
Research Article

Pharmacokinetic Interactions for Drugs with a Long Half-Life—Evidence
for the Need of Model-Based Analysis
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Abstract. Pharmacokinetic drug-drug interactions (DDIs) can lead to undesired drug exposure, resulting
in insufficient efficacy or aggravated toxicity. Accurate quantification of DDIs is therefore crucial but may
be difficult when full concentration-time profiles are problematic to obtain. We have compared non-
compartmental analysis (NCA) and model-based predictions of DDIs for long half-life drugs by
conducting simulation studies and reviewing published trials, using antituberculosis drug bedaquiline
(BDQ) as a model compound. Furthermore, different DDI study designs were evaluated. A sequential
design mimicking conducted trials and a population pharmacokinetic (PK) model of BDQ and the M2
metabolite were utilized in the simulations where five interaction scenarios from strong inhibition
(clearance fivefold decreased) to strong induction (clearance fivefold increased) were evaluated. In trial
simulations, NCA systematically under-predicted the DDIs’ impact. The bias in average exposure was
29–96% for BDQ and 20–677% for M2. The model-based analysis generated unbiased predictions, and
simultaneous fitting of metabolite data increased precision in DDI predictions. The discrepancy between
the methods was also apparent for conducted trials, e.g., lopinavir/ritonavir was predicted to increased
BDQ exposure 22% by NCA and 188% by model-based methods. In the design evaluation, studies with
parallel designs were considered and shown to generally be inferior to sequential/cross-over designs.
However, in the case of low inter-individual variability and no informative metabolite data, a prolonged
parallel design could be favored. Model-based analysis for DDI assessments is preferable over NCA for
victim drugs with a long half-life and should always be used when incomplete concentration-time profiles
are part of the analysis.

KEY WORDS: drug-drug interactions; long half-life; model-based analysis; non-compartmental analysis;
pharmacokinetics.

INTRODUCTION

Simultaneous administration of multiple drugs is a
common practice in current medicine, for instance, in the
case of polypharmacy among the elderly or in the treatment
of infectious diseases such as HIVand/or tuberculosis, each of
which require a combination therapy with three or more
compounds to achieve stable cure and avoid the emergence of
resistance. When multiple drugs are administered simulta-
neously, clinically important drug-drug interactions (DDIs)
may occur (1–4). Pharmacokinetic (PK) DDIs, which are the
focus of this study, can result in undesirably low or high levels
of drug exposure yielding the treatment either inefficacious or
toxic. An accurate estimate of the impact of the DDI on drug

exposures is therefore essential to first of all assess the need
for dose adjustment and then to make dose adjustment
recommendations.

PK DDIs are traditionally evaluated in single-dose
studies with cross-over or sequential designs where the PK
of the victim drug (the drug of primary interest) after
administration with and without the perpetrator drug (the
drug potentially impacting the victim drug) are compared, as
described in the regulatory guidelines from EMA and FDA
(5,6). PK parameters of interest (area under the concentra-
tion curve [AUC] and Cmax) are commonly derived with non-
compartmental analysis (NCA), and the DDI is expressed as
a geometric mean ratio (GMR) of these parameters. Howev-
er, this approach becomes problematic when the elimination
half-life of the drug of interest is exceedingly long since this
may lead to infeasibly long wash-out periods, carry-over
between the dosing occasions, impractical and expensive long
sampling periods, and/or incomplete capturing of the full
concentration-time profile.

Bedaquiline (BDQ) is a new antituberculosis drug with
multi-phasic elimination and a terminal elimination half-life
of more than 5 months (7). BDQ is mainly metabolized
through N-demethylation catalyzed by the cytochrome P450
3A4 isoenzyme (CYP3A4) forming the metabolite M2, which
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in turn can be metabolized by the same process into M3
(7). M2 is less active than BDQ but has been linked to
potential safety concerns (7). Urinary excretion of BDQ is
negligible; fecal excretion occurs but the extent is un-
known (7,8).

Since tuberculosis is always treated with a combination
therapy regimen and a large part of patients receive
concomitant antiretroviral treatment due to HIV co-
infection (9) (e.g., 32% of the 1.1 million TB patients with
HIV co-infection were started on antiretroviral therapy
globally in 2013 and the number is increasing (10)), correct
assessment of DDIs is essential for efficient and safe
application of BDQ. A number of DDI studies have been
conducted and analyzed with both traditional NCA and
model-based population PK methods, with the results
differing substantially between the two methods for some
studies (11–16). The objective of the current study was to
compare NCA and model-based predictions of DDIs in
conducted trials with BDQ and in a simulation study with
BDQ as a model for long half-life drugs and to investigate
how various study designs influence the bias and precision
of DDI assessments. This study will provide general
recommendations for study design and analysis methods
to generate accurate predictions of DDIs involving a
compound with long half-life to support future regulatory
guidance.

METHODS

Population PK Model

A previously published population model describing the
PK of BDQ and M2 was used as the basis for the simulation
study (14). The model was developed using data from a phase
I DDI study with sequential design including 35 subjects
investigating the influence of efavirenz on BDQ and M2 PK.
Plasma concentrations for PK analysis were measured over
2 weeks after a single 400-mg BDQ dose was administrated,
which was followed by a wash-out period of 2 weeks when
daily administration of 600 mg efavirenz was initiated and
maintained throughout the study. Four weeks after the first
dose, a second 400-mg BDQ dose was administered (together
with efavirenz), and BDQ and M2 concentrations were again
measured over the following 2 weeks. Each observation
period included one pre-dose sample and 16 samples
between 1 and 336 h post-dose with closer observations
in the early part of the period. The developed population
model included a dynamic transit-compartment structure
describing the absorption and three and two compart-
ments for the disposition of BDQ and M2, respectively.
The bioavailability and fraction BDQ metabolized to M2
were set to 1 in the model; hence, estimated parameters
are relative to the bioavailability and for the metabolite
also to the fraction BDQ metabolized to M2 (fm).
Allometric scaling with body weight was included in the
model. The model was implemented in NONMEM 7.3
(17) and utilized the first-order conditional estimation
method with interaction (FOCEI). Supplementary Materi-
al 1 includes a schematic figure of the model structure and
model parameter estimates.

Posterior Predictive Check

The suitability of the model and study design for the
simulations mimicking DDI studies was evaluated with
posterior predictive check (PPC) methodology (18). Second-
ary PK parameters estimated with NCA using the originally
observed data were compared with the same parameters
estimated from a large number (n=1000) of datasets simulat-
ed with the model. The study design, PK sampling schedule,
and the weight characteristics of the subjects were the same in
the simulations as in the original study. The R-package
ncappc (19–21) and the nca functionality in PsN were utilized
for this task (22,23). The parameter of main interest was
GMR based on AUC0–336 h. In addition to the study of DDI
with efavirenz, the same evaluation was conducted on models
with the same structure describing the DDIs with nevirapine,
ritonavir-boosted lopinavir, rifampicin, and rifapentine
(15,16). The previously performed clinical studies were
conducted in accordance with GCP and local ethical
guidelines.

Simulation Study of DDI Predictions

The same study design and sampling strategy as in the
original study were used (see original publication for details
(11) and the sequential design in Fig. 1 for an overview). The
number of subjects and their weight characteristics were also
unaltered. Five hypothetical but realistic DDI scenarios were
chosen: inhibition of BDQ clearance (CL) to 20 or 50% of
normal, no interaction effect, and induction of BBQ CL to
200 or 500% of normal. The interaction effect on M2 CL was
set to the same magnitude as on BDQ CL. Inter-
individual variability (IIV) in interaction effect on BDQ
and M2 was 20–30% and the correlation was 75%,
consistent with the earlier estimates for the effect of
efavirenz (14). The interaction effects were set to have
full impact on CL from 1 week before the second BDQ
dose, corresponding to the administration of an inhibitor
starting that same day or an inducer about 1 week earlier.
One hundred trials for each scenario were simulated, and
the data were analyzed with NCA and by re-estimation of
all model parameters, including two separate parameters
for the interaction effects on BDQ and M2. Prediction of
the impact of the interaction by NCA was defined as the
GMR of AUC0–336 h and for the model-based method as
the relative average concentration at steady state
(relCavg,ss, identical to the ratio of weekly AUC at steady
state with and without interaction effect) calculated from
estimated apparent CLs with and without interaction
effect (IE) (Eq. 1).

relCavg;ss ¼
CIE

avg;ss

Cavg;ss
¼ CLapparent

CLIE
apparent

ð1Þ

The estimated CLapparent corresponds to CL/F for BDQ
and CL(M2)/(F*fm) for M2. The predictions from the two
methods were compared with the true relCavg,ss for BDQ and
M2 under the given DDI scenario and bias (reported as %)
was calculated as the difference between predicted and the
true relative to the true.
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Use of Metabolite Data

For the original BDQ and efavirenz study and for each
of the simulated scenarios described above, an alternative
model describing only BDQ PK was estimated excluding the
metabolite data. The precision (relative standard error, RSE)
in the parameter describing the interaction effect on BDQ for
the models including both BDQ and M2 data and the models
including BDQ data only were compared.

Alternative Study Designs

Three study designs were investigated (Fig. 1).

1. A sequential design including 16 subjects with two
BDQ doses administered 4 weeks apart; the second
dose was administered preceded by and together with
the interacting drug, 2 weeks of PK sampling after
each dose (similar to the design used in conducted
BDQ DDI studies).

2. A parallel design including 32 individuals, 16 in each
of the two groups, where a single BDQ dose was
administered with or without interacting drug and PK
sampling over 2 weeks.

3. A parallel design including 16 individuals, 8 in each of
the two groups, where a single BDQ dose was
administered with or without interacting drug and
PK sampling over 6 weeks.

All three designs included an equal number of samples.
The groups in the parallel designs were matched on body
weight. Three DDI scenarios were chosen: inhibition of BDQ
CL to 20% of normal, no interaction effect, and induction

of BDQ CL to 500% of normal. For each DDI scenario,
three different PK scenarios were evaluated: (i) IIV in
BDQ and M2 clearances and interaction effects as
estimated originally (24, 19, 21, and 28% coefficient of
variation [CV], respectively) (called “Original”); (ii) 50%
CV in BDQ and M2 clearances and IIV in the interaction
effects on BDQ and M2 as estimated originally (called
“High CL IIV”); and (ii) IIV of BDQ and M2 clearances
as estimated originally and 50% CV in the interaction
effects on BDQ and M2 (called “High IE IIV”).
Correlation structures and magnitudes mimicked what
has earlier been estimated for induction and inhibition
effects, respectively. One hundred trials for each scenario
(n=9) were simulated and analyzed with NCA and model-
based re-estimation of all parameters. In the NCA
analysis, GMRs were calculated from both AUC0–336 h

and AUC0–inf including an extrapolated area calculated
from the last observation and the estimated terminal half-
life. The terminal half-life was estimated from the slope of
a regression line fitted to n last observations where the
number n was determined by the adjusted regression
coefficient. The re-estimation was conducted both includ-
ing all data (two separate parameters for interaction effect
on BDQ and M2) and including only the BDQ data.

RESULTS

Posterior Predictive Check

The results from the PPC are summarized in Table I. The
GMRs calculated by NCA on the observed data generally

Fig. 1. Schematic illustration of study designs (Seq sequential, Par1 parallel 1, Par2 parallel 2)
evaluated for prediction of DDIs for a drug with a long half-life
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agree well with the median of the GMRs calculated on
simulated data and falls within the 95% confidence intervals
for all five evaluated DDIs and both BDQ and M2.
Hence, the model is able to generate data in good
agreement with the observed data and is suitable for use
in simulation studies.

Simulation Study of DDI Predictions

Figure 2 illustrates the DDI predictions by NCA and model-
based estimation, for BDQ andM2, respectively, in relation to the
true RelCavg,ss for the given magnitude of the DDI applied in the
simulation. For both induction and inhibition, themagnitude of the
DDIs’ impact is under-predicted by NCAGMRs; more severely
so for the metabolite. The bias was 29–96 and 20–677%
for BDQ and M2, respectively, in the different scenarios.
The model-based estimation accurately predicted the

DDIs’ impact for both BDQ and M2 (bias was 0.1–1.1
and 1.1–4.9%, respectively), but with lower precision for
the strong inhibition.

Use of Metabolite Data

The precision in the estimated DDI parameter was
markedly better when both parent and the metabolite data
were used in the estimation (Fig. 3). In the simulation study,
RSEs were between two and six times higher when the
information from the metabolite data was excluded. For the
observed data, the RSE was increased fivefold.

Alternative Study Designs

The model-based analysis generated accurate predictions of
the interaction effect for all study designs and under all scenarios
(Fig. 4). Generally, the sequential design resulted in the best
precision with a larger gain in the scenario with higher CL IIV but
little or no gain in the scenario with high interaction effect IIV.
When parallel design was used, the precision was generally better
in the design with standard length of the sampling period but more
subjects (parallel 1) compared to the design with standard number
of subjects but longer sampling period (parallel 2). However, when
the estimation was conducted without the metabolite data, the
parallel design with longer sampling period (parallel 2) generally
performed best of all three designs, indicating the benefit of longer
sampling to accurately estimate the BDQ clearance in the absence
of metabolite data (SupplementaryMaterial 2). The NCA-derived
GMRs based on eitherAUC0–336 h orAUC0–inf failed to reflect the
true impact of the simulated induction and inhibition in each PK
scenario (Fig. 5). AUC0–inf generally came closer to the true
value although the uncertainty of the extrapolation was large.
The problem caused by carry-over between the doses was
evident for the sequential design in the case of no interaction
and GMR based on AUC0–336 h. The parallel design with long
sampling period came closer to the true values than the parallel
design with increased number of subjects; however, it was less
precise. The level of IIVof clearances or interaction effect had
little impact on the NCA results.

Table I. Summary of Results from Posterior Predictive Checks
Comparing GMRs Calculated on NCA Derived AUC0–336 h for

BDQ and M2, Respectively, with Different Perpetrator Dugs

Victim Perpetrator

GMR of
AUC0–336 h

original data

GMR of AUC0–336 h

simulated data
median (95% CI)

BDQ Efavirenz 0.868 0.785 (0.699, 0.885)
Lopinavir/
ritonavir

1.214 1.303 (1.171, 1.45)

Nevirapine 1.028 1.164 (1.009, 1.353)
Rifampicin 0.41 0.406 (0.345, 0.477)
Rifapentine 0.428 0.478 (0.419, 0.543)

M2 Efavirenz 1.278 1.202 (1.072, 1.34)
Lopinavir/
ritonavir

0.627 0.642 (0.552, 0.747)

Nevirapine 1.049 1.143 (1.014, 1.313)
Rifampicin 0.789 0.767 (0.647, 0.907)
Rifapentine 0.855 0.89 (0.764, 1.046)

GMR geometric mean ratios, AUC0–336 h area under the
concentration-time curve between 0 and 336 h after dose, BDQ
bedaquiline, M2 monodesmethyl-metabolite of BDQ
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Fig. 2. Comparison of DDI predictions from NCA (y-axis) and model-based analysis (x-axis) for
the five simulated scenarios. The gray lines represent the true relative average steady-state
concentrations (relCavg,ss) for each scenario. The results are presented as median and inter-quartile
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DISCUSSION

The conducted simulation study clearly demonstrates
that NCA-derived GMRs underestimate the full impact of a
DDI for a victim drug with long half-life (Fig. 2). The
predictions are even more biased for the metabolite

compared to the parent compound. The reasons are several
and will be discussed in detail below. Firstly, the whole
concentration-time curve could not be characterized. For
BDQ, the 2 weeks of observations after each dose were not
enough to observe the major part of the total AUC. Table II
summarizes the estimates of the fraction observed based on

0

10

20

30

40

0.2 0.5 1 2 5
Scenario: Factor change in CL

P
re

ci
si

o
n

 [
R

S
E

 %
]

Model
BDQ + M2, separate interaction effect

BDQ alone

Fig. 3. Precision of model-based DDI predictions quantified as relative standard error
(RSE) of the estimate of the parameter describing DDI effect on BDQ from the 100
simulated trials for each scenario when including both BDQ and M2 data (red bars) or
BDQ data only (blue bars)

Original High CL IIV High IE IIV

4

5

6

7

Seq Par1 Par2 Seq Par1 Par2 Seq Par1 Par2

Fa
ct

or
 c

ha
ng

e 
in

 C
L

Induction

Original High CL IIV High IE IIV

0.75

1.00

1.25

1.50

1.75

Seq Par1 Par2 Seq Par1 Par2 Seq Par1 Par2

Fa
ct

or
 c

ha
ng

e 
in

 C
L

No interaction

Original High CL IIV High IE IIV

0.15

0.20

0.25

0.30

Seq Par1 Par2 Seq Par1 Par2 Seq Par1 Par2

Fa
ct

or
 c

ha
ng

e 
in

 C
L

Inhibition

Fig. 4. Box plots of model-based estimation of interaction effect (factor change in CL) for the different designs (Seq
sequential, Par1 parallel 1, Par2 parallel 2), the different PK scenarios (original, high CL IIV, and high IE IIV), and the
different interaction effect scenarios (induction, no interaction, and inhibition)

175Model-Based Analysis of PK Drug-Drug Interactions



model-derived AUC0–336 h and AUC0–inf. In the absence of
any interaction effect, about half of the total AUC was
observed for BDQ and less than a third for M2. Hence, a
substantial part of the elimination phase was ignored when
GMRs based on AUC0–336 h were used to predict the impact
of a DDI, consequently resulting in the under-prediction of
any DDI affecting the elimination. Furthermore, the fraction
of the total AUC that can be observed during a fixed time
period changes with the interaction effect. The GMRs will
therefore compare a smaller with a larger fraction of the total
AUC or vice versa. For example, in the case of inhibition
when BDQ CL is decreased to half of its normal value, 31%
of total AUC would be observed over 2 weeks and compared
with 48% of total AUC observed over the same time period
without interaction effect. This will further bias the

prediction, aggravate the under-prediction in the case of
inhibition, and somewhat counteract the under-prediction in
the case of induction. Calculation of GMRs based on NCA-
derived AUC0–inf did unfortunately not improve the predictions
substantially either. To estimate a terminal half-life known to be
longer than 5 months on 2 weeks observations after a single dose
using NCA is bound to be extremely uncertain. In the simulation
examples, the NCA estimates of terminal half-life were around a
few hundred hours, which is about ten times lower than the true
value, resulting in incorrect extrapolation and little improvements
in the GMRs. The predictions for the metabolite suffer from the
same limitations as for the parent drug and, in addition, the added
complexity that both input rate and elimination are affected. For
induction affecting clearance of both parent andmetabolite, more
metabolite appears early during the observation period. It may

Original High CL IIV High IE IIV

0.2

0.3

0.4

0.5

S
eq

A
U

C
33

6

 S
eq

A
U

C
in

f

P
ar

1
A

U
C

33
6

P
ar

1
A

U
C

in
f

P
ar

2
A

U
C

33
6

P
ar

2
A

U
C

in
f

S
eq

A
U

C
33

6

 S
eq

A
U

C
in

f

P
ar

1
A

U
C

33
6

P
ar

1
A

U
C

in
f

P
ar

2
A

U
C

33
6

P
ar

2
A

U
C

in
f

S
eq

A
U

C
33

6

 S
eq

A
U

C
in

f

P
ar

1
A

U
C

33
6

P
ar

1
A

U
C

in
f

P
ar

2
A

U
C

33
6

P
ar

2
A

U
C

in
f

G
M

R

Induction

Original High CL IIV High IE IIV

0.6

0.8

1.0

1.2

1.4

S
eq

A
U

C
33

6

 S
eq

A
U

C
in

f

P
ar

1
A

U
C

33
6

P
ar

1
A

U
C

in
f

P
ar

2
A

U
C

33
6

P
ar

2
A

U
C

in
f

S
eq

A
U

C
33

6

 S
eq

A
U

C
in

f

P
ar

1
A

U
C

33
6

P
ar

1
A

U
C

in
f

P
ar

2
A

U
C

33
6

P
ar

2
A

U
C

in
f

S
eq

A
U

C
33

6

 S
eq

A
U

C
in

f

P
ar

1
A

U
C

33
6

P
ar

1
A

U
C

in
f

P
ar

2
A

U
C

33
6

P
ar

2
A

U
C

in
f

G
M

R

No interaction

Original High CL IIV High IE IIV

1

2

3

4

5

S
eq

A
U

C
33

6

 S
eq

A
U

C
in

f

P
ar

1
A

U
C

33
6

P
ar

1
A

U
C

in
f

P
ar

2
A

U
C

33
6

P
ar

2
A

U
C

in
f

S
eq

A
U

C
33

6

 S
eq

A
U

C
in

f

P
ar

1
A

U
C

33
6

P
ar

1
A

U
C

in
f

P
ar

2
A

U
C

33
6

P
ar

2
A

U
C

in
f

S
eq

A
U

C
33

6

 S
eq

A
U

C
in

f

P
ar

1
A

U
C

33
6

P
ar

1
A

U
C

in
f

P
ar

2
A

U
C

33
6

P
ar

2
A

U
C

in
f

G
M

R

Inhibition

Fig. 5. Median and 90% non-parametric CI for NCA-derived GMRs for the different designs (Seq sequential, Par1 parallel
1, Par2 parallel 2), the different PK scenarios (original, high CL IIV, and high IE IIV), and the different interaction effect
scenarios (induction, no interaction, and inhibition). True impact of the simulated DDI shown as the light blue line

Table II. Summary of Observed Fraction (%) of Total AUC of BDQ and M2 Observed During a 2-Week Sampling Period for the Different
Interaction Scenarios

Interaction effect (factor change in CL) BDQ AUC0–336 h/AUC0–inf (%) M2 AUC0–336 h/AUC0–inf (%)

Inhibition 0.2 15 3
0.5 31 12

No interaction 1 48 29
Induction 2 65 54

5 83 81

CL clearance, BDQ bedaquiline, AUC area under the concentration curve,M2 monodesmethyl-metabolite of BDQ
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therefore seem as exposure is increasing (as it does in the
simulated scenario where CL of BDQ andM2 is increased to the
double, see Fig. 2), despite that the true total exposure would be
half of the normal exposure in the absence of any interaction
effect.

The model-based analysis accurately predicted DDI
effects using a model parameterized as the parent being fully
metabolized through the pathway affected by the interaction.
Although the model is formulated under this assumption, it is
valid for any fraction of the parent CL being induced or
inhibited and will correctly predict the changes in exposure
since that is determined by the total CL which is captured by
the model. However, if the fraction of the parent metabolized
through the induced/inhibited pathway is less than one, the
interpretation of the estimated interaction effect on CL
(IEapparent) does not reflect the change in the pathway
associated with the interaction. Rather, the fractional change
in the associated pathway (IEspecific) can be obtained from
Eq. 2, where fm is the fraction metabolized through the
pathway in question in the absence of any interaction effect.

IEspecific ¼ IEapparent þ fm−1
fm

ð2Þ

For inhibitors, some conclusions can often be drawn
about the importance of the pathway in question from the
value of the IEapparent. For the metabolite, the implemented
model assumes that all eliminated parent is forming the measured
metabolite and that all metabolite are eliminated through a
pathway affected by the interaction. As for the parent compound,
the model will correctly predict change in the exposure of the
metabolite even if either or both of these assumptions are violated,
but again, the interpretation of the estimated parameters will
change. Additional discussion about the interpretation of the
metabolite’s parameters and the relative magnitudes of BDQ’s
and M2’s clearance pathways given the observed results in
published DDI studies can be found in Supplementary Material 3.

An awareness of the poorly predicted terminal half-life
and a general reluctance to use AUC0–inf when the extrapo-
lated area forms a large part of the total area are probably the
reasons why all published NCA predictions of DDIs with
BDQ and M2 have used AUC0–336 h (7,11,12). The summary
in Table III compares NCA and model-based DDI predic-
tions and shows that NCA consistently predicts lower impact

of the DDI than model-based analysis. The largest discrep-
ancy is observed for the strong inhibitors lopinavir/ritonavir
where NCA predicts a 22% increase in BDQ exposure while
model-based analysis predicts an increase of 188%. These
two predictions may produce a different outcome in a
discussion about the clinical importance of the DDI and the
need for a dose adjustment. It is also striking that NCA
predicts M2 exposure to decrease more than 40% during co-
administration with lopinavir/ritonavir, although inhibition of
CYP3A4 is expected to affect M2 clearance and exposure
therefore should increase. Recently conducted DDI studies in
patients on long-term BDQ treatment with concomitant
antiretroviral are expected to provide further insight in the
predictive accuracy of these two methods. Preliminary results
show a twofold increase in BDQ exposure when administered
together with lopinavir/ritonavir but no significant change in
M2 exposure (24). However, the interpretation of the
presented results is difficult since sampling was conducted
somewhere between week 3 and 24 of BDQ treatment, and it
is expected that accumulation over time of treatment would
make average concentrations of BDQ and M2 over that time
period vary substantially (15).

BDQ which was used as an example in this work has indeed
extreme PK characteristics, and the results presented here may
represent one of the worst-case scenarios. However, there are
numerous other drugs with very long half-life, examples are
mefloquine 14–41 days (25), amiodarone 21–78 days (26), and
oritavancin 393 h (27). Furthermore, what can be called “long half-
life” is always relative to the length of the sampling period. In a
recent DDI study, conducted in healthy volunteers, investigating
the antimalarial drugs cipargamin and piperaquine (terminal half-
life ~22 days) PK samples had to be collected over 60 days after a
single dose which is impractical but necessary since NCAwas used
for the interpretation (28). The problems presented for the BDQ
example will occur for any drug in any situation where it is
impossible or undesirable to sample long enough to observe the
majority of the total AUC. Our conclusions regarding NCA’s
inability to generate accurate predictions are thereforemorewidely
applicable and should be considered at least for any drug with half-
life longer than the intended sampling period.

Measuring metabolite concentrations contributes to the
ability to characterize the clearance of the parent compound
in a model-based analysis since the formation of the
metabolite is linked to the clearance of the parent. Thereby

Table III. Comparison of Previous Published NCA and Model-Based DDI Predictions for BDQ and M2

Victim Perpetrator NCA predictiona Model-based predictionb

BDQ Efavirenz −18%c (10) −52% (13)
Nevirapine No change (7) +9% (14)
Rifampicin −59% (11) −79% (15)
Rifapentine −57% (11) −75% (15)
Lopinavir/ritonavir +22% (7) +188% (14)

M2 Efavirenz +7%c,d (10) −52% (13)
Nevirapine No change (7) −5% (14)
Lopinavir/ritonavir −41% (7) +73% (14)

NCA non-compartmental analysis, BDQ bedaquiline, AUC area under the concentration curve, M2 monodesmethyl-metabolite of BDQ
aRatio of AUC0–336 h
bRelative average concentration at steady state (equal to ratio of weekly AUC at steady state)
cObservations corrected for carry-over
dNot significantly different from 0%
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metabolite observations also contribute to the characteriza-
tion of DDIs as shown by the increased RSE in the
interaction effect parameter in our simulations when metab-
olite data was excluded (Fig. 3). There are also examples in
the literature where simultaneous modeling of parent and
metabolite data has aided characterization of DDIs, e.g., the
effect of ketoconazole and rifampin on ifosfamide, the effect
of zosuquidar trihydrochloride on doxorubicin, or the effect
of ritonavir on nelfinavir (29–31). We suggest that it could be
of interest to measure metabolite concentrations, when a
metabolite with relevant exposure levels exists, even in
situations where the metabolite is not active or important
for safety reasons. This is expected to increase the precision
in the predictions which means that a study with a smaller
sample size may be sufficient to predict the impact of the
interaction with retained power, which in turn is beneficial
from both ethical and economic perspectives.

Parallel study designs instead of cross-over or sequential
designs have been suggested as options for drugs with long
half-life in order to avoid carry-over. Our simulations
demonstrate that overcoming the problem of carry-over still
does not render NCA-derived predictions accurate
(Supplementary Material 2); however, longer sampling pe-
riods do bring the predictions closer to the truth. A parallel
design with longer sampling could therefore be preferred over a
cross-over/sequential if NCA methodology has to be used and
could potentially generate accurate predictions provided that a
high enough percentage of the total AUC is observed and/or for
weaker interaction effects. Correcting the AUC observed on the
second occasion in a cross-over/sequential study for the carry-
over by subtracting an extrapolatedAUC is problematic since the
terminal half-life is poorly estimated and the correction may not
be reliable. For the model-based analysis, where carry-over does
not necessarily introduce bias, the study design does not impact
the accuracy and the precision of theDDI prediction substantially
when the IIVof the clearance of the victim drug is relatively low
(Fig. 4). However, when the IIV of the clearance of the victim
drug is as high as 50%CV, precision is lost in the parallel designs.
We therefore support the continued used of cross-over or
sequential study designs when the study is intended for model-
based analysis.

Moving from single-dose DDI studies to multiple-dose
studies and observing PK of the victim drug as steady
state could provide a situation where NCA would gener-
ate more accurate DDI predictions for drugs with a long
half-life. Such designs are likely to be costly due to the
study length (prolonged dosing to reach steady-state
concentrations needed). Further, protracted exposure to
a study drug that will persist in the circulation for a long
period of time may be undesirable, particularly if the drug
has clinically important toxicities. The mentioned disad-
vantages make single-dose designs and model-based anal-
ysis a more appealing option, at least as long as linear PK
of the victim drug can be assumed.

The simulation studies show that population PK methods
can provide accurate DDI predictions with good precision for
drugs with long half-life where NCA methods fail. These
simulation studies further demonstrate that metabolite data
can be used in the modeling to increase the knowledge gained
from the study. Another benefit of the model-based analysis is
that it enables a more mechanistic approach wherein the

effects of the DDI on primary PK parameter(s) can be
tested. Furthermore, the developed model can be used to
identify rational dose adjustments for further prospective
evaluation in clinical trials when a DDI is judged to be of
clinical importance. The three latter advantages are of
course present regardless of the victim drug’s half-life.

Population PK methods are mentioned in the regulatory
guidance for DDI studies but only as a last resort option to be
used for analysis of PK data (often sparsely sampled)
collected trials other than dedicated DDI studies (5,6). The
same perspective is presented by the organization Pharma-
ceutical Research and Manufactures of America (PhRMA)
(32). This approach can indeed be useful to detect unexpect-
ed DDIs or provide evidence in the absence of DDIs.
However, population PK has a larger potential than that
and we argue for an expanded use of the model-based
methods in primary analysis of dedicated DDI studies. It is
specifically valuable for drugs with long half-life where NCA
analysis may generate biased predictions or demand imprac-
tical and expansive study designs, but it also provides
additional benefits (making use of metabolite data for
improved precision, mechanistic interpretation, dose adjust-
ment simulations) for any victim drug.

CONCLUSION

Utilizing model-based analysis methods to estimate
DDIs is crucial for correct characterization when full
concentration-time profiles are not captured. The under-
predictions of DDI impact by NCA GMRs can be large
enough to result in erroneous and potentially dangerous
conclusions and decisions regarding the need for dose
adjustment. Model-based analysis of interaction effects is
always preferable over NCA for drugs with a long half-life
and should be the standard methodology.
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