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Abstract. Pattern recognition is a key element in pharmacokinetic data analyses when first selecting a
model to be regressed to data. We call this process going from data to insight and it is an important aspect
of exploratory data analysis (EDA). But there are very few formal ways or strategies that scientists
typically use when the experiment has been done and data collected. This report deals with identifying
the properties of a kinetic model by dissecting the pattern that concentration-time data reveal. Pattern
recognition is a pivotal activity when modeling kinetic data, because a rigorous strategy is essential for
dissecting the determinants behind concentration-time courses. First, we extend a commonly used
relationship for calculation of the number of potential model parameters by simultaneously utilizing all
concentration-time courses. Then, a set of points to consider are proposed that specifically addresses
exploratory data analyses, number of phases in the concentration-time course, baseline behavior, time
delays, peak shifts with increasing doses, flip-flop phenomena, saturation, and other potential
nonlinearities that an experienced eye catches in the data. Finally, we set up a series of equations
related to the patterns. In other words, we look at what causes the shapes that make up the
concentration-time course and propose a strategy to construct a model. By practicing pattern recognition,
one can significantly improve the quality and timeliness of data analysis and model building. A
consequence of this is a better understanding of the complete concentration-time profile.

KEY WORDS: absorption; area under the curve; bi-exponential; half-life; induction; intravenous and
extravascular dosing; lag time; mono-exponential; multi-compartment; nonlinear elimination; plasma

concentration-time courses; target-mediated drug disposition; transporters.

INTRODUCTION

Pattern recognition is a key element in pharmacokinetic
data analyses when first selecting a model to be regressed to
data. We call this process going from data to insight. But
there are no formal best practices that scientists typically use.
This report deals with identifying the properties of a kinetic
model by dissecting the pattern that concentration-time data
reveal graphically. Pattern recognition is a pivotal activity
when modeling pharmacokinetic data, because a rigorous
strategy is essential for dissecting the determinants behind
concentration-time courses. In the pharmacology field, pattern
recognition has also been proposed for interpreting results of
drug-drug interactions (1).

The format of the presentation order of the data sets are
shown in Fig. 1. The route of administration is the top level.
Under that, we split into intravenous (iv, disposition kinetics)
dosing and extravascular (ev, po, absorption confounded
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kinetics) of single- (mono-exponential decline) and multiple-
compartment (multi-exponential decline) systems. The next
level discriminates between linear- and nonlinear systems.
This order is, what we assume, that one immediately can see
from a semi-logarithmic graph of concentration-time data. A
special case of extravascular administration where one has to
discriminate between first- and zero-order input is also given.

The 16 data schemes we are going to discuss are shown
schematically in Fig. 2. These are representative of different
patterns typically seen in in vivo pharmacokinetic practice.
For each case study, we will provide the underlying model
including the differential equations that describe the system,
the parameters and constants, and the number of functions
(datasets) involved in the regression analysis.

The following strategy was adopted:

* In case studies 1 and 2, we explore intravenous iv
bolus dosing of a one (two subjects with different
clearances and similar volumes) and two compart-
ments (two populations, clamped and normal with
different clearances and effective half-lives).

Then, we move on to extravascular dosing in case
studies 3 and 4, where a one-compartment first-order
input/output systems with and without lag time, and
iv and extravascular dosing for a two-compartment
system, respectively.

In case study 5, we revisit extravascular (po) dosing
although we observe rapid absorption, lag time, and
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Fig. 1. Decision-tree structure of the analyzed case studies.
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multi-exponential decline post-peak. This dataset
does not contain iv data.

Case study 6 returns to iv bolus dosing and mono-
exponential decline in plasma but is extended also
with urinary data so renal clearance or fraction
excreted into the urine can be estimated simulta-
neously with total clearance.

Case studies 7 and 8 are also iv dosing covering
mono- and bi-exponential decline for two systems
that exhibit saturable (nonlinear) clearance terms.

2
6.
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» Two nonlinear systems are also presented after oral
dosing in case studies 9 and 10. The former captures
nonlinear elimination and the latter saturable absorp-
tion via transporters.

* We extend the analyses by looking at iv (case study 11)
and subcutaneous (sc) (case study 12) of two systems
with endogenous levels of the test compound. This
extends the model with one additional parameter, the
turnover rate.
The last four case studies (case studies 13-16) are
extensions looking at target-mediated drug disposi-
tion (case study 13), time-dependent induction of
clearance (case study 14), simultaneous fitting of
nonlinear multi-compartment kinetics of parent com-
pound and metabolite after three different iv doses,
and then finally fitting a first- and zero-order absorp-
tion model to an oral dosing dataset.

We encourage the analyst to regress several sources of
data simultaneously if possible. In case study 4, a full two-
compartment system is revealed in iv data but not in ev data.
This dataset is contrasted with case study 5 where only ev
data are available. However, the latter still displays a multi-
compartment behavior due to the rapid absorption. Both case
studies 4 and 5 are commonly encountered situation which is
the reason why they may be of interest to the reader. Several
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Fig. 2. Schematic illustration of the 16 data patterns discussed in this report. / Two individuals with mono-exponential disposition. 2 Bi-exponential
decline after iv bolus dosing in two groups of animals. 3 Lag time or no lag time in the absorption process with absorption rate-limited elimination. 4
Simultaneous analysis of bi-exponential decline after iv dosing and mono-exponential decline when dosing orally. 5 Multi-exponential behavior after
oral dosing. 6 Plasma and cumulative urine data. 7 Single-compartment disposition coupled to nonlinear elimination. 8 Multi-compartment
disposition coupled to nonlinear elimination. 9 Nonlinear elimination after oral dosing. /0 Saturable absorption by transporters. /1 Bi-exponential
decline after bolus dosing with a baseline value. /2 Extravascular administration of an endogenous compound with a baseline value. /3 Target-
mediated drug disposition. /4 Multiple dosing coupled to a period of hetero-induction shown by the gray horizontal bar. 15 Nonlinear formation of
metabolite (dashed lines) after iv dosing of parent compound (solid lines). 16 First- and zero-order absorption patterns. All plots are semi-logarithmic
except 12, 14, and 16 where data are displayed on a linear scale due to a limited concentration range.



Pattern Recognition in Pharmacokinetic Data Analysis

sources of data are further elaborated on in case studies 6, 7,
9, 10, 13, and 15. Further comparisons across two or more
case studies are done at the end of relevant cases.

A schematic diagram of each model proposed for the
data schemes in Fig. 2 is shown in Fig. 3.

A set of points to consider are proposed that specifically
addresses exploratory data analyses, number of phases in the
concentration-time course, convex Or concave curvature,
baseline behavior, time delay, lag time, peak shifts with
increasing doses, flip-flop phenomena, saturation, and other
potential nonlinearities that the eye catches in the data. We
look at what causes the shapes that make up the
concentration-time course. By practicing pattern recogni-
tion, one can significantly improve the quality of data
analysis and model building. A consequence of this is a
better understanding of the complete concentration-time
profile. We have therefore collected a set of patterns
extracted from literature data and then modified them so
the typical features emerge more clearly (2). We also
propose alternative solutions to the patterns.

The number of parameters NP which can be calculated
for a given model is dependent on the number of exponen-
tials EX post-peak visible in the plasma concentration-time
profile, the number of elimination or excretory pathways PE
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suitably measured, the number of tissue spaces or binding
proteins 7S analyzed, and the number of visible nonlinear
features NL in the data (Eq. 1, top). This expression was
proposed by Jusko and meant to be a guidance function
(a set of numerical points to consider) when dissecting
pharmacokinetic profiles (3). We have personally benefitted
from this simple but elegant tool as a starting point in our own
analyses. An extension (Eq. 1, bottom) of the original model is
presented here which also includes information about absorp-
tion ABS, initial time delays TLG, baseline BL, and potential
metabolite(s) MTB

{

Original model NP =2-EX + PE +2-TS + NL

Extended model NP =2-EX + PE +2-TS +NL + ABS + TLG + BL +2-MTB

1)

Equation 1 is applicable if sufficient and accurate data
are obtained and can be extended. For example, if we have
data after an intravenous bolus dose that decline in a bi-
exponential fashion (i.e., with an o and a 8 phase), then it is
possible to estimate 2 EX=4 parameters (i.e., A, o, B, and f).
If we also have measured drug excretion in urine, we could
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Fig. 3. Schematic diagram of each model used for the analysis of concentration-time data shown in Figs. 2, 4, 5, 6, and 7. All parameters and
variables are explained in their respective case study sections. Numerals above the figures refer to the respective case study.
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estimate renal clearance or fraction of dose excreted via the
urine PE. If, in addition to the bi-exponential decline in
plasma 2 EX, we have a nonlinear feature NL and urinary
data PE, we might be able to estimate six parameters.

Equation 1 was suggested as a practical tool for the
identification of a possible number of estimable parameters
based on observable patterns of the drug moiety as such in
plasma. We will also see how applicable the extended Eq. 1 is
to the 16 datasets provided. Equation 1 should be used with
careful attention to the quality of data, the design of the
experiment, and when the number of data sources beyond
parent compound in plasma and urine are available. Simul-
taneous fitting of all available sources of data is always
recommended.

This report focuses on the practical identifiability of
pharmacokinetic parameters based on visual inspection of
experimental data. First, we extend a commonly used
relationship for calculation of the number of potential model
parameters by simultaneously utilizing all concentration-time
courses. Then, a set of points to consider is proposed that
specifically addresses exploratory data analyses, number of
phases in the concentration-time course, baseline behavior,
time delays, peak shifts with increasing doses, flip-flop
phenomena, saturation, and other potential nonlinearities
that an experienced eye catches in the data. Finally, we set
up a series of equations related to the patterns and themes.
Theoretical a priori identifiability of pharmacokinetic parameters
has been discussed by others (4) and will not be addressed here.

Case study 1. A mono-exponential decline is observed in
plasma after an intravenous bolus dose to two subjects (Fig. 4,
case study 1 (2)). Both subjects received the same amount of
test compound. The goal is to identify typical signs of
pharmacokinetic similarities and differences between these
two concentration-time courses. In other words, what are the
most obvious characteristics that one may pick out by visual
inspection of data?

The mono-exponential decline shown in Fig. 4 (case
study 1) on logarithmic concentration scale can be described
mathematically as a first-order differential equation.

dc Cl

dC/dt is the rate of change of the plasma concentration,
C is the plasma concentration, and K is the first-order rate
constant associated with the elimination process. A new
parameter, clearance Cl, is then introduced. Clearance is
defined as the volume of blood or plasma that is totally
cleared of its content of drug per unit time (mL min ' or
L min '). The other parameter of primary interest is the
volume of distribution V. This is the apparent space that test
compound distributes into.

The solid lines in Fig. 4 show the behavior of Eq. 2. This
equation is actually a mathematical interpretation of many
first-order exponential processes in the body (loss of water,
decline of hormones, food constituents). We also observe
that the two subjects have approximately the same intercept,
C(0), suggesting similar volumes. Dose and volume deter-
mine the intercept after an iv bolus dose. The area under
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the concentration-time curve AUC for subject 2 is less than
the area under subject 1 in spite of equal doses. This is due
to the larger clearance for subject 2 than subject 1.
Clearance and dose determine the area. Consequently, the
half-life will be shorter for subject 2 (35 min) as compared
to subject 1 (65 min) (Eq. 3), which is also clearly observed
in the plot.

ti2 =In(2)- é 3)

Should the two subjects have had the same clearance but
different volumes, the AUCs would have been the same and
the intercepts different. So, by inspecting the shapes (slopes
and intercepts and areas), one can make conclusions about
the relative clearances and volumes.

The key features of this pattern are mono-exponential
decline in plasma of two subjects with different clearances
and same volumes. Applying Eq. 1, the number of parameters
NP that can be estimated from the data is two for each subject
(=2 EX such as Cl and Vor K and V).

Case study 2. A bi-exponential decline is observed in
plasma after an intravenous bolus dose to two different
populations of rats (Fig. 4, case study 2 (2)). Both populations
received the same amount of test compound (20 mg). Test
compound is a large molecular weight chemical which is
primarily cleared via the kidney and a small fraction is
metabolized. One group of rats (denoted diseased animals) had
the blood supply to and from the kidneys shut off by a clamp.

The bi-exponential decline observed in Fig. 4 (case study 2)
displays two distinct phases, one initial with rapid decline and a
terminal phase with slower decline as shown on the logarithmic
concentration scale. The relationship between the concentration
C and the rate of change dC/dt in plasma and tissue can be
expressed mathematically as a system of two differential
equations for a two-compartment model with first-order kinetics,
when drug is administered as a bolus dose into the gut as follows:

Ve dac _ —Cl-C—Cly-C + Clg-C;

dt

- 4)
V,- d_lf = Cl;-C—Cly-Cy

dC/dt and dCy/dt are the rate of change of test compound
in plasma and tissue compartments, C is the plasma concen-
tration, C; the tissue concentration, Cl plasma clearance, V.,
central volume, V. peripheral volume, and Cl,; the inter-
compartmental distribution parameter. Cl; has the units of
volume per time (mL min~' or L min ') and is related to
transport of test compound out into the tissues via the blood
flow, transporters, and diffusion/convection forces. The total
volume of distribution Vg is the sum of V. and V|, which is
the apparent space that test compound distributes into in a
two-compartment system.

The solid lines in Fig. 4 (case study 2) show the behavior
of Eq. 4. This equation is a mathematical approximation of
many first-order bi-exponential processes in the body (such as
estradiol, hyaluronan). We also observe that the two groups
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Fig. 4. Case study 1 Semi-logarithmic plot of concentration-time data in two subjects after a rapid intravenous injection of the same dose. An
apparent mono-exponential decline is shown in plasma corresponding to a one-compartment system. The back-extrapolated concentration at
time zero is approximately 1000 pg L' in both subjects suggesting the same volume of distribution. Clearance Cl of test compound is larger in
subject 2 which is manifested in a smaller area-under-the plasma concentration-time curve AUC and a shorter half-life (35 min) as compared to
subject 1 (65 min). Case study 2 Semi-logarithmic plot of concentration-time data in two groups of rats after a rapid intravenous injection of the
same dose of recombinant human superoxide dismutase (rh-SOD). An apparent bi-exponential decline is shown in plasma corresponding to a
two-compartment system (right). The back-extrapolated concentration at time zero is approximately 1000 pg mL ™" in both groups suggesting
similar central volumes of distribution. Clearance Cl of the test compound is larger in normal rats which is manifested in a smaller AUC. The
small red arrows indicate the elimination phase in normal (initial phase) and clamped (diseased, terminal phase) rats. The effective half-life is
about 10 min (close to initial phase) in normal animals as compared to 90 min (terminal phase) in clamped animals. Cl,, V,, and V. denote
inter-compartmental distribution parameter and central and peripheral volume terms, respectively. Vi is the sum of the two volume terms.
Case study 3 Semi-logarithmic plot of concentration-time data in one subject after an oral dose. An apparent initial delay in the rise of plasma
test compound concentrations is followed by a rapid initial upswing with a Cy,,x at about 60 min and then a post-peak mono-exponential
decline corresponding to a one-compartment input/output system (right). Superimposed on experimental data (filled symbols) are the lag time
and no lag time model fits. Note how the lack of a lag time misses the initial 10-20-min delay, the rise in experimental data, the peak
concentration, and over predicts the terminal time points. A tentative time course after intravenous administration is shown as a dotted red line.
This implies that the terminal portion of oral data shows absorption rate-limited elimination—flip-flop pharmacokinetics. Cl, F, K, and f;,,
denote clearance, bioavailability, absorption rate constant, and lag time, respectively. Case study 4 Semi-logarithmic plot of concentration-time
data in one subject after intravenous and oral dosing at two different occasions. Intravenous data (solid squares) display a bi-exponential
decline which suggests a typical two-compartment disposition (see model inset). Oral data shows an apparent initial delay in the rise of plasma
test compound concentrations which is then followed by a rapid initial upswing with a Cy,,,x at about 50 min and then a post-peak weak bi-
exponential decline (solid circles). Data from both routes of administration were simultaneously fit by the two-compartment model with either
bolus or first-order input. Cl, V., Vi, Cl;, F, and K, denote clearance, central volume, peripheral volume, inter-compartmental distribution,
bioavailability, and absorption rate constant, respectively.

have approximately the same terminal slope, —f3, and normal
animals have a slightly lower intercept of the concentration
axis which suggests a slightly higher central volume V,
compared to the clamped animals. This is a consequence of
clamping blood supply to and from the kidneys resulting in a
removal of a substantial blood volume. The AUC in normal
animals is much less than the area under clamped animals in
spite of equal doses. This is due to the fact that normal
animals have a much larger (uncompromised) clearance than

clamped animals. Due to the large differences in clearance,
the effective half-life #,,,(e) will be shorter in normal animals
(10 min) as compared to clamped animals (90 min) (Eq. 5).
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We typically observe and measure what is going on in the
central compartment represented by plasma, but we need the
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additional peripheral compartment to make up for the two
phases observed in the plasma concentration-time course and
the input rate from the gastrointestinal region. In this case
study, there is still a distinct difference between the initial and
terminal phases. In other situations, one may want to reduce
or increase the number of exponentials. Model discrimination
then has to be based on residual analysis, goodness-of-fit
criteria (objective function value, Akaike information criterion),
parameter precision, and correlation (see Gabrielsson and
Weiner, 2010, for a discussion (2)).

The key features of the studied patterns are bi-exponential
decline in plasma of two groups of animals with different
clearances. In spite of similar terminal half-lives, their effective
half-lives differ almost tenfold. If we then apply Eq. 1, the
number of estimable parameters is four (=2 EX=2x2=4 namely
Cl, Cly, V, and V).

Case study 3. This case study deals with a typical pattern
observed for an orally administered test compound that
displays a delay in the onset of absorption. Experimental
data are shown together with two model-predicted time
courses in Fig. 4 (case study 3 (2)). The most obvious
signature in experimental data is a slight time delay of 10—
20 min before plasma test compound concentrations start to
rise, followed by a rapid rise and a peak concentration at
about 60 min. Experimental data are then obtained up to 6 h
after dosing. By plotting the data on a semi-logarithmic scale,
one observes a mono-exponential post-peak decline which
suggests that a one-compartment model with first-order input
(absorption)/output (elimination) may be a good start. Data
reveal that when the terminal phase is compared to the
disposition of test compound after intravenous dosing ab-
sorption rate-limited elimination prevails.

The relationship between the concentration C and the
rate of change dC/dt in concentration may be expressed
mathematically as a one-compartment model with first-order
input/output kinetics when drug is administered as a bolus
dose as follows:

dcC

P . . Lo Kot .
1% I F-K, Dpo-e X' ~Cl-C .
V.o = F-K,-Dyo-e Ko lie) —Cl.C

dC/dt is the rate of change of the plasma concentration,
C is the plasma concentration, F is bioavailability, K,
absorption rate constant, V' volume, and Cl is clearance (or
reparameterized with the elimination rate constant K=Cl/V)
associated with the elimination process. Dy, and t,, denote
oral dose and lag time, respectively.

In this case study, there is a distinct difference between
the lag time (model of choice) and no lag time models
(systematic deviations throughout the model-predicted concen-
tration-time course), which is already shown in the function
plots. In other cases, this may not be so obvious and model
discrimination then has to be based on residual analysis,
goodness-of-fit criteria (objective function value, Akaike
information criterion), parameter precision, and correlation
(see Gabrielsson and Weiner, 2010, for a discussion (2)).
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The key features of the studied patterns are a lag time
before the onset of absorption, then a rapid initial rise to Cyax
and mono-exponential decline post-peak. The importance of
adding a lag time to the model is shown in the two fitted
models superimposed on experimental data. If we then apply
the extended Eq. 1 with necessary parameters for the present
dataset, we get

NP = ABS+TLG +2-EX=1+1+2.1=4 (7)

Four parameters that are estimable from the data (K,, fia,
K, and V/F). For this case study, absorption rate-limited
elimination is shown in the terminal portion of the oral
data—also known as the flip-flop pharmacokinetics.

Case study 4. This dataset shows a bi-exponential decline
after intravenous dosing which is very much masked when
test compound is given via the oral route (Fig. 4, case study 4
(2)). If the rate of absorption is relatively slow, oral data
typically display a mono-exponential decline post-peak.
When iv data are added to the picture, a clearer picture of
the two-compartment disposition emerges. Iv data are needed
to correctly analyze the po data which shows a weak tendency
of bi-exponential decline after Cy,,x. We may also want to fit a
lag time model for the oral absorption process.

The bi-exponential decline observed in Fig. 4 (case study 4)
displays two distinct phases after intravenous dosing, one initial
with rapid decline and a terminal phase with slower decline
more clearly displayed on a logarithmic concentration scale. The
two phases are separated by a concave bend in the curve at
about 40-60 min. The relationship between the concentration C
and the rate of change dC/dt in plasma and tissue after
intravenous and extravascular dosing can be expressed mathe-
matically as a system of two differential equations for a two-
compartment model with first-order kinetics, when drug is
administered as a bolus dose as follows:

Input;, = Bolus
Input,,, = F+Dpo- Ky-e ot

ac Input;,
velr=or ~Cl-C~Cly-C + ClgC, ®)
d Input,,,
dC,
Nuhd e N gRg) P
V[ dt Cd C Cd Ct

Inputy,, F, Dy, and K, are the input rate, bioavailability,
oral dose, and absorption rate constant, respectively. The dC/
dt and dCydt are the rate of change of test compound in
plasma and tissue, C is the plasma concentration, C, the
peripheral concentration, Cl plasma clearance, V. central
volume, V, peripheral volume, and Cl, the inter-compartmental
distribution parameter.

We typically observe and measure what is going on in the
central compartment represented by plasma, but we need the
additional peripheral compartment to make up for the two
phases observed in the plasma concentration-time course and
the input rate from the gastrointestinal region.

The higher the absorption rate constant, the greater is
the chance of observing a multi-exponential decline post-
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peak. In Fig. 5, simulated data of intravenous and oral dosing
are superimposed using three oral absorption rate constants
(fast, intermediate, and slow). Note how the oral concentration-
time profile having a high K, and displaying a bi-exponential
decline post-peak (multi-compartment characteristics) turns
into a one-compartment input/output profile similar to a one-
compartment model as shown in Fig. 4 when the absorption rate
constant is low.

The key features of the studied patterns are multi-
exponential decline observed after intravenous dosing and
barely visible bi-phasic decline upon oral dosing. The latter is
due to slow absorption relative to disposition. Absorption
occurs after a time lag; the concentration-time profile peaks at
about 50 min and then decline in a barely visible bi-phasic
manner. Again, applying the extended Eq. 9 to both intravenous
and oral data gives

Extended model NP =2EX +2ABS+TLG=2x%x242x1+1=7

©)

The number of estimable parameters from data is then
seven, namely Cl, Cly, V., Vi, F, K,, and fj,,.

Case study 5. This case study demonstrates data obtain-
ed from a calcium-channel blocker with a rate of absorption
that exceeds the rate of disposition (distribution into tissues
and elimination) (Fig. 6, case study 5 (2)). We will therefore
be able to observe its bi-exponential decline beyond the peak
concentration Cy,,.. These kind of data are often seen in both
preclinical and clinical studies and differentiate themselves
from data of case study 4 where also iv data are needed to
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correctly analyze po data with the weak bi-exponential
decline post-peak. Intravenous data are still needed in order
to discriminate between distribution and elimination, and for
assessment of absolute bioavailability. We intentionally call
the three phases initial, intermediate, and terminal phase.

The relationship between the concentration C and the
rate of change d(C/dt in plasma and tissue after extravascular
dosing can be expressed mathematically as a system of two
differential equations for a two-compartment model with
first-order kinetics as follows:

Input,, = F-Dypo-Ky-e 0!

dC
Ve a Input,,~Cl-C~Cl;- C + Cly- G
4C _ q,-c-clpC

Vi dt

Input,,, F, D, and K, are the input rate, bioavailability,
oral dose, and absorption rate constant, respectively. The
dC/dt and dC/dt are the rate of change of compound in
plasma and tissue, C is the plasma concentration, C; the
peripheral concentration, Cl plasma clearance, V. central
volume, V; peripheral volume, and Cl, the inter-compartmental
distribution parameter.

We first fitted a no lag time model to the data which then
failed to acceptably fit the upswing, peak, and initial post-
peak phase. By adding a lag time, the systematic deviations
were removed.

The key patterns of this dataset are rapid initial rise in
exposure followed by a bi-exponential decline post-peak. A
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Fig. 5. Semi-logarithmic plot of simulated concentration-time data after intravenous dosing (bi-exponential decline bending at 50 min) and oral
dosing with three different absorption rate constants K,. The oral profile displays bi-phasic decline post-peak when absorption rate is high and
mono-exponential decline post-peak when the absorption rate is low which then masks disposition.
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Fig. 6. Case study 5 Semi-logarithmic plot of observed (solid symbols) and model-predicted (/ine) concentration-time data in one subject after
oral dosing. Data shows no delay prior to the rapid rise in plasma test compound concentrations with a Cy,,, at about 30 min. The post-peak
data displays a bi-exponential decline. The red dashed line is the time course of an extended release dosage formulation with a slow absorption
rate resulting in a late peak. The absorption is faster than the elimination since both curves fall in parallel terminally. Also, note the lack of the
initially high concentration peak which the extended release will mask due to a slow release rate from the dosage form. Cl, V., V,, Cl,, F, and K,
denote clearance, central volume, peripheral volume, inter-compartmental distribution, bioavailability, and absorption rate constant,
respectively. Case study 6 Semi-logarithmic plot of observed (solid symbols) and model-predicted (lines) concentration-time data in plasma
and accumulated amount in urine of compound X. Plasma data displays a mono-exponential decline. Clg and Cl,,, denote renal and metabolic
clearance. Case study 7 Semi-logarithmic plot of observed (solid symbols) and model-predicted (lines) total concentration-time data in two
subjects after intravenous dosing of 25 and 100 mg of test compound. Data display a convex decline with steeper slopes as concentration
declines. Clearance Clyyy is a function of maximum rate of elimination V., the Michaelis-Menten constant K, and plasma concentration
C. Case study 8 Semi-logarithmic plot of observed (solid symbols) and model-predicted (lines) ethanol concentration-time data in one subject
after an intravenous infusion (double arrow) of 0.4 g per kg body weight for 30 min. Clearance Clyy is a function of maximum rate of
elimination V., the Michaelis-Menten constant K, and plasma concentration C. The horizontal dashed red line shows the estimated
concentration of Ky,. Clym, Ve, Vi, and Cl; denote the Michaelis-Menten clearance function, central volume, peripheral volume, and inter-
compartmental distribution, respectively.

multi-exponential absorption/disposition model will capture this
pattern. A three-exponential model or a two-compartment
model with first-order input may suffice for capturing the data.
No mechanistic interpretation of clearance or volume terms is
possible since intravenous data and absolute bioavailability are
lacking. Applying the extended Eq. 1 to both intravenous and
oral data gives
NP =ABS +TLG +2-EX=1+4+1+2-2=6 (11)
The number of estimable parameters from data is six,
namely CVF, Cl,/F, V/F, Vi/F, K,, and fi,.

Case study 6. Data were collected from both plasma and
urine after an intravenous bolus dose of test compound X
(Fig. 6, case study 6 (2)). A mono-exponential decline in

plasma concentration coupled to cumulative amount in urine
was modeled by a one-compartment drug model with a urine
compartment as one of the elimination pathways. Plasma and
urinary data were simultaneously fitted by a simple differen-
tial equation model (Eq. 12).

The differential equation that describes the plasma com-
partment and accumulated amount in urine are defined as

V-E: -Cl-C
dt (12)
dA,
= f,-Cl-C = Clg-C

dt

A model for cumulative amount of drug excreted into
urine is selected in combination with the one-compartment
plasma model. Equation 12 includes three parameters, of
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which Cl occurs in both the plasma and cumulative urine
equations. Therefore, try whenever possible to utilize as
many sources of data (such as plasma concentrations and
urine amounts) simultaneously when fitting a model to the
data to increase accuracy and precision of the parameter
estimates. The model for cumulative amount in urine has a
very robust model structure and generally allows accurate
and precise estimation of f, or Clg in our experience.

The key features of this analysis are a combined plasma
concentration and urinary excretion model that was simulta-
neously fit to two sources of time series. Key patterns are
mono-exponential decline in plasma and a smooth first-order
rise in cumulative amounts in urine. Volume and clearance
are related to both datasets. Applying the extended Eq. 1 to
both intravenous and urinary data gives

NP=2-EX+PE=2-1+1=3 (13)

The number of estimable parameters from data is three,
namely Cl, V, and Clg or f,.

Case study 7. A convex decline is observed in two
concentration-time profiles after intravenous dosing of two
doses to two individuals (Fig. 6, case study 7 (2)). This pattern
shows a typical signature that cannot be modeled by adding
more exponential terms. Since the slope of decline gets shallower
in both subjects the higher the plasma concentration becomes, it
suggests some kind of nonlinearity in possibly the elimination
process. One typically would think of capacity-limited elimina-
tion (often called dose or concentration-dependent elimination),
but if total concentrations are displayed, this could also be
explained by saturable plasma protein binding. In this case study,
we fit a model with capacity-limited (Michaelis-Menten) elimi-
nation to the data. Note that the terminal portions of the
concentration-time courses have different slopes. Dose-
normalized concentrations displayed the same initial concentra-
tion but deviated from each other during the remaining
concentration-time courses. We suggest that volume V and
maximum rate of elimination V., are the same for the two
subjects but that their K, values differ since total concentration-
time data are available for this highly plasma-bound test
compound. The underlying assumption is that K, is more
affected by plasma protein binding differences across subjects
than V... We also tested using the same K, but different V.«
parameters for the two subjects but that failed to produce an
acceptable fit (see Gabrielsson and Weiner, 2010, for a detailed
description of the analysis).

The plasma equation following intravenous administra-
tion is written as

v-#: ~Clyw+C

d (14)

1 — max
Clym KoiC

C and Clyy are the plasma concentrations and Michaelis-
Menten type of capacity-limited clearance, respectively, and V.«
and K, are maximum rate of elimination and the Michaelis-
Menten constant. It is the Michaelis-Menten expression in Eq. 14
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that allows the model to capture the lack of superposition across
doses and the time-dependent half-life.

The key features of these patterns are analysis of two
concentration-time profiles that both display a convex shape
of decline. Dose-normalized concentrations superimpose only
at C(0) and deviate beyond that time point. A multi-phasic
concave pattern was observed which typically occurs in
nonlinear capacity-limited elimination. Both profiles declined
in a linear fashion at low plasma concentrations. A successful
attempt was made to simultaneously fit the two time courses
with a common value for both subjects for the V.., and
volume V parameters but two different K, values. Applying
the extended Eq. 1 to both intravenous time courses gives

NP=2-EX+NL; +NL, =2-1+1+1=4 (15)

NL; and NL, are the observed different nonlinear
placements in the two datasets that Eq. 14 was simultaneously
fitted to. The number of estimable parameters from data is
four, namely Viax, V, Kint, and K.

Case study 8. The kinetics of ethanol was characterized
following a 30-min constant rate intravenous infusion (Fig. 6,
case study 8 (5)). A number of volunteers were infused
intravenously with a dose of 0.4 g ethanol per kg body weight.
Plasma samples were obtained for 7 h. Ethanol displayed
capacity-limited clearance and a volume of distribution
equal to total body water. This problem highlights some
of the complexities in modeling multi-compartment dispo-
sition with nonlinear capacity-limited elimination. For
details about study design and a review of ethanol kinetics,
see Norberg et al. (5,6).

The constant rate infusion of ethanol occurred over
30 min. Post-infusion data display initially a small concave
shape followed by a slow extended convex decline with
steeper slopes as concentration declines. The rapid post-
infusion concave bend suggests an additional compartment
beyond plasma that ethanol distributes into. It is well known
that ethanol distributes into total body water (a 40-L volume
in a 70-kg person). The top portion of the second phase after
the stop of infusion is shallow and starts to bend down with a
steeper slope as concentrations decline. This convex bend
suggests some kind of nonlinearity that excludes binding
changes. Saturation of the metabolizing enzymes are well
known for ethanol above 30 pg L', Therefore, a Michaelis-
Menten type of expression of clearance was included into the
model (Eq. 16).

V- % = In—-CI-C-Cl;-C + Cl;-C;

dc;

— =Cl;-C la-C
i Cly-C + Cly-Cy
Vmax

Vt'
Cl=

The model has five parameters (Viax, K, Clg, Ve, and V)

and three constants (two doses, one duration of infusion). We fit
the data simultaneously.
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The key features of this analysis are initially a bi-
exponential concave decline after an intravenous constant rate
infusion, followed by nonlinear capacity-dependent elimination
that transgresses into a convex downward bend. The terminal
portion of the curve displays a linear mono-exponential decline.
The bi-exponential behavior suggests a two-compartment
structure and the nonlinearity a Michaelis-Menten type of
elimination. If we then apply the extended Eq. 1 with necessary
parameters for the present dataset, we get Eq. 17
NP =2-EX+NL=22+1=5 (17)
which gives five parameters that are estimable from data
(Cly, Ve, Vi, Vinax, and Kpy).

Case study 9. Three oral doses of compound Y were
given to the same subject at three different occasions. No lag
time was observed but there was a peak shift in the plasma
concentrations as the dose increased (Fig. 7, case study 9, red
vertical lines (2)). The post-peak events become more and
more shallow as dose increases. The three time courses fall off in
a linear parallel fashion as concentrations approach less than
5-10 pg L. The pharmacokinetics may be characterized by
a one-compartment model with first-order absorption and
saturable elimination. The peak shift may be due to saturable
absorption or saturable elimination. Provided complete absorp-
tion (100% bioavailability) or saturable absorption, the dose-
normalized areas would superimpose. However, in this case
study, the dose-normalized areas do not superimpose suggesting
that nonlinear elimination causes the peak shift.

The equations corresponding to the concentration in
plasma are written as

Input,, = F-K,-Dose; oKt

V- E = Inputpo—ClMM -C

0 (18)

Vmax
Clum = ——
MM Kot C

The key features of this analysis are peak shifts with
increasing oral doses with f,,,x at 40, 50, and 100 min after the
low, intermediate, and high doses, respectively. The peak
concentration is followed by an apparent nonlinear and
seemingly flatter portion of the curve at the highest dose.
The terminal decline below 10 pg L' is mono-exponential.
Dose-normalized areas do not superimpose which suggests
either nonlinear bioavailability or nonlinear elimination. If we
then apply the extended Eq. 1 with necessary parameters for
the present dataset, we get
NP =ABS+2-EX+NL=1+2-1+1=4 (19)
four parameters that are estimable from data (K,, V, Viax,
and Kp,).

Case study 10. Three oral solutions of a test compound
with increasing doses to human subjects displayed a nonlinear
pattern at the peak concentrations (Fig. 7, case study 10 (2)).
The initial rise of the plasma concentration is very rapid with
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a peak concentration occurring within 10 min after dosing at the
first observation. Not only was a peak shift observed with
increasing doses but also a flat portion at the highest dose lasting
for about 100 min. Dose-normalized areas, obtained from non-
compartmental analysis, superimposed, suggesting that the
extent of absorption is complete but the rate is saturable. The
compound utilizes a transporter system for endogenous com-
pounds like amino acids, hormones, and other food ingredients.
Data also displays a bi-exponential (concave) decline at concen-
trations below 100 pg L. Figure 7 (case study 10) shows the
high-resolution data from a single individual. The data pattern is
interesting as it displays a brief period with absorption rate-
limited kinetics during the first 100 min, and then displays
disposition rate-limited kinetics in the terminal phase.

The function of the concentration in the central com-
partment is written as

Vmax'Ag

In — —max ©°¢

T Kt A,
dC

Ve T In—Cl-C-Cl;-C + Cly-Cy

G

dt

Vi-——=Cl;-C+ Cly-C;

where Viax, Ag, and K, represent the maximum transport
rate (ug min '), amount in the gut compartment (pg), and the
Michaelis-Menten constant (ug) at which half-maximal input
rate operates. The model has five parameters (Viax, Km,
Cl,, V., and V) and three constants (three doses). The three
concentration-time courses are fit simultaneously. It is the
nonlinear input function in Eq. 20 that allows us to capture
the nonlinear absorption pattern.

The key features of this analysis are an initial rapid rise in
plasma concentrations with a peak within 10 min after dosing for
the lowest dose followed by peak shifts in Cy,,,x and an extended
plateau at the highest dose. The time courses display bi-
exponential decline at concentrations below 100 pg L', Dose-
normalized areas-under-the plasma concentration curves super-
impose suggesting complete absorption and linear elimination.
If we then apply the extended Eq. 1 with necessary parameters
for the present dataset, we get
NP =ABS +2-EX+NL=1+2-2+1=6 (21)

However, there are only five parameters that are estimable
from data (Vi,ax and Ky, Cl/F, V/F, V|/F,). Since we apply a
nonlinear transport to the absorption process, both ABS and
NL relate to the same process.

Case study 11. Estradiol was given as a rapid intravenous
injection to a post-menopausal woman. Estradiol concentra-
tions in plasma were measured prior to dosing and during
32 h post-dosing (Fig. 7, case study 11 (2)). A two-
compartment model with endogenous turnover and clearance
was fit to the data. Initial parameters were obtained by
graphical methods.

The bi-exponential decline observed in Fig. 7 (case study 11)
displays two distinct phases before the estradiol plasma concen-
tration asymptotically approaches the baseline concentration.
The two phases are separated by a concave bend in the curve.
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Fig. 7. Case study 9 Semi-logarithmic plot of observed (solid symbols) and model-predicted (lines) concentration-time data in one subject after
three different doses of test compound Y. F, K,, V, V., and K, denote the bioavailability, absorption rate constant, volume of distribution,
maximum metabolic rate, and Michaelis-Menten constant, respectively. Case study 10 Semi-logarithmic plot of observed (symbols) and model-
predicted (lines) concentration-time data after oral dosing of a test compound that utilizes an endogenous transporter route. The oral profiles
display nonlinear absorption with a peak shift in C,,,x With increasing doses. A typical bi-phasic decline is shown post-peak and below plasma
concentrations of approximately 100 ug L', Note the flip-flop situation during the first 120 min at the highest dose where rate of elimination is
confounded by absorption. F, Viax, Km, Ve, Vi, Clg, and Cl denote bioavailability, maximum transport rate, the Michaelis-Menten constant
related to the saturable absorption process, central volume, peripheral volume, inter-compartmental distribution, and clearance, respectively.
Case study 11 Semi-logarithmic plot of concentration-time data obtained from a post-menopausal woman who received a rapid injection of
10 nmol of estradiol. An apparent bi-exponential decline approaches a baseline at approximately 20 pmol L', This behavior corresponds to a
two-compartment system (right) with parallel endogenous (turnover, synthesis) and exogenous (intravenous bolus) input of estradiol. There is
absolutely no need to subtract baseline values from experimental data in order to model the data. Cl, V., Vi, Cl,, and turnover rate denote
clearance, central volume, peripheral volume, inter-compartmental distribution, bioavailability, and endogenous turnover rate, respectively.
Case study 12 Observed (filled circles) and model-predicted (line) concentration-time data of growth hormone after a subcutaneous dose of
40 pg kg L. The shaded area shows the area corresponding to exogenous input of growth hormone. Turnover, Cl, V, F, and K, denote the
endogenous turnover rate, clearance, volume of distribution, bioavailability, and absorption rate constant, respectively. Data are displayed on a
linear scale which more clearly highlights the key features.

The bi-exponential decline approaching a baseline can be
described by a system of differential equations (Eq. 22). The
relationship between the concentration C and the rate of change
d(C/dt in plasma and tissue can be expressed mathematically as a
system of two differential equations for a two-compartment
model with first-order kinetics, when drug is administered as a
bolus dose as follows:

Ve ZITC = Inputy,, + Rin~Cl-C—Cly-C + Cly-C
dC,
Sl Cc-Cly-C

dt d d "t

(22)
Vi

dC/dt and dCy/dt are the rate of change of test compound
in plasma and tissue, C is the plasma concentration, C; the

tissue concentration, Cl plasma clearance, V. central volume,
V. peripheral volume, and Cl; the inter-compartmental
distribution parameter. Cl; has the units of volume per time
(mL min~! or L min"") and is related to transport via blood
flow, transporters, and diffusion/convection forces. Input,
and R;, denote the exogenous bolus dose and endogenous
secretion of estradiol, respectively. R;, is a model parameter
that will be estimated together with Cl, Cl,, V., and V{ when
fitting the model to the data. Here, we assume the endoge-
nous production of estradiol is constant during the observa-
tional time period.

The key features of this analysis are bi-exponential
decline in plasma, a baseline at 20 pmol L', and a short
effective half-life. Baseline subtracted data would reveal an
apparent bi-exponential decline. Extending the reasoning of
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Eq. 1, we would suggest that an additional parameter is
needed in the model and that is the baseline information BL.
Applying Eq. 1 with the baseline information included gives
Eq. 23

NP =2-EX+BL=2-24+1=5 (23)

which corresponds to five parameters (Ry,, Cl, Cl,, V., and V})
to be estimated.

Case study 12. This case study of pattern recognition
demonstrates the turnover concept including turnover rate
and turnover time. A healthy volunteer received a 40 ug kg '
dose D of growth hormone subcutaneously (sc). The plasma
concentrations of growth hormone, which were measured
before and during 72 h post-dosing, are shown in Fig. 7 (case
study 12 (2)) together with predicted concentrations. The
data pattern includes a pre- and post-dose baseline concen-
tration, a plasma concentration peak at about 2 h, and a rapid
return back to baseline concentrations within 24 h.

The pre-dose concentration was 32 pug L' We will
estimate the basic kinetic parameters such as clearance CI/F
(denoted Cl), volume of distribution V/F (denoted V), and
absorption rate constant K,. The underlying differential
equation that takes endogenous turnover rate R;, and
elimination CI, together with the subcutaneous application,
into account is

Ing = K, FDg-e Ko

V- % = Rjp + Ine—Cl-C

We assume that the baseline concentration (initial
condition) can be written as R;,/Cl (synthesis or turnover rate
divided by Cl), and that F is equal to unity.

The key features of this analysis are bi-exponential input/
output, a baseline at 32 ug L%, and a short effective half-life.
Extending the reasoning of Eq. 1, we would suggest that an
additional parameter be added to the model and that is
baseline information BL. Applying Eq. 1 with the baseline
information included gives Eq. 25

NP=2-EX+ABS+BL=2-1+1+1=4 (25)

which corresponds to four parameters (R;,, CI/F, V/F, K,) to
be estimated.

Case study 13. This case study covers the analysis of
target-mediated disposition TMDD. Assuming high affinity of
ligand to target, we provide a quantitative solution of ligand,
soluble target, and ligand-target complex after a rapid
intravenous injection dosing of the ligand. Data on the ligand
concentration-time courses after four rapid intravenous
injection doses are shown in Fig. 8 (case study 13 (2,7)).

The TMDD model is schematically depicted in Fig. 8
(case study 13). The typical shapes of a plasma concentration-
time course that TMDD displays start with a rapid decline
within the minute to hour range due to the second-order
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reaction between ligand and soluble target. This phase is
extended in both the concentration and the time range with
diminishing doses. Remember that the rate process k., L R
is dependent on both ligand and target concentrations and
their relative sizes. The initial drop may easily be missed if the
first plasma sample is 12-24 h post-dose. Then, the curve
displays a concave bend towards a slower decline. One often
has first-order linear (dose-proportional) kinetics at higher
exposure of ligand. The concentration-time course displays
bi-exponential decline at higher doses after intravenous
dosing because the target, as a clearing route, is saturated.

The third typical phase is then a convex bend downward
with a shorter apparent half-life as we approach lower
concentrations. This phase is where TMDD starts to be of
importance. The kinetics is now nonlinear. The appearance of
the downward bend will occur at the same ligand concentra-
tions independently of ligand dose. Throughout this phase,
the target route of elimination is more or less saturable, but
less saturable at low concentrations and therefore a more
dominating clearing route in that concentration range.

Finally, the ligand enters a slower terminal phase, again
after a concave bend, with a longer apparent half-life. This
phase is very much governed by the elimination rate constant
k.(RL) of complex RL and in some instances also by
unspecific distribution (Cl,, V;) of ligand.

The disposition of the antibody (ligand, L) is described
by a two-compartment non-specific disposition model coupled
to a zero-order production first-order loss target pool R.
Ligand and target forms a complex RL via a second-order
process. The complex can either be degraded into ligand and
target via the first-order kg process or be irreversibly lost via
k.(RL) (first-order internalization or sink parameter). The
combination of the second-order formation and first-order
loss of complex makes the system nonlinear.

V- ZI& = InputL—ClL -CL—Cly-Cp + Cly-Cy
t

dcC,
Vt' —_—= Cld' CL*CId' Ct
P (26)
= Kin—Kou RkonC1-R + kg Cr.
dC
d?L = kon* CL*R=kofr- CrL—ke(r1) -CRL

Cy,inputy, Cl;, Cly, kon, R, ko, Cri, Cr1y and V, denote the
ligand concentration, input of ligand, first-order clearance of
ligand, inter-compartmental distribution of ligand, second-order
rate constant for the ligand-target interaction, target level, first-
order dissociation rate constant of the ligand-target complex,
complex concentration, concentration of ligand in tissue due to
non-specific distribution, and the volume of distribution of non-
specific distribution of ligand. The k,(ry) is the first-order rate
constant of irreversible removal of the complex.

It should also be remembered that the concentration-
time courses similar to those following intermediate doses
may in some instances also be observed for therapeutic
proteins that do not undergo TMDD but exhibit the
formation of clearing anti-drug antibodies (ADA) due to an
immunological reaction (8). This usually takes some time to
develop and is sometimes seen after repeated dose adminis-
tration of, for example, monoclonal antibodies.
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Fig. 8. Case study 13 Semi-logarithmic plot of observed (symbols) and TMDD model-predicted concentrations (solid lines) at four different
doses of 1.5, 5, 15, and 45 mg kg ! after rapid intravenous injections of a monoclonal antibody. Note that the ligand displays a multi-
compartment target-mediated disposition pattern that changes in shape with the change in ligand exposure (dose). The plot also shows the
plasma target baseline concentration Ry, the estimated Michaelis-Menten constant Ky, and the dissociation constant Ky (7). Case study 14
Observed (filled circles) and predicted (solid line) plasma concentrations of nortriptyline (10 mg tid) before (A, 0-216 h), during (B, 216-516 h),
and after (C, 516-700 h) pentobarbital Pb treatment. The horizontal bar represents the induction period. Data are displayed on a Cartesian
scale due to the limited concentration range which more clearly highlights the key features. Case study 15 Observed (filled symbols) and model
predictions (/ines) of parent compound (solid lines) and metabolite (dashed lines) plasma concentration-time data. Note the change in half-life
with increasing concentrations. The intravenous bolus doses of drug were 10, 50, and 300 pmol kg '. The red solid lines are included as a visual
help with respect to how the slope changes across low and high exposure data. Note the separation between parent C and metabolite Cy,
concentrations with increasing doses of parent compound. C, V, Vi, Cl,, Cly, Vinax, K, VM, and kye denote the parent plasma concentration,
central volume, peripheral volume, inter-compartmental distribution, metabolic clearance of parent compound, maximum metabolic capacity,
the Michaelis-Menten constant, volume of distribution of metabolite, and elimination rate constant of metabolite, respectively. Case study 16
Observed (filled symbols) and model-predicted (/ines) concentration-time data following an oral dose of 20 mg of compound A. The zero-order
absorption model predicts a discontinuous line at approximately 4 h. The gray horizontal line illustrates the length of constant rate drug input
Tavs- The first-order model misses the peak concentration and displays systematic deviations between observed and model-predicted
concentrations. Note the delayed absorption with a maximum observed plasma concentration at 4 h. K,, Typs, V (actually V/F), and K denote
the absorption rate constant, duration of the zero-order absorption, volume of distribution, and elimination rate constant, respectively. Data are
displayed on a Cartesian scale due to the limited concentration range which more clearly highlights the key features.

The number of parameters NP which may be calculated need to be included to improve the precision of certain
based on the observed pattern in Fig. 8 depends on the number ~ parameters. See Peletier and Gabrielsson (7) for a thorough
of apparent exponentials EX (=3 apparent linear phases in the  discussion of this dataset.
semi-logarithmic diagram) visible in the plasma concentration-

time profile, the number of tissue spaces or binding proteins TS Case study 14. This case study illustrates how the time
(=1 target) analyzed, and the number of visible nonlinear course of a drug can change upon repeated dosing when the
features NL (=1) in the data. This information results in enzymes responsible for its metabolism are induced. A study

was conducted to see if the drug metabolizing enzymes of
NP =2-EX+2-TS+NL=2-34+2-1+1=9 (27) nortriptyline NT are inducible by pentobarbital PB by a

hetero-induction process. NT was therefore administered

This gives nine parameters based on the very simple orally as a 10-mg dose every 8 h for a period of 29 days
relationship in Eq. 27. Still, additional concentration-time (696 h). After 9 days (216 h), treatment with PB (inducer)
data on target (=2 parameters) and complex (=3 parameters) was initiated and lasted for 12.5 days (300 h), i.e., until
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21.5 days (516 h) after the start of NT administration. The
observed and predicted plasma concentration-time course of
NT before, during, and after treatment with inducer is
depicted in Fig. 8 (case study 14 (9)).

dcC
V. P Input,,~ C1(7) - C
Input,, = Dpo~ Ka- e Kat

Cl(t) = Clinduced— (Clinduced_CIuninduced) - ot

(28)

where ‘/s Cl(l)’ Inputpm C, Dpoa Kaa Clinduced’ Cluninduced’ and
kout denote volume of distribution, time-dependent clearance
of nortriptyline, nortriptyline plasma concentration, oral
nortriptyline dose, absorption rate constant, induced clearance
(from pentobarbital treatment), uninduced (pre-pentobarbital
treatment) clearance, and fractional turnover rate of the
inducible enzyme, respectively. Two hundred hours after the
start of the study pentobarbital treatment was initiated (Fig. 8,
case study 14, A). During induction, the half-life is continuously
shortened (10 h) resulting in a reduced time to the induced steady
state (Fig. 8, case study 14, B) in contrast to the return from the
induced state (Fig. 8, case study 14, C) when CIF constantly
diminishes and the corresponding half-life returns back to its pre-
induction value. The exposure to nortriptyline is also more than
halved during induction. Due to the constantly changing clear-
ance (increasing) and half-life (decreasing), the time to steady
state during the induction period is extended in spite of the fact
that half-life is getting shorter (10 h) than before induction (25 h).
The principle of three to four half-lives until steady state is not
applicable for a system where half-life is constantly changing.

Case study 14 has demonstrated the consequences of
induction of the responsible metabolizing enzymes by another
compound (hetero-induction by pentobarbital on nortriptyline
metabolism). Induction or inhibition by the parent compound
itself or a metabolite is also possible (e.g., carbamazepine (10)).
This is manifested as a lower (induction, causing the half-life to
decrease) or higher (inhibition, causing the half-life to increase)
exposure to the test compound over time. Saturable tissue
binding can also lead to a lack of predictive power by single-dose
data. It is therefore suggested that chronic indications require
chronic dosing, and consequently pharmacokinetic assessment
must be based on repeated dose information.

The key features of these patterns are steady-state
exposure data after oral administration of nortriptyline which
then diminishes by means of the induction process (through
values and a complete time course peri-induction) and then
shows a post-induction return towards pre-induction steady
state. Applying Eq. 1 gives Eq. 29

NP=2-EX+ABS+NL=2-1+1+1=4 (29)

which corresponds to four parameters (ko CVF, V/F, K,) to
be estimated.

Case study 15. The concentration of drug A and metabo-
lite M were measured in plasma at different times after
intravenous bolus doses of 10, 50, and 300 pmol kg’l. Figure 8
(case study 15 (2)) depicts the experimental concentration data
for drug (solid lines) and metabolite (dashed lines).
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The parent compound data show a bi-exponential
decline with a concave curvature at about 30 min. The half-
life of parent compound increases with increasing concentra-
tions (doses). Notice that the metabolite peak concentration
increases in a less than proportional manner and occurs later
in time with increasing doses. The slope of the initial or
intermediate portion of the plasma concentration-time pro-
files increases with dose and the separation of the parent and
metabolite-time courses increases with higher doses. The
terminal portion obeys first-order kinetics and should there-
fore be independent of dose (concentration). This pattern
suggests a two-compartment system of differential equations
for the parent compound (drug) with saturable elimination.
The nonlinear elimination from parent becomes nonlinear
formation input to a one-compartment metabolite (M) model.
The three-compartment system is given by Eq. 30. In this
model, an intravenously administered drug is fully converted
to metabolite through its metabolic clearance and then
excreted as the metabolite.

The system of differential equations of this model is

Ve &8 < In-Cly-C-Cly € 4+ Cla-y

Vmax
Iy —
Clu Kn+ C

Vi % = Cly-C-Cly-C
dC
V- d—tM = Cly-C—Clyg - Cy

The Clyg parameter is the first-order clearance param-
eter of the metabolite. Note that Cly is the metabolic
clearance of the drug, which is the same as the formation
clearance of the metabolite. Cly; will be more and more
saturated, the higher the doses are of the parent compound.
This results in formation-limited elimination of the metabolite
and is observed as a flatter concentration-time course (longer
apparent half-life of metabolite) at higher exposure to the
parent compound.

The key features of this analysis are three bi-exponential
time courses after intravenous dosing of parent compound.
Data also contains information about the rise and fall of a
metabolite in plasma which occurs via a saturable process. In
this case, we have two different data sources which allow us to
estimate

NP =2-EX+NL+MTB =22+41+2-1=7 (31)

seven parameters (Viax, Km, Cla, Ve, Vi, Vg, and Clyg).

Case study 16. A volunteer was given 20 mg orally of a
highly polar drug (Fig. 8, case study 16 (2)). Data show an
initial time delay followed by a late peak at about 4 h and a
post-peak mono-exponential decline. The objectives of this
exercise are therefore to identify and fit the most suitable of
two different types of absorption models to a dataset obtained
after extravascular dosing with compound A. One is a first-
order model including a lag time, the other is a zero-order
input model.
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The absorption process from the gastrointestinal tract is
complex and involves several processes such as disintegration
of the tablet, dissolution of the drug into the gastric fluids,
gastric emptying, diffusion across the gut wall to mention just
a few. In general, absorption processes are assumed to occur
by means of a first-order process, although there are
exceptions. Under certain conditions, it has been found that
absorption of compounds is better described by zero-order
kinetics. The first- and zero-order input models are shown in
Eq. 32.

1
V. ZTC = Input rate—%-C
=0 when 1 < 15
else

First-order input rate =
= Ky Dpo-e K (0e)

(32)

D
=P when t < Taps

Zero-order input rate abs
else

=0

where T, is the assumed duration of zero-order input.
Equation 31 is equivalent to a one-compartment continuous
infusion model where the duration of the infusion T, is
estimated as a parameter.

In this case study, there is a distinct difference between
the zero-order input (model of choice) and first-order input
models (systematic deviations throughout the model-
predicted concentration-time course), which is already shown
in the function plots. In other words, the latter model is
not an option and there is no need to extend the analysis
to inspection of residuals or use other tools in the
statistical battery (parameter precision, correlation, F test)
(see Gabrielsson and Weiner (2) for a discussion).

The key pattern of this dataset is a somewhat delayed
onset of absorption, a concentration maximum at about 4 h,
and a mono-exponential decline post-peak.

Applying Eq. 1 gives Eq. 33

NP=2-EX+ABS+TLG=2-1+1+1=4 (33)

which corresponds to four parameters (fj,, or Tops and CU/F,
VIF, K,) to be estimated.

DISCUSSION

Pattern recognition is a pivotal aspect of exploratory
data analysis when modeling pharmacokinetic and pharma-
codynamic data. Therefore, a rigorous strategy is essential for
dissecting the patterns that concentration-time profiles reveal.
As an alternative solution, one may utilize a set of points to
consider that specifically addresses number of phases, convex
or concave bending, time lags, peak shifts, baseline behavior,
effective half-lives, dose-normalized areas, concentration
plateaus, and similar phenomena. Pattern recognition has
also been proposed for interpreting results of drug-drug
interactions. “A quicker and better understanding about the
processes, which dominate a DDI, has been achieved using
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this approach by focusing on integration of all information
available and mechanistic interpretation” (1).

The application of the extended Eq. 1 has been
successful for the presented case studies but should in general
be used cautiously and only from an exploratory point of
view. One may decipher other characteristics of the data by
for example simultaneously fitting several time courses.

Considerations and Methodologies for Comparison
and Experimental Design

We advocate an iterative process for discrimination
between rival models. This is done by starting with a simpler
model (say bi-exponential or no lag time model), fit that
model to the data, perform a thorough residual analysis (2),
and look at other goodness-of-fit criteria (objective function
value, Akaike information criteria, efc.) together with parameter
correlation and precision. The next step is then to systematically
extend the model (adding an exponential term or a lag time if
necessary), refit the updated model to the data, and inspect the
residuals in combination with the statistical battery (goodness-
of-fit, parameter precision, parameter correlation). In some
cases, an I test analysis may be a final check of the model of
choice, although the residual analysis (again visual inspection of
transformed data) is, in our experience, a powerful approach in
model selection. The most parsimonious model is preferable in
most modeling situations.

We advocate an iterative approach to practical experi-
mental design. Start by running a pilot study with a single
dose, a few animals, and logarithmic spacing of data in time.
Then fit a model to the data to get an acceptable fit as
possible without overdoing the analysis. Simulate the new
design(s) with the model using the final parameter estimates
from the pilot study. Propose alternative doses, alternative
sampling time points, and/or a repeated dose design if
necessary. Run the study and collect data according to revised
design. Now fit all data from pilot and redesigned study
simultaneously. If the model mimics all data, it is probably a
relatively robust model. We commonly use this iterative
approach (running a dose-range finding limited animal/
sample approach) prior to the more expensive repeated dose
(e.g., 1-, 3-, or 12-month safety) studies. There are several
real-life case studies in Gabrielsson and Weiner where
simultaneous fitting of data from two or more (incomplete)
experiments have proven to be useful (2). One may also want
to consider sparse sampling in combination with a mixed-
effects modeling approach to save both animals and cost. The
mixed-effects modeling approach has of course great poten-
tial but is beyond the focus of this report.

Some General Points to Consider with Respect to Visual
Inspection of Data

Data collected from intravenous dosing are used for
assessment of the disposition (binding, distribution, elimination)
of a test compound in plasma and urine. Central themes of what
one observes in data patterns are the following:

(1) the number of exponential phases in a semi-
logarithmic concentration-time plot corresponds to
the number of compartments in a linear mammillary
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(@)

®)

compartment system after a rapid bolus injection or
a short constant intravenous infusion.

Number of compartments = Number of phases in plasma

(35)

Nonlinearities such as capacity-, time-, binding-, and
flow-dependent phenomena (Eq. 36) are revealed
by convex bends in the concentration-time profile
(see case studies 7-9, 13, and 15), which suggest
that one or more nonlinear terms are needed in
the model. Also, dose normalize the concentration-
time curves and check whether they superimpose.
A set of nonlinear expressions are collated below.

. VmaX
C ty Cl = ———
apacity Kot C
Time Cl(t) = %
. . Cu + Kd
Binding f,=—— ———
Nonlinearities = ‘ Cuf* Kq+n-[Pr]
QH Ju® Clint
Flow Cl=—-% ——
QH + fu 'Clint
Cly = Oug [ Cluina
B C
Oug + [ Cluineu/ (FB>
P

(36)

Viax(?), K4, n, [P1], On, and Cl;,, denote the time-
dependent maximum metabolic capacity, affinity
constant between drug and protein, number of
binding sites on the protein, protein concentration,
hepatic blood flow, and intrinsic clearance, respec-
tively. Cly, On B, fus Cluint, 1 Ci, and C;, are the hepatic
blood clearance, hepatic blood flow, free fraction in
plasma, unbound hepatic intrinsic clearance, total
blood concentration, and total plasma concentration,
respectively (11).

Extravascular data (oral data or data from alterna-
tive extravascular dosing) reveal time delays (f,,),
rate (K,), and extent (F) of absorption, or even
capacity-limited (Viay, Km) input that impacts the
onset of absorption, absorption rate, the AUC, and
peak shifts in Cpax/fmax When two or more doses are
given, respectively. Useful expressions related to
absorption profiles are shown in Eq. 37.

Input rate F-Dosepo e Ko ()
Absorption = Extent F = for fu (37)

Capacity input rate = ﬁ-ﬁ-ﬂxAg

Ag, fur and fy denote the amount at the absorption
site (e.g., in the gut), fraction absorbed into blood,
and fraction that passes through the liver, respec-
tively. All other parameters are explained above.
One should remember, however, that data from only
the oral route may confound the interpretation of
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slopes, clearance, and volume terms. A potential
solution to this is to utilize iv and oral data
simultaneously.

(4) Baseline concentrations of endogenous compounds
need to be considered by adding some production
term (turnover rate) simultaneously with the clear-
ance parameter

Baseline = —Turnoglar rate (38)

When baseline values are observed for exogenous
compounds one does not have to consider an
endogenous turnover rate but rather setting the
initial condition of the state variable(s) to the
measured pre-dose value.

(5) Measurements in other body tissues and fluids, for
example, urinary data, may contribute to the estima-
tion of either renal clearance Cly or fraction excreted
via urine f,

d;t“ = Clg-C = f,-CI-C (39)

where dA/dt and C are the rate of excretion of drug
into urine and the plasma concentration.

The objective of this communication has been to focus
on visual inspection of “shapes” of concentration-time
profiles in the exploratory analysis of pharmacokinetic data.
We have tried to decompose the shapes and to systematically
interpret what determines the rise, intensity, and decline of
exposure. This approach may serve as a road map to pattern
recognition of concentration-time data.

Additional sources of data from two or more doses,
urine, metabolite information, and repeated dose data should,
whenever possible, be considered as part of a simultaneous
fitting procedure.
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