3K9ac data set. Libraries are labelled and coloured 
according to the cell type.
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Testing for DB and controlling the FDR
Testing for DB with QL F-tests. Each window is tested for significant differences between cell types using the QL 
F-test (Lund et al., 2012). This is superior to the likelihood ratio test that is typically used for GLMs, as the QL F-test 
accounts for the uncertainty in dispersion estimation. One p-value is produced for each window, representing the evi-
dence against the null hypothesis (i.e., no DB). For this analysis, the comparison is parametrized such that the reported 
log-fold changes represent that of pro-B cells over mature B counterparts.

contrast <- makeContrasts(proB-matureB, levels=design)
res <- glmQLFTest(fit, contrast=contrast)
head(res$table)

##       logFC    logCPM           F    PValue
## 1 0.8071199 0.3987193   0.9350894   0.34292110
## 2 0.7892698 0.3531386   0.8977361   0.35257125
## 3 2.0508458 0.5770295   5.3124205   0.02987028
## 4 1.1952436 0.8317769   2.6800790   0.11429478
## 5 0.9751114 0.9868770   2.0577431   0.16397982
## 6 0.6472745 1.2487216   1.0906847   0.30643720

Controlling the FDR across regions. One might attempt to control the FDR by applying the Benjamini-Hochberg 
(BH) method to the window-level p-values (Benjamini & Hochberg, 1995). However, the features of interest are not 
windows, but the genomic regions that they represent. Control of the FDR across windows does not guarantee control 
of the FDR across regions (Lun & Smyth, 2014). The latter is arguably more relevant for the final interpretation of the 
results.

Control of the region-level FDR can be provided by aggregating windows into regions and combining the p-values. 
Here, adjacent windows less than 100 bp apart are aggregated into clusters. Each cluster represents a genomic region. 
Smaller values of tol allow distinct marking events to kept separate, while larger values provide a broader perspec-
tive, e.g., by considering adjacent co-regulated sites as a single entity. Chaining effects are mitigated by setting a 
maximum cluster width of 5 kbp.

merged <- mergeWindows(rowRanges(filtered.data),
     tol=100, max.width=5000)

A combined p-value is computed for each cluster using the method of Simes (1986), based on the p-values of the con-
stituent windows. This represents the evidence against the global null hypothesis for each cluster, i.e., that no DB exists 
in any of its windows. Rejection of this global null indicates that the cluster (and the region that it represents) contains 
DB. Applying the BH method to the combined p-values allows the region-level FDR to be controlled.

merged <- mergeWindows(rowRanges(filtered.data),
     tol=100, max.width=5000)
tabcom <- combineTests(merged$id, res$table)
head(tabcom)

##    nWindows   logFC.up  logFC.down     PValue        FDR
## 1       2       2    0 0.35257125 0.48433052
## 2      24      10    0 0.03965980 0.09329214
## 3       8       1    3 0.38231836 0.51205966
## 4      11       1    2 0.84578866 0.91987081
## 5      36      14    6 0.01481647 0.04558244
## 6      18       7    9 0.00671594 0.02656732

Each row of the output table contains the statistics for a single cluster, including the combined p-value before and after 
the BH correction. The nWindows field describes the total number of windows in the cluster. The logFC.up and 
logFC.down fields describe the number of windows with a log-fold change above 0.5 or below -0.5 in each cluster, 
respectively. This can be used to determine the direction of DB in each cluster.
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Examining the scope and direction of DB. The total number of DB regions at a FDR of 5% can be easily calculated.

is.sig <- tabcom$FDR <= 0.05
summary(is.sig)

##    Mode   FALSE    TRUE   NA’s
## logical   26121   13402      0

Determining the direction of DB is more complicated, as clusters could potentially contain windows that are changing 
in opposite directions. One approach is to define the direction based on the number of windows changing in each direc-
tion, as described above. Another approach is to use the log-fold change of the most significant window as a proxy for 
the log-fold change of the cluster. This is generally satisfactory, though it will not capture multiple changes in opposite 
directions. It also tends to overstate the change in each cluster.

tabbest <- getBestTest(merged$id, res$table)
head(tabbest)

##   best      logFC    logCPM          F     PValue        FDR
## 1    1  0.8071199 0.3987193  0.9350894 0.68584219 0.89635068
## 2   14  6.4894914 0.7814903 12.3651181 0.04305271 0.10940477
## 3   29 -0.8951569 1.4182105  3.1716524 0.70058621 0.91053977
## 4   42 -0.9100013 0.9724194  2.4590005 1.00000000 1.00000000
## 5   64  6.5014465 0.7867585 14.3069870 0.03337001 0.09138600
## 6   88  6.5134616 0.7920288 15.6865615 0.01067998 0.04156789

In the above table, each row contains the statistics for each cluster. Of interest are the best and logFC fields. The 
former is the index of the window that is the most significant in each cluster, while the latter is the log-fold change of 
that window. This can be used to obtain a summary of the direction of DB across all clusters/regions.

is.sig.pos <- (tabbest$logFC > 0)[is.sig]
summary(is.sig.pos)

##    Mode   FALSE    TRUE   NA’s
## logical    8137    5265      0

Saving results to file
Results can be saved to file prior to further manipulation. One approach is to store all statistics in the metadata of a 
GRanges object. This is useful as it keeps the statistics and coordinates together for each cluster, avoiding problems 
with synchronization in downstream steps. The midpoint and log-fold change of the best window are also stored.

out.ranges <- merged$region
elementMetadata(out.ranges) <- data.frame(tabcom,
   best.pos=mid(ranges(rowRanges(filtered.data[tabbest$best]))),
   best.logFC=tabbest$logFC)
saveRDS(file="h3k9ac_results.rds", out.ranges)

For input into other programs like genome browsers, results can be saved in a more conventional format. Here, coordi-
nates of DB regions are saved in BED format via rtracklayer, using a log-transformed FDR as the score.

simplified <- out.ranges[is.sig]
simplified$score <- -10*log10(simplified$FDR)
export(con="h3k9ac_results.bed", object=simplified)

Saving the RangedSummarizedExperiment objects is also recommended. This avoids the need to re-run the time-
consuming read counting steps if parts of the analysis need to be repeated. Similarly, the DGEList object is saved so 
that the edgeR statistics can be easily recovered.

save(file="h3k9ac_objects.Rda", win.data, bins, y)
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Interpreting the DB results
Adding gene-centric annotation
Using the detailRanges function. csaw provides its own annotation function, detailRanges. This identifies 
all genic features overlapping each region and reports them in a compact string form. Briefly, features are reported as 
SYMBOL|EXONS|STRAND where SYMBOL represents the gene symbol, EXONS lists the overlapping exons (0 for 
promoters, I for introns), and STRAND reports the strand. Multiple overlapping features for different genes are sepa-
rated by commas within the string for each region.

library(org.Mm.eg.db)
library(TxDb.Mmusculus.UCSC.mm10.knownGene)
anno <- detailRanges(out.ranges, orgdb=org.Mm.eg.db,
     txdb=TxDb.Mmusculus.UCSC.mm10.knownGene)
head(anno$overlap)

## [1] "Mrpl15|5|-" "Mrpl15|0-1|-" "Lypla1|0|+" "Lypla1|0,2|+"
## [5] "Tcea1|0-2|+" "Atp6v1h|0-1|+"

Annotated features that flank the region of interest are also reported. The description for each feature is formatted as 
described above but with an extra [DISTANCE] field, representing the distance (in base pairs) between that feature 
and the region. By default, only flanking features within 5 kbp of each region are considered.

head(anno$left)

## [1] "Mrpl15|6|-[935]"  "Mrpl15|2-3|-[896]" ""
## [4] "Lypla1|1|+[19]"   ""      ""

head(anno$right)

## [1] "Mrpl15|4|-[1875]" ""  "Lypla1|1-2|+[143]"
## [4] ""          ""          "Atp6v1h|2|+[517]"

The annotation for each region can then be stored in metadata of the GRanges object. The compact string form is use-
ful for human interpretation, as it allows rapid examination of all genic features neighbouring each region.

meta <- elementMetadata(out.ranges)
elementMetadata(out.ranges) <- data.frame(meta, anno)

Using the ChIPpeakAnno package. As its name suggests, the ChIPpeakAnno package is designed to annotate peaks 
from ChIP-seq experiments (Zhu et al., 2010). A GRanges object containing all regions of interest is supplied to the 
relevant function, after removing all previous metadata fields to reduce clutter. The gene closest to each region is then 
reported. Gene coordinates are taken from the NCBI mouse 38 annotation, which is roughly equivalent to the annota-
tion in the mm10 genome build.

library(ChIPpeakAnno)
data(TSS.mouse.GRCm38)
minimal <- out.ranges
elementMetadata(minimal) <- NULL
anno.regions <- annotatePeakInBatch(minimal, AnnotationData=TSS.mouse.GRCm38)
colnames(elementMetadata(anno.regions))

## [1] "peak"                     "feature"
## [3] "start_position"           "end_position"
## [5] "feature_strand"           "insideFeature"
## [7] "distancetoFeature"        "shortestDistance"
## [9] "fromOverlappingOrNearest"
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The behaviour of ChIPpeakAnno complements that of detailRanges. The latter reports all overlapping and flank-
ing genes, while the former reports only the closest gene (but in greater detail). Which is preferable depends on the 
proclivities of the user and the purpose of the annotation.

Reporting gene-based results. Another approach to annotation is to flip the problem around, such that DB statistics 
are reported directly for features of interest like genes. This is more convenient when the DB analysis needs to be 
integrated with, e.g., DE analyses of matching RNA-seq data. In the code below, promoter coordinates are obtained 
by running detailRanges without specifying any regions. All windows overlapping each promoter are defined as 
a cluster, and DB statistics are computed as previously described for each cluster/promoter. This directly yields results 
for annotated features (with some NA values, representing those promoters that have no overlapping windows).

anno.ranges  <- detailRanges(orgdb=org.Mm.eg.db,
     txdb=TxDb.Mmusculus.UCSC.mm10.knownGene)
promoters  <- anno.ranges[anno.ranges$exon==0L]
olap <- findOverlaps(promoters,   rowRanges(filtered.data))
tabprom <- combineOverlaps(olap,  res$table)
head(data.frame(Gene=promoters$symbol,  tabprom)[!is.na(tabprom$PValue),])

## Gene  nWindows  logFC.up  logFC.down   PValue           FDR
## 6  Ldlrap1        19        11           0 0.224741404877 0.2705479855
## 7  Mdn1           29        12          11 0.000004447727 0.0001347924
## 8  Pydc3           8         0           6 0.051183399851 0.0781822366
## 9  Wfdc17          6         0           6 0.000069604922 0.0008738790
## 10 Mfap1b         19         1          10 0.107116609335 0.1440819313
## 13 Gm15772        30        12           7 0.085543435687 0.1192823092

Note that this is distinct from counting reads across promoters. Using promoter-level counts would not provide enough 
spatial resolution to detect sharp binding events that only occur in a subinterval of the promoter. In particular, detec-
tion may be compromised by non-specific background or the presence of multiple opposing DB events in the same 
promoter. Combining window-level statistics is preferable as resolution is maintained for optimal performance.

Visualizing DB results
Overview. Here, the Gviz package is used to visualize read coverage across the data set at regions of interest. Coverage 
in each BAM file will be represented by a single track. Several additional tracks will also be included in each plot. One 
is the genome axis track, to display the genomic coordinates across the plotted region. The other is the annotation track 
containing gene models, with gene IDs replaced by symbols (where possible) for easier reading.

library(Gviz)
gax <- GenomeAxisTrack(col="black", fontsize=15, size=2)
greg <- GeneRegionTrack(TxDb.Mmusculus.UCSC.mm10.knownGene, showId=TRUE,
     geneSymbol=TRUE, name="", background.title="transparent")
symbols <- unlist(mapIds(org.Mm.eg.db, gene(greg), "SYMBOL",
     "ENTREZID", multiVals = "first"))
symbol(greg) <- symbols[gene(greg)]

Simple DB across a broad region. To begin with, the top-ranking DB region will be visualized. This represents a simple 
DB event where the entire region changes in one direction (Figure 8). Specifically, it represents an increase in H3K9ac 
marking at the H2-Aa locus. This is consistent with the expected biology – H3K9ac is a mark of active gene expression 
(Karmodiya et al., 2012) and MHCII components are upregulated in mature B cells (Hoffmann et al., 2002).
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o <- order(out.ranges$PValue)
cur.region <- out.ranges[o[1]]
cur.region

## GRanges object with 1 range and 10 metadata columns:
##       seqnames                 ranges strand |  nWindows  logFC.up
##   <Rle>              <IRanges>  <Rle> | <integer> <integer>
##   [1]  chr17   [34285101, 34289950]    * |        94         0
## logFC.down                  PValue               FDR  best.pos
##  <integer>               <numeric>          <numeric> <integer>
##   [1]         94  0.00000000000004471753 0.000000001195279  34287575
## best.logFC       overlap        left
##  <numeric>      <factor>     <factor>
##   [1]  -7.176575 H2-Aa|0-1|-,H2-Eb1|I|+,Notch4|I|+ H2-Aa|2-6|-[278]
##    right
## <factor>
##   [1]
##   -------
##   seqinfo: 21 sequences from an unspecified genome

Figure 8. Coverage tracks for a simple DB event between pro-B and mature B cells, across a broad region in the 
H3K9ac data set. Read coverage for each library is shown as a per-million value at each base.
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One track is plotted for each library, in addition to the coordinate and annotation tracks. Coverage is plotted in terms of 
sequencing depth-per-million at each base. This corrects for differences in library sizes between tracks.

collected <- list()
lib.sizes <- filtered.data$totals/1e6
for (i in 1:length(bam.files)) {
    reads <- extractReads(bam.file=bam.files[i], cur.region, param=param)
    cov <- as(coverage(reads)/lib.sizes[i], "GRanges")
    collected[[i]] <- DataTrack(cov, type="histogram", lwd=0, ylim=c(0,10),
         name=bam.files[i],  col.axis="black", col.title="black",
         fill="darkgray", col.histogram=NA)
}
plotTracks(c(gax, collected, greg), chromosome=as.character(seqnames(cur.region)),
    from=start(cur.region), to=end(cur.region))

Complex DB across a broad region. Complex DB refers to situations where multiple DB events are occurring within 
the same enriched region. These are identified as those clusters that contain windows changing in both directions. Here, 
the second-ranking complex cluster is selected for visualization (the top-ranking complex cluster is adjacent to the 
region used in the previous example, so another region is chosen for some variety).

complex <- out.ranges$logFC.up > 0 & out.ranges$logFC.down > 0
cur.region <- out.ranges[o[complex[o]][2]]
cur.region

## GRanges object with 1 range and 10 metadata columns:
##      seqnames                ranges strand |  nWindows  logFC.up
##    <Rle>             <IRanges>  <Rle> | <integer> <integer>
##   [1]   chr5 [122987201, 122991450]      * |        83        17
##  logFC.down        PValue  FDR  best.pos best.logFC
##   <integer>      <numeric>    <numeric> <integer>  <numeric>
##   [1]          43 0.0000000002201102 0.0000001962277 122990925  -5.466918
##                         overlap       left
##                        <factor>   <factor>
##   [1] A930024E05Rik|0-1|+,Kdm2b|0-3|- Kdm2b|4-5|-[2661]
##          right
##       <factor>
##   [1] A930024E05Rik|2|+[2913]
##   -------
##   seqinfo: 21 sequences from an unspecified genome

This region contains a bidirectional promoter where different genes are marked in the different cell types (Figure 9). 
Upon differentiation to mature B cells, loss of marking in one part of the region is balanced by a gain in marking in 
another part of the region. This represents a complex DB event that would not be detected if reads were counted across 
the entire region.

collected <- list()
for (i in 1:length(bam.files)) {
    reads <- extractReads(bam.file=bam.files[i], cur.region, param=param)
    cov <- as(coverage(reads)/lib.sizes[i], "GRanges")
    collected[[i]] <- DataTrack(cov, type="histogram", lwd=0, ylim=c(0,3),
        name=bam.files[i],  col.axis="black", col.title="black",
        fill="darkgray", col.histogram=NA)
}
plotTracks(c(gax, collected, greg), chromosome=as.character(seqnames(cur.region)),
    from=start(cur.region), to=end(cur.region))
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Simple DB across a small region. Both of the examples above involve differential marking within broad regions span-
ning several kilobases. This is consistent with changes in the marking profile across a large number of nucleosomes. 
However, H3K9ac marking can also be concentrated into small regions, involving only a few nucleosomes. csaw is 
equally capable of detecting “sharp” DB within these small regions. This can be demonstrated by examining those 
clusters that contain a smaller number of windows.

sharp <- out.ranges$nWindows < 20
cur.region <- out.ranges[o[sharp[o]][1]]
cur.region

## GRanges object with 1 range and 10 metadata columns:
##  seqnames        ranges strand |  nWindows  logFC.up
##     <Rle>     <IRanges>  <Rle> | <integer> <integer>
##   [1]    chr16 [36665551,  36666200]   * |      11        0
##  logFC.down        PValue  FDR  best.pos best.logFC
##   <integer>       <numeric>    <numeric> <integer>  <numeric>
##   [1]          11 0.0000000003412784 0.0000002593913  36665925  -4.887727
##     overlap     left    right
##    <factor> <factor> <factor>
##   [1]  Cd86|0-1|-
##   -------
##   seqinfo: 21 sequences from an unspecified genome

Marking is increased for mature B cells within a 500 bp region (Figure 10), which is sharper than the changes in the 
previous two examples. This also coincides with the promoter of the Cd86 gene. Again, this makes biological sense as 
CD86 is involved in regulating immunoglobulin production in activated B-cells (Podojil & Sanders, 2003).

Figure 9. Coverage tracks for a complex DB event in the H3K9ac data set, shown as per-million values.
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collected <- list()
for (i in 1:length(bam.files)) {
    reads <- extractReads(bam.file=bam.files[i], cur.region, param=param)
    cov <- as(coverage(reads)/lib.sizes[i], "GRanges")
    collected[[i]] <- DataTrack(cov, type="histogram", lwd=0, ylim=c(0,3),
          name=bam.files[i], col.axis="black", col.title="black",
    fill="darkgray",  col.histogram=NA)
}
plotTracks(c(gax, collected, greg), chromosome=as.character(seqnames(cur.region)),
    from=start(cur.region), to=end(cur.region))

Note that the window size will determine whether sharp or broad events are preferentially detected. Larger windows 
provide more power to detect broad events (as the counts are higher), while smaller windows provide more resolution 
to detect sharp events. Optimal detection of all features can be obtained by performing analyses with multiple window 
sizes and consolidating the results, though – for brevity – this will not be described here. In general, smaller window 
sizes are preferred as strong DB events with sufficient coverage will always be detected. For larger windows, detec-
tion may be confounded by other events within the window that distort the log-fold change in the counts between 
conditions.

Repeating the analysis for the CBP data
Overview
A window-based DB analysis will be shown for transcription factor (TF) data, to complement the histone mark analysis 
above. This data set compares CBP binding between wild-type (WT) and CBP knock-out (KO) animals (Kasper et al., 
2014). The aim is to use csaw and other Bioconductor packages to identify DB sites between genotypes. Most, if not 
all, of these sites should be increased in the WT, given that protein function should be compromised in the KO.

Figure 10. Coverage tracks for a sharp and simple DB event in the H3K9ac data set, shown as per-million 
values.
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Aligning reads from CBP libraries
Libraries are downloaded from the NCBI GEO data series GSE54453, using the SRA accessions listed below. The 
data set contains two biological replicates for each of the two genotypes. One file is available for each library, i.e., no 
technical replicates.

sra.numbers <- c("SRR1145787", "SRR1145788", "SRR1145789", "SRR1145790")
genotype <- c("wt", "wt", "ko", "ko")
all.sra <- paste0(sra.numbers, ".sra")
data.frame(SRA=all.sra, Condition=genotype)

##        SRA     Condition
## 1 SRR1145787.sra      wt
## 2 SRR1145788.sra      wt
## 3 SRR1145789.sra      ko
## 4 SRR1145790.sra      ko

SRA files are unpacked to yield FASTQ files with the raw read sequences.

for (sra in all.sra) {
    code <- system(paste("fastq-dump”, sra))
     stopifnot(code==0L)
}
all.fastq <- paste0(sra.numbers, ".fastq")

Reads are aligned to the mm10 genome using Rsubread. Here, the default consensus threshold is used as the reads are 
longer (75 bp). A Phred offset of +64 is also used, instead of the default +33 used in the previous analysis.

bam.files <- paste0(sra.numbers, ".bam")
align(index="index/mm10", readfile1=all.fastq, phredOffset=64,
     input_format="FASTQ", output_file=bam.files)

Alignments in each BAM file are sorted by coordinate. Duplicate reads are marked, and the resulting files are 
indexed.

temp.bam <- "cbp_temp.bam"
temp.file <- "cbp_metric.txt"
temp.dir <- "cbp_working"
dir.create(temp.dir)
for (bam in bam.files) {
    out <- suppressWarnings(sortBam(bam, "cbp_temp"))
    file.rename(out, bam)
    code <- system(sprintf("MarkDuplicates I=%s O=%s M=%s \\
        TMP_DIR=%s AS=true REMOVE_DUPLICATES=false \\
        VALIDATION_STRINGENCY=SILENT",
        bam, temp.bam, temp.file, temp.dir))
     stopifnot(code==0L)
     file.rename(temp.bam, bam)
}
indexBam(bam.files)

Some mapping statistics can be reported as previously described. For brevity, the code will not be shown here, as it is 
identical to that used for the H3K9ac analysis.

##      Total   Mapped  Marked Prop.mapped Prop.marked
## SRR1145787.bam 28525952 24015041 2244935    84.18664    9.348037
## SRR1145788.bam 25514465 21288115 2062157    83.43547    9.686893
## SRR1145789.bam 34476967 28830024 2678297    83.62111    9.289958
## SRR1145790.bam 32624587 27067108 2912659    82.96537   10.760880
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Detecting DB between genotypes for CBP
Counting reads into windows. First, the average fragment length is estimated by maximizing the cross-correlation 
function.

param <- readParam(minq=50, discard=blacklist)
x <- correlateReads(bam.files, param=reform(param, dedup=TRUE))
frag.len <- which.max(x) - 1
frag.len

## [1] 162

Reads are then counted into sliding windows. For TF data analyses, smaller windows are necessary to capture sharp 
binding sites. A large window size will be suboptimal as the count for a particular site will be “contaminated” by non-
specific background in the neighbouring regions. In this case, a window size of 10 bp is used.

win.data <- windowCounts(bam.files, param=param, width=10, ext=frag.len)
win.data

## class: SummarizedExperiment
## dim: 9127613 4
## exptData(4): spacing width shift final.ext
## assays(1): counts
## rownames: NULL
## rowRanges metadata column names(0):
## colnames: NULL
## colData names(4): bam.files totals ext param

Normalization for composition biases. Composition biases are introduced when the amount of DB in each condition 
is unbalanced (Lun & Smyth, 2014; Robinson & Oshlack, 2010). More binding in one condition means that more 
reads are sequenced at the binding sites, leaving fewer reads for the rest of the genome. This suppresses the genomic 
coverage at non-DB sites, resulting in spurious differences between libraries. To remove this bias, reads are counted 
into large genomic bins. Most bins are assumed to represent non-DB background regions. Any systematic differences 
in the coverage of those bins is attributed to composition bias and is normalized out. Specifically, the TMM method 
(Robinson & Oshlack, 2010) is applied to compute normalization factors from the bin counts. These factors can then 
be applied to the DB analysis with the window counts.

bins <- windowCounts(bam.files, bin=TRUE, width=10000, param=param)
normfacs <- normalize(bins)
normfacs

## [1] 1.011851 0.908138 1.044806 1.041588

The effect of normalization can be visualized with some mean-difference plots between pairs of libraries (Figure 11). 
The dense cloud in each plot represents the majority of bins in the genome. These are assumed to mostly contain back-
ground regions. A non-zero log-fold change for these bins indicates that composition bias is present between libraries. 
The red line represents the log-ratio of normalization factors and passes through the centre of the cloud in each plot, 
indicating that the bias has been successfully identified and removed.

y.bin <- asDGEList(bins)
bin.ab <- aveLogCPM(y.bin)
adjc <- cpm(y.bin, log=TRUE)
par(cex.lab=1.5, mfrow=c(1,3))
smoothScatter(bin.ab, adjc[,1]-adjc[,4], ylim=c(-6, 6),
     xlab="Average abundance", ylab="Log-ratio (1 vs 4)")
abline(h=log2(normfacs[1]/normfacs[4]), col="red")
smoothScatter(bin.ab, adjc[,2]-adjc[,4], ylim=c(-6, 6),
     xlab="Average abundance", ylab="Log-ratio (2 vs 4)")
abline(h=log2(normfacs[2]/normfacs[4]), col="red")
smoothScatter(bin.ab, adjc[,3]-adjc[,4], ylim=c(-6, 6),
     xlab="Average abundance", ylab="Log-ratio (3 vs 4)")
abline(h=log2(normfacs[3]/normfacs[4]), col="red")
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Note that this normalization strategy is quite different from that in the H3K9ac analysis. Here, systematic DB in one 
direction is expected between conditions, given that CBP function is lost in the KO genotype. This means that the 
assumption of a non-DB majority (required for non-linear normalization of the H3K9ac data) is not valid. No such 
assumption is made by the binned-TMM approach described above, which makes it more appropriate for use in the 
CBP analysis.

Filtering of low-abundance windows. Removal of low-abundance windows is performed as previously described. The 
majority of windows in background regions are filtered out upon applying a modest fold-change threshold. This leaves 
a small set of relevant windows for further analysis.

filter.stat <- filterWindows(win.data, bins, type="global")
min.fc <- 3
keep <- filter.stat$filter > log2(min.fc)
summary(keep)

##     Mode   FALSE    TRUE   NA’s
##  logical 8862335  265278      0

filtered.data <- win.data[keep,]

Statistical modelling of biological variability. Counts for each window are modelled using edgeR as previously 
described. First, a design matrix needs to be constructed.

genotype <- factor(genotype)
design <- model.matrix(~0+genotype)
colnames(design) <- levels(genotype)
design

Figure 11. Mean-difference plots for the bin counts, comparing library 4 to all other libraries. The red line represents 
the log-ratio of the normalization factors between libraries.
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##   ko wt
## 1  0  1
## 2  0  1
## 3  1  0
## 4  1  0
## attr(,"assign")
## [1] 1 1
## attr(,"contrasts")
## attr(,"contrasts")$genotype
## [1] "contr.treatment"

Estimation of the NB and QL dispersions is then performed. The estimated NB dispersions are substantially larger than 
those observed in the H3K9ac data set. In addition, the estimated prior d.f. is infinite. This is consistent with a batch 
effect between replicates. The dispersions for all windows are inflated to a similarly large value by the batch effect, 
resulting in low variability in the dispersions across windows.

y <- asDGEList(filtered.data, norm.factors=normfacs)
y <- estimateDisp(y, design)
summary(y$trended.dispersion)

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
##  0.1376  0.1641  0.1835  0.1895  0.2127  0.2572

fit <- glmQLFit(y, design, robust=TRUE)
summary(fit$df.prior)

##      Min. 1st Qu.  Median     Mean  3rd Qu.     Max.
## Inf Inf Inf Inf Inf Inf

The presence of a large batch effect between replicates is not ideal. Nonetheless, the DB analysis can proceed, albeit 
with some loss of power due to the inflated NB dispersions.

Testing for DB. DB windows are identified using the QL F-test. Windows are clustered into regions, and the region-
level FDR is controlled using Simes’ method. All significant regions have increased CBP binding in the WT genotype. 
This is expected, given that protein function should be lost in the KO genotype.

contrast <- makeContrasts(wt-ko, levels=design)
res <- glmQLFTest(fit, contrast=contrast)
merged <- mergeWindows(rowRanges(filtered.data),
     tol=100, max.width=5000)
tabcom <- combineTests(merged$id, res$table)
tabbest <- getBestTest(merged$id, res$table)
is.sig <- tabcom$FDR <= 0.05
summary(is.sig)

##    Mode   FALSE    TRUE   NA’s
## logical   55444    1969      0

is.sig.pos <- (tabbest$logFC > 0)[is.sig]
summary(is.sig.pos)

##    Mode    TRUE   NA’s
## logical    1969      0

These results can be saved to file, as previously described. Key objects are also saved for convenience.
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out.ranges <- merged$region
elementMetadata(out.ranges) <- data.frame(tabcom,
    best.pos=mid(ranges(rowRanges(filtered.data[tabbest$best]))),
    best.logFC=tabbest$logFC)
saveRDS(file="cbp_results.rds", out.ranges)
save(file="cbp_objects.Rda", win.data, bins, y)

Annotation and visualization
Annotation is added using the detailRanges function, as previously described.

anno <- detailRanges(out.ranges, orgdb=org.Mm.eg.db,
     txdb=TxDb.Mmusculus.UCSC.mm10.knownGene)
meta <- elementMetadata(out.ranges)
elementMetadata(out.ranges) <- data.frame(meta, anno)

The top-ranked DB event will be visualized here. This corresponds to a simple DB event, as all windows are changing 
in the same direction, i.e., up in the WT. The binding region is also quite small relative to some of the H3K9ac exam-
ples, consistent with sharp TF binding to a specific recognition site.

o <- order(out.ranges$PValue)
cur.region <- out.ranges[o[1]]
cur.region

## GRanges object with 1 range and 10 metadata columns:
##  seqnames       ranges strand | nWindows  logFC.up
##     <Rle>    <IRanges>  <Rle> | <integer> <integer>
##   [1]    chr16 [70313851, 70314860]   *|    21      21
## logFC.down      PValue FDR  best.pos best.logFC
##  <integer>   <numeric> <numeric> <integer> <numeric>
##   [1]           0 0.0000001802112 0.00348259 70314405   5.273053
##    overlap left    right
##   <factor>   <factor>  <factor>
##   [1] Gbe1|0-1|+
##   -------
##   seqinfo: 66 sequences from an unspecified genome

Plotting is performed using two tracks for each library – one for the forward-strand coverage, another for the reverse-
strand coverage. This allows visualization of the strand bimodality that is characteristic of genuine TF binding sites. 
In Figure 12, two adjacent sites are present at the Gbe1 promoter, both of which exhibit increased binding in the WT 
genotype. Coverage is also substantially different between the WT replicates, consistent with the presence of a batch 
effect.

collected <- list()
lib.sizes <- filtered.data$totals/1e6
for (i in 1:length(bam.files)) {
    reads <- extractReads(bam.file=bam.files[i], cur.region, param=param)
    pcov <- as(coverage(reads[strand(reads)=="+"])/lib.sizes[i], "GRanges")
    ncov <- as(coverage(reads[strand(reads)=="-"])/-lib.sizes[i], "GRanges")
    ptrack <- DataTrack(pcov, type="histogram",  lwd=0, ylim=c(-5, 5),
          name=bam.files[i], col.axis="black", col.title="black",
          fill="blue", col.histogram=NA)
    ntrack <- DataTrack(ncov, type="histogram", lwd=0, ylim=c(-5, 5),
          fill="red", col.histogram=NA)
    collected[[i]] <- OverlayTrack(trackList=list(ptrack, ntrack))
}
plotTracks(c(gax, collected, greg), chromosome=as.character(seqnames(cur.region)),
    from=start(cur.region), to=end(cur.region))

Note that that the gax and greg objects are the same as those used in the visualization of the H3k9ac data.
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Summary
This workflow describes the steps of a window-based DB analysis, from read alignment through to visualization of 
DB regions. All steps are performed within the R environment and mostly use functions from Bioconductor packages. 
In particular, the core of the workflow – the detection of DB regions – is based on a combination of csaw and edgeR. 
Analyses are shown for histone mark and TF data sets, with differences in parametrization that are appropriate to each 
data type. Readers are encouraged to apply the concepts and code presented in this article to their own data.

Software availability
This workflow depends on various packages from version 3.1 of the Bioconductor project, running on R version 3.2.0 
or higher. It requires a number of software packages, including csaw, edgeR, Rsubread, Rsamtools, Gviz, rtracklayer 
and ChIPpeakAnno. It also depends on the annotation packages org.Mm.eg.db and TxDb.Mmusculus.UCSC.mm10.
knownGene. Version numbers for all packages used are shown below.

sessionInfo()

## R version 3.2.0 (2015-04-16)
## Platform: x86_64-unknown-linux-gnu (64-bit)
## Running under: CentOS release 6.4 (Final)
##
## locale:
##  [1] LC_CTYPE=en_US.UTF-8    LC_NUMERIC=C
##  [3] LC_TIME=en_US.UTF-8    LC_COLLATE=en_US.UTF-8
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8
##  [7] LC_PAPER=en_US.UTF-8    LC_NAME=C
##  [9] LC_ADDRESS=C     LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:

Figure 12. Coverage tracks for TF binding sites that are differentially bound in the WT (top two tracks) against the 
KO (last two tracks). Blue and red tracks represent forward- and reverse-strand coverage, respectively, on a per-million 
scale (capped at 5 in SRR1145788, for visibility).
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##  [1] grid    parallel stats4  methods  stats  graphics  grDevices
##  [8] utils   datasets base
##
## other attached packages:
##  [1] Gviz_1.12.1
##  [2] ChIPpeakAnno_3.2.2
##  [3] biomaRt_2.24.0
##  [4] VennDiagram_1.6.9
##  [5] TxDb.Mmusculus.UCSC.mm10.knownGene_3.1.2
##  [6] GenomicFeatures_1.20.3
##  [7] org.Mm.eg.db_3.1.2
##  [8] RSQLite_1.0.0
##  [9] DBI_0.3.1
## [10] AnnotationDbi_1.30.1
## [11] Biobase_2.28.0
## [12] edgeR_3.10.2
## [13] limma_3.24.15
## [14] locfit_1.5-9.1
## [15] statmod_1.4.21
## [16] csaw_1.2.1
## [17] rtracklayer_1.28.9
## [18] Rsamtools_1.20.4
## [19] Biostrings_2.36.4
## [20] XVector_0.8.0
## [21] GenomicRanges_1.20.5
## [22] GenomeInfoDb_1.4.2
## [23] IRanges_2.2.7
## [24] S4Vectors_0.6.3
## [25] BiocGenerics_0.14.0
## [26] Rsubread_1.18.0
## [27] knitr_1.11
## [28] BiocStyle_1.6.0
##
## loaded via a namespace (and not attached):
##  [1] Rcpp_0.12.0               biovizBase_1.16.0
##  [3] lattice_0.20-33           GO.db_3.1.2
##  [5] digest_0.6.8              plyr_1.8.3
##  [7] futile.options_1.0.0      acepack_1.3-3.3
##  [9] evaluate_0.7.2            ggplot2_1.0.1
## [11] BiocInstaller_1.18.4      zlibbioc_1.14.0
## [13] rpart_4.1-10              proto_0.3-10
## [15] splines_3.2.0             BiocParallel_1.2.20
## [17] foreign_0.8-66            stringr_1.0.0
## [19] RCurl_1.95-4.7            munsell_0.4.2
## [21] multtest_2.24.0           nnet_7.3-10
## [23] gridExtra_2.0.0           Hmisc_3.16-0
## [25] matrixStats_0.14.2        XML_3.98-1.3
## [27] GenomicAlignments_1.4.1   MASS_7.3-43
## [29] bitops_1.0-6              RBGL_1.44.0
## [31] gtable_0.1.2              magrittr_1.5
## [33] formatR_1.2               scales_0.3.0
## [35] graph_1.46.0              KernSmooth_2.23-15
## [37] stringi_0.5-5             reshape2_1.4.1
## [39] latticeExtra_0.6-26       futile.logger_1.4.1
## [41] Formula_1.2-1             lambda.r_1.1.7
## [43] RColorBrewer_1.1-2        tools_3.2.0
## [45] dichromat_2.0-0           BSgenome_1.36.3
## [47] survival_2.38-3           colorspace_1.2-6
## [49] cluster_2.0.3             VariantAnnotation_1.14.11

Page 27 of 35

F1000Research 2015, 4:1080 Last updated: 18 DEC 2015



For the command-line tools, the fastq-dump utility (version 2.4.2) from the SRA Toolkit must be installed on the 
system, along with the MarkDuplicates command from the Picard software suite (version 1.117). Readers should 
note that the read alignment steps for each data set can only be performed on Unix or Mac OS. This is because the 
various system calls assume that a Unix-style command-line interface is present. In addition, Rsubread is not sup-
ported for Windows. However, downstream analyses of the BAM files can be performed using any platform on which 
R can be installed.
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This article represents a comprehensive and useful presentation of a window-based differential binding
analysis. Currently, most quantitative differential binding studies rely on a peak calling step; this
demonstration of the benefits of avoiding such a step is of great interest. The workflow is a valuable
complement to the author's related published discussions (Lun and Smyth 2014, 2015). It is
comprehensive in that is takes the user from archived sequencing reads, through two core analyses, and
includes annotation and visualization code as well. Notably the authors include interesting exploration of
many important details, particularly in the area of normalization, that are frequently overlooked and can
have a crucial impact on analytical results.

I include below a number of questions for the authors, the answer to which may make the article even
more useful.

Computational resources. It would be useful to include some discussion of the computational
resources required to perform this analysis (memory and compute time). How do memory/compute
requirements change as a function of lowering the window size? Can this handle a large number of
samples?
 
Experimental design. Are there any guidelines of how many replicates should be included for a
successful analysis? 
 
Duplication rates. Duplicates are included in the analysis, are there any guidelines for
acceptable duplication rates? The authors say that "ideally, the proportion of mapped reads should
be high, while the proportion of marked reads should be low" -- how high and how low? Is there
some point where there are too many duplicates to expect a successful analysis?
 
Blacklists. The workflow uses a published blacklist to mask areas of the genome where reads will
be not be counted. Some of these are attributable repeat regions, but some are anomalous, and
there may be tissue-specific issues. Given that the workflow includes only very limited use of
control reads (such as Input) for filtering non-enriched windows, perhaps it would be good to use
blacklists generated from the controls, such as those made by the GreyListChIP Bioconductor

.This is especially important for experiments that use multiple tissue types or cell lines.package
 
Read counting. The authors state that “the number of extended reads overlapping a window is
counted”. As almost all reads will overlap more than one window (fragment lengths generally being
longer than the window size), it would be helpful to be explicit regarding if a read is counted in more
than one window. If so, do single reads resulting in multiple counts have an implication for the
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longer than the window size), it would be helpful to be explicit regarding if a read is counted in more
than one window. If so, do single reads resulting in multiple counts have an implication for the
assumption of binomial distribution of reads?
 
Filtering windows by abundance.

By  prior to testing, is there an issue with the using read abundance to remove windows
same information being used to choosing which windows to compare as is used for the
comparison itself? Can window filtering be compared to peak calling in that it uses read
counts to reduce the proportion of the genome being considered for differential analysis?
By  in many cases, very small changes in theusing a fold measure as a threshold,
number of background reads can have a big impact on calculated fold change. How
sensitive is this filter process? How important is it to final results?
 

Normalization
Is there way to determine computationally if a trended-bias normalization is

, or is this best done by visual examination of the mean-difference plot?appropriate
If , what normalization methodthe scale of differential binding is not known a priori
should be used? Is it safe to use a non-linear trended correction? Or TMM on large
"background" windows?
 

Merging windows
It appears possible to create merged regions with higher FDR than the minimum FDR

. Windows that would have an FDR lower than some “significance”of constituent windows
threshold may be “lost” in a merged region. Is there a way to constrain the merging function
to not create a “non-significant” region that contains “significant” windows (according to a
specified FDR threshold)?
Another reviewer commented that it would be nice to not merge regions that have

, this seems useful as well.windows with both positive and negative fold changes
Regarding regions with positive and negative fold changes, it seems worth referencing
MMDiff (Schweikert et al BMC Genomics 2013), which is designed to detect differences
in the gain/loss patterns of binding profiles.
 

For the CBP example:
One or more t (MDS/PCA) would be helpful!plots visualizing the batch effec
Is a batch effect the only possible explanation for large dispersion estimates and infinite
prior d.f.? Can we always assume a batch effect if we see this?
If the batch effect applies to a more than one sample, can this be modeled in a

? If it applies only to one sample, perhaps this is a ChIP efficiencymulti-factor design
issue?

References
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I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

 25 November 2015Referee Report

doi:10.5256/f1000research.7553.r10877

 Cenny Taslim
Comprehensive Cancer Center, Ohio State University Medical Center, Columbus, OH, USA

This article provides a useful workflow on detecting differential binding in ChIP-seq data with examples
and codes from R packages and other softwares. This paper will help researchers on analyzing their
ChIP-seq using R. However, it would be better if there was more description on the methods used in the
workflow.

“Reads are first aligned to the genome using the  package ( ).” Please describeRsubread Liao , 2013et al.
what algorithm is used to align the reads.

"Technical replicates are merged together prior to further processing." What does merged together
mean? Concatenate? Or average? Or pick one randomly?

"Ideally, the proportion of mapped reads should be high, while the proportion of marked reads should be
low." Proportion mapped is those reads that can be uniquely mapped to the genome?

"Thus, the marking status of each read will be ignored in the rest of the analysis, i.e., no duplicates will be
removed in downstream steps." I believe generally people exclude duplicates in downstream steps?

"By default, windows with very low counts are removed to reduce memory use." What is the definition of
very low counts? <=1? If it is described by the section filtering windows by abundance, please mention it.

bins <- windowCounts(bam.files, bin=TRUE, width=2000, param=param)
filter.stat <- filterWindows(win.data,  bins, type="global")
min.fc <- 3
keep <- filter.stat$filter > log2(min.fc)
summary(keep)
##     Mode      FALSE    TRUE   NA's
##  logical   906406 663218     0
 
hist(filter.stat$back.abundances, xlab="Background abundance", main="", breaks=50)
threshold <- filter.stat$abundances[1] - filter.stat$filter[1] + log2(min.fc)
abline(v=threshold, col="red")
 
In code above, where is the background? I assumed it is filter.stat$filter[1]? However, it looks like the filter
is background + log2(3)? If it’s at least 3-fold background, shouldn’t it be filter.stat$filter[1]*3?
 
Figure 2 doesn’t make sense. Why is there windows with < 0 abundance?
 
Normalizing for library-specific trended biases. Figure 3 only shows log-fold change between mature B
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Normalizing for library-specific trended biases. Figure 3 only shows log-fold change between mature B
and pro-B but there is more than one sample in mature B and pro-B. How do you apply the normalization?
Do you take average of all mature B samples and average of all pro-B samples and then do the loess
normalization?
 
##     Gene nWindows logFC.up logFC.down    PValue        FDR
## 6  Ldlrap1     19      11              0 0.224741404877 0.2705479855
## 7  Mdn1        29      12              11 0.000004447727 0.0001347924
## 8  Pydc3        8        0             6 0.051183399851 0.0781822366
## 9  Wfdc17       6       0              6 0.000069604922 0.0008738790
## 10 Mfap1b      19       1              10 0.107116609335 0.1440819313
## 13 Gm15772     30      12              7 0.085543435687 0.1192823092
How do you interpret this results? For Mdn1, there are 29 DB windows? What are the logFC.up and
logFC.down.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.

 No competing interests were disclosed.Competing Interests:

 30 October 2015Referee Report

doi:10.5256/f1000research.7553.r10876

,  Lihua Julie Zhu Jianhong Ou
 Department of Molecular, Cell and Cancer Biology, Program in Bioinformatics and Integrated Biology,

Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
 Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School,

Worcester, MA, USA

This article “From reads to regions: a Bioconductor workflow to detect differential binding in ChIP-seq
data” clearly describes a comprehensive computational workflow of Differential Binding (DB) analysis of
ChIP-seq data set, based primarily on R software packages from the open-source Bioconductor project. It
provides readers with practical usage examples of DB analyses of two typical types of ChIP-seq data
sets, that covers all steps of the analysis pipeline, from alignment of read sequences, normalization, DB
identification, annotation to interpretation and visualization of putative DB regions. We believe that this
well-written paper will greatly help users to apply the workflow to their own DB analysis of ChIP-seq data
sets.

In the following section, please explicitly explain that the two data sets were chosen to represent two
common ChIP-seq use cases, one data set for dealing with wider peaks while the other data set is for
working with sharp peaks

"The application of the methods in this article will be demonstrated on two publicly available ChIP-seq
data sets. The first data set studies changes in H3K9ac marking between pro-B and mature B cells
(Revilla-I-Domingo , 2012). The second data set studies changes in CREB-binding protein (CBP)et al.
binding between wild-type and CBP knock-out cells (Kasper , 2014). "et al.

1 2

1

2
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According to the Rsubread documentation about parameter attype 
http://bioconductor.org/packages/release/bioc/manuals/Rsubread/man/Rsubread.pdf, is an integertype 
giving the type of sequencing data. Possible values include 0 (RNA- seq data) and 1 (genomic

Therefore, pleaseDNA-seq data such as WGS, WES, ChIP-seq data etc.).  By default, it is set to 0.  
set type to 1 in the following section.

"
library(Rsubread)
bam.files <- paste0(names(by.group), ".bam")
align(index=“index/mm10", readfile1=group.fastq, TH1=2,
    input_format=“FASTQ", output_file=bam.files)
"
"align(index="index/mm10", readfile1=all.fastq, phredOffset=64,
     input_format="FASTQ", output_file=bam.files)"

Suggest adding file.exists check to see if temp.dir exists already before dir.create(temp.dir).

For system call to fastq-dump and MarkDuplicates, suggest to add path information to these programs in
case the path to these programs are not in the search path.

"For this analysis, reads are only used if they have a mapping quality score above 50." 
50 is pretty high although we understand that this is for illustration purposes. To prevent readers from
getting the idea that 50 is the recommended cutoff, could you please also provide a quality score
threshold commonly used in the field?

"The filter threshold is defined based on the assumption that most regions in the genome are not marked
by H3K9ac. Reads are counted into large bins and the median coverage across those bins is used as an
estimate of the background abundance. Windows are only retained if they have abundances 3-fold higher
than the background."  
In the example, the window size (width) for calculating background (bg) coverage is set to 2000 bp, and
the width is set to 150 bp for win.data. When calculating fold enrichment over background, is the bg
coverage scaled down using the ratio of the window size (2000 vs. 150)?

"The implicit assumption of non-linear methods is that most windows at each abundance are not DB. Any
systematic difference between libraries is attributed to bias and is removed. This is not appropriate in
situations where large-scale DB is expected, as removal of the difference would result in loss of genuine
DB. However, there is no indication that such changes are present in this data set, so non-linear methods
can be applied without too much concern."
Could you please suggest a normalization method for situations where large-scale DB is expected
(perhaps TMM as mentioned in the later section)?

"Note that only the trended dispersion will be used here – the common and tagwise values are only shown
for diagnostic purposes"
Could you please comment on how common and tag wise values help with diagnosis of the data set?

"Determining the direction of DB is more complicated, as clusters could potentially contain windows that
are changing in opposite directions."

How about controlling this by allowing nearby windows to merge only if the changing directions are the

Page 34 of 35

F1000Research 2015, 4:1080 Last updated: 18 DEC 2015



F1000Research

How about controlling this by allowing nearby windows to merge only if the changing directions are the
same?

"The behaviour of  complements that of detailRanges. The latter reports all overlappingChIPpeakAnno
and flanking genes, while the former reports only the closest gene (but in greater detail). Which is
preferable depends on the proclivities of the user and the purpose of the annotation."
Actually, ChIPpeakAnno can also report all overlapping and flanking genes by setting output="both" (or
output ="overlapping") and maxgap. For example, it outputs all overlapping and flanking genes within 5kb
if set maxgap = 5000L and output ="overlapping".  Here is an example using Txdb annotation data.

library(TxDb.Mmusculus.UCSC.mm10.knownGene)
ucsc.mm10.knownGene <- genes(TxDb.Mmusculus.UCSC.mm10.knownGene)
anno.peaks <- annotatePeakInBatch(minimal, annotationData=ucsc.mm10.knownGene, 
              output="overlapping", maxgap=5000L)

"Reads are then counted into sliding windows. For TF data analyses, smaller windows are necessary to
capture sharp binding sites. A large window size will be suboptimal as the count for a particular site will be
“contaminated” by non-specific background in the neighbouring regions. In this case, a window size of 10
bp is used.
win.data <- windowCounts(bam.files, param=param, width=10, ext=frag.len)"
It seems that space is set to 50bp for both sharp peaks and broad peaks. Could you please comment on
this? 

We notice that the width for local background is set to 2kb for broad peaks and 10kb for sharp peaks.
Could you please justify? Would adding a fitted line in Figure 3 and Figure 4 help with the visualization? In
addition, it would be great if you could provide recommendations on how to evaluate the quality of the
BCV in Figure 5. Is there a range or specific shape we are targeting?

We have read this submission. We believe that we have an appropriate level of expertise to
confirm that it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:
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