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Abstract

If fully stretched out, a typical bacterial chromosome would be nearly one millimeter long, or 

approximately 1000 times the length of a cell. Not only must cells massively compact their genetic 

material, but they must also organize their DNA in a manner that is compatible with a range of 

cellular processes, including DNA replication, DNA repair, homologous recombination, and 

horizontal gene transfer. Recent work, driven in part by technological advances, has begun to 

reveal the general principles of chromosome organization in bacteria. Here, drawing on studies of 

many different organisms, we review the emerging picture of how bacterial chromosomes are 

structured at multiple length-scales, highlighting the functions of various DNA-binding proteins 

and impact of physical forces. Additionally, we discuss the spatial dynamics of chromosomes, 

particularly during their segregation to daughter cells. Although there has been tremendous 

progress, we also highlight gaps that remain in understanding chromosome organization and 

segregation.
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Introduction

The chromosomes of all organisms must be compacted nearly three orders of magnitude to 

fit within cells. Moreover, DNA must be packaged in a way that is compatible with a myriad 

of DNA-based processes including replication, transcription, repair, recombination, and 

integration. This challenge is particularly acute in bacteria as chromosome segregation 

occurs concomitantly with DNA replication, rather than being separated temporally as in 

eukaryotes. Efforts to understand the structure and organization of bacterial chromosomes 

have been greatly enhanced in recent years with major technical developments and 

innovations, including microscopy-based methods for accurately probing the spatial and 

temporal dynamics of individual DNA loci and genomic methods for investigating the 

global conformation and folding properties of chromosomes. These new techniques, in 

combination with the tried-and-true approaches of genetics, biochemistry, biophysics, and 
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cell biology, have begun to reveal the remarkable mechanisms used by bacterial cells to 

compact, organize, and segregate their chromosomes. Here, we review these mechanisms 

and the organizing principles of chromosomes in a top-down manner, from the micron to 

nanometer scale, before discussing recent work on understanding chromosome segregation.

Bacterial Chromosome Compaction and Organization

Global organization

Bacterial chromosomes were originally thought to fit randomly within cells with no 

stereotypical or reproducible organization. This assumption was initially dispelled by light 

microscopy studies of Escherichia coli cells stained with DNA-specific dyes which revealed 

a discrete body of DNA named the nucleoid (reviewed in Robinow & Kellenberger 1994). 

Early electron microscopy (EM) and subsequent cryo-EM images of vitreous sections of E. 

coli suggested that the nucleoid forms an irregular structure with extensions projecting into 

the cytoplasm. In rich growth media, the E. coli nucleoid occupies about half of the 

cytoplasmic area and seems to exclude most ribosomes. This overall arrangement was seen 

in living E. coli and B. subtilis cells using fluorescently-tagged nucleoid-associated proteins 

(NAPs), which bind nonspecifically to DNA, and ribosome subunits (Azam et al. 2000, 

Bakshi et al. 2012, Lewis et al. 2000). The separation of chromosomes from the bulk 

ribosomes was subsequently observed in other organisms, including Myxococcus xanthus 

and Streptomyces coelicolor (Dyson et al. 2011, Harms et al. 2013).

Imaging of fluorescently-tagged NAPs in E. coli has further suggested that the nucleoid 

assumes a loosely twisted overall conformation, with no particular handedness (Fisher et al. 

2013, Hadizadeh Yazdi et al. 2012). A helical-like conformation was also observed in 

replicating B. subtilis when newly-replicated chromosomes were followed microscopically 

using fluorescent dNTP derivatives that incorporate into DNA as replication proceeds 

(Berlatzky et al. 2008). In addition, whole cell cryo-tomography of Bdellovibrio 

bacteriovorous revealed an apparent helical-like structure of the chromosome (Butan et al. 

2011). The biological significance of a helical fold is unknown but may represent an energy-

minimal configuration for fitting chromosomes within rod-shaped cells (Fisher et al. 2013).

Time-lapse microscopy using fluorescently-tagged NAPs has also revealed the temporal 

dynamics of chromosomes. In E. coli, waves of nucleoid density flux along the long axis of 

the cell; the function of this nucleoid mobility is not clear, but may impact chromosome 

segregation (discussed later) (Fisher et al. 2013).

The spatial arrangement of chromosomes has also been inferred by tracking the subcellular 

positions of individual loci using fluorescence in situ hybridization (FISH), fluorescent 

repressor-operator systems (FROS), and ParB/parS systems (Le & Laub 2014). In C. 

crescentus, 112 loci were examined by FROS in cells containing a single chromosome. The 

spatial positions of loci within the cell recapitulated the genetic map with the origin of 

replication (oriC) at one cell pole, the replication terminus (ter) at the opposite pole, and the 

left and right chromosomal arms likely running in parallel down the long axis of the cell, a 

pattern referred to as the ori-ter configuration (Viollier et al. 2004) (Fig. 1a). Recent data 

from large-scale chromosome conformation capture assays (5C and Hi-C) performed on C. 
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crescentus are consistent with this pattern (Le et al. 2013, Umbarger et al. 2011). Those 

studies revealed high frequency interactions between loci nearby on the same chromosomal 

arms and slightly lower frequency interactions between loci at similar positions on opposite 

arms (also see Fig. 3b). In replicating C. crescentus cells, one new copy of oriC is rapidly 

segregated to the opposite pole. As replication proceeds, newly-generated DNA moves to its 

respective position, again with loci arranged relative to the origin in a manner that reflects 

the genetic map (Viollier et al. 2004). Ultimately the two termini end up at mid-cell, thereby 

recreating the ori-ter pattern in each daughter cell.

The chromosome configuration is substantially different in slow growing E. coli. The origin 

resides near mid-cell with the two chromosomal arms on opposite sides of the cell, and the 

terminus variably around mid-cell, a so-called left-ori-right configuration (Nielsen et al. 

2006b, Wang et al. 2006) (Fig. 1b). DNA replication and segregation of the origins to cell 

quarter positions regenerates a left-ori-right organization for each chromosome. In contrast, 

fast growing E. coli cells adopt an ori-ter configuration of the chromosome with polarly-

localized origins (Youngren et al. 2014) (Fig. 1c). Studies of chromosome organization in 

fast growing E. coli also demonstrated that in a cross-section of the cell, the chromosomal 

arms occupy the outer shell with the origin and terminus regions within the nucleoid core 

(Youngren et al. 2014).

In B. subtilis, global chromosome organization depends on its cell cycle and developmental 

stage. In sporulating B. subtilis, the two chromosomes adopt ori-ter/ter-ori configurations 

with an asymmetric septum trapping a quarter of one chromosome in the pre-spore 

compartment (Wang et al. 2014a, Wang & Rudner 2014) (Fig. 1d). During vegetative 

growth, the chromosome alternates between an ori-ter and E. coli-like left-ori-right pattern 

(Wang et al. 2014a, Wang & Rudner 2014) (Fig. 1e). Template DNA initially adopts a left-

ori-right configuration, with replicated chromosomes then adopting an ori-ter pattern prior 

to cell division. Why B. subtilis employs both configurations is not clear, but it may allow 

replisomes to move independently on the two arms, while also ensuring segregation of 

newly replicated chromosomes to opposite sides of the cell (Wang & Rudner 2014).

Although the majority of bacterial chromosomes are circular, some are linear, including the 

multiple ∼1 Mb chromosomes in Borrelia species and the ∼8 Mb chromosomes of 

Streptomyces species (Chaconas & Kobryn 2010, Dyson 2011). Streptomyces oriC is 

flanked by the two chromosomal arms whose ends are spatially close, suggesting that the 

linear chromosome folds back on itself (Yang & Losick 2001) (Fig. 1f). Telomere-binding 

proteins that cap the chromosome ends may interact, effectively forming a topologically-

closed chromosome (Tsai et al. 2011) although it remains unknown whether the 

Streptomyces chromosome adopts an ori-ter or left-ori-right configuration.

There is still relatively little known about chromosome organization in coccoid or other non-

rod shaped bacteria. Finally, it is important to emphasize that the spatial positioning of a 

given locus typically varies up to 10% of the cell length in a population of cells and within a 

cell over time (Viollier et al. 2004, Wang et al. 2006, Wiggins et al. 2010). DNA typically 

moves in a sub-diffusive manner, i.e. more constrained than expected for Brownian motion. 

This tight positional variation may result from the crowded, viscoelastic environment of the 
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nucleoid, from intranucleoid linkages that restrict DNA movement, supercoiling, or protein 

binding. The movement of DNA likely also depends on ATP-dependent mechanical 

processes as inhibiting ATP synthesis significantly reduces the diffusion coefficient of 

individual loci (Weber et al. 2012). Nevertheless, certain DNA loci occasionally exhibit 

super-diffusive or ‘near-ballistic’ motion, implying active segregation mechanisms or 

relaxations back to a “home” position (Bates & Kleckner 2005, Javer et al. 2014, Joshi et al. 

2011). Advances in time-lapse fluorescence microscopy promise to reveal much more about 

DNA dynamics in the coming years.

Proteins that anchor specific DNA regions

In general, the ori-ter chromosome pattern appears most common in rod-shaped bacterial 

species. Whether this configuration affords an advantage is unclear, but the polar anchoring 

of origins, which likely enforces the ori-ter pattern, may help ensure that each daughter cell 

inherits a full copy of the genome. Studies in several organisms have identified proteins that 

localize to the cell poles and that bind oriC-proximal regions.

In C. crescentus, a parS site, critical for chromosome segregation (discussed later) is located 

∼13 kb from the origin and is bound by ParB (Mohl et al. 2001, Toro et al. 2008), which 

also binds PopZ, a cytoplasmic protein that self-aggregates into a proteinaceous matrix at 

cell poles (Bowman et al. 2008, Ebersbach et al. 2008) (Fig. 2a). Moving parS away from 

the origin leads to a global rotation of the chromosome such that the relocated parS sites are 

still polar but the origins are not (Umbarger et al. 2011). The fact that parS position dictates 

global orientation of the chromosome implies that most loci are not actively positioned and 

instead effectively fall into place based on the position of parS and lengthwise compaction 

of the nucleoid.

In B. subtilis, a protein called RacA accumulates prior to sporulation and concentrates near 

the cell pole (Ben-Yehuda et al. 2003, Wu & Errington 2003). RacA binds 25 ram sites near 

oriC helping to tether ori-proximal regions of the chromosome to the pole (Ben-Yehuda et 

al. 2005) (Fig. 2b). Polar localization of RacA requires a small peripheral membrane protein 

called DivIVA, which recognizes the concave curvature of the polar membrane (Lenarcic et 

al. 2009, Oliva et al. 2010, Ramamurthi & Losick 2009). Cells lacking either RacA or 

DivIVA have disoriented chromosomes with oriC positioned near mid-cell rather than at the 

poles, and they frequently form empty pre-spore compartments (Ben-Yehuda et al. 2003).

In V. cholerae, a membrane-associated protein called HubP anchors the origin of the large 

chromosome, ChrI, to the pole (Yamaichi et al. 2012) (Fig. 2c). HubP interacts with ParAI, 

which likely interacts with ParBI, which in turn binds a parS site near the ChrI origin. HubP 

has a peptidoglycan-binding LysM domain, which is required for polar localization.

Although PopZ, RacA, and HubP each anchor chromosomes to a cell pole, these proteins 

bear no sequence similarity suggesting they arose independently, further supporting the 

notion that an ori-ter chromsome configuration may be selectively advantageous. However, 

pole-anchoring proteins may not be strictly necessary for the ori-ter arrangement as some 

organisms, such as M. xanthus and P. aeruginosa, adopt an ori-ter pattern, but have a large 
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cytoplasmic gap between oriC and the cell pole, suggesting that the origin is not anchored 

(Harms et al. 2013, Vallet-Gely & Boccard 2013).

In E. coli, no polar anchoring complex has been identified, although if one exists, it may 

function only during fast growth when chromosomes exhibit an ori-ter pattern. However, 

the structural maintenance of chromosomes (SMC) complex (discussed later) and called 

MukBEF in E. coli, is required to maintain the left-ori-right configuration; cells lacking 

mukB adopt an ori-ter configuration even in slow growth conditions (Danilova et al. 2007). 

Similarly, in vegetative B. subtilis cells, where the chromosome alternates between left-ori-

right and ori-ter configurations, SMC is also required for the left-ori-right pattern (Wang et 

al. 2014a) (Fig. 2d). Whether SMC promotes a traverse left-ori-right pattern by anchoring 

origin-proximal regions to mid-cell or non-polar regions is unclear. B. subtilis SMC and E. 

coli MukBEF do associate with origin-proximal regions (Danilova et al. 2007, Gruber & 

Errington 2009, Sullivan et al. 2009), but there is no evidence that SMC associates with the 

cell membrane.

Macrodomains and chromosomal-interaction domains

Bacterial chromosomes are further organized into Mb-sized domains called macrodomains, 

which were first suggested from FISH studies in E. coli demonstrating that certain loci 

frequently co-occupy the same restricted cytoplasmic space (Niki et al. 2000). Subsequent 

use of a λ recombination-based assay found that loci within a given macrodomain interact, 

and hence recombine, more frequently than loci in different macrodomains (Valens et al. 

2004). Collectively, E. coli has four macrodomains, called Ori, Ter, Left, and Right, with 

two less-structured DNA regions flanking the Ori macrodomain (Fig. 3a). DNA within 

macrodomains is more restricted in its movement than DNA in unstructured regions (Espeli 

et al. 2008). DNA inversions are also more easily tolerated if occurring within a 

macrodomain suggesting that macrodomains are a critical level of chromosome organization 

(Thiel et al. 2012).

A breakthrough in understanding macrodomain organization came from the discovery of E. 

coli MatP, which binds to 13 bp matS sites present exclusively in the ∼800 kb Ter 

macrodomain (Mercier et al. 2008). A MatP dimer bound to one matS site can form a 

tetramer with a MatP dimer bound at another site, bringing distal MatP-matS complexes 

together, helping to compact the Ter macrodomain in space and looping the intervening 

DNA (Dupaigne et al. 2012) (Fig. 3a). Cells lacking MatP exhibit chromosome segregation 

and terminus resolution problems (Dupaigne et al. 2012, Mercier et al. 2008). Similar 

proteins may structure the other E. coli macrodomains but have not been identified yet, and 

MatP homologs appear restricted to enteric bacteria.

Macrodomains per se have not been documented in C. crescentus. However, recent Hi-C 

analyses revealed that the C. crescentus chromosome is divided into ∼23 chromosomal 

interaction domains (CIDs), each ∼166 kb on average (Le et al. 2013). Loci within a domain 

interact preferentially with other loci in the same domain (Le et al. 2013) (Fig. 3b). Notably, 

these domains are often nested, with several adjacent domains forming larger entities 

potentially similar to macrodomains. Whether chromosomal domains akin to those in 
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Caulobacter are also present within E. coli macrodomains cannot be resolved by FROS and 

awaits high-resolution Hi-C studies.

The chromosomal interaction domains in Caulobacter are created in part by highly 

expressed genes (Le et al. 2013) (Fig. 3b). Domain boundaries often coincide with the most 

highly expressed genes, such as those encoding ribosomal proteins. Inhibiting transcription 

elongation by adding rifampicin to cells causes an almost complete loss of domains (Le et 

al. 2013). Additionally, relocating a highly expressed gene, rsaA, to an ectopic location was 

sufficient to induce a new domain boundary (Le et al. 2013). High rates of transcription and 

the frequent unwinding of DNA likely creates local, plectoneme-free regions in the 

chromosome. These plectoneme-free regions may prevent the diffusion of supercoils and 

physically separate the flanking domains, thereby decreasing the contact probabilities 

between loci in neighboring domains. The boundaries between chromosomal domains vary 

in sharpness, which might reflect variation in the rate of transcription of highly expressed 

genes and differences in transcript length, as well as variability in the local density of DNA-

binding proteins. Supercoiling (discussed below) is also important for domain formation 

and/or maintenance as the addition of novobiocin largely eliminated domains. This finding 

may reflect the fact that negative supercoils must be introduced to offset positive supercoils, 

which can impede RNA polymerase during transcription. Finally, it should be noted that Hi-

C reflects the DNA-DNA interactions in a population of cells. Thus, domains identified by 

Hi-C must be present in most cells; individual cells may have additional, transient domain 

boundaries.

Supercoil domains

Within macrodomains and chromosomal interaction domains, loops of genomic DNA are 

supercoiled, likely forming plectonemes that coil up around them selves while attached at 

their base to proteins that help to topologically isolate the looped DNA. These plectonemic 

loops, also called supercoil domains or topological domains, were first seen in electron 

micrographs of gently-lysed E. coli cells (Kavenoff & Ryder 1976). Subsequent studies have 

tried to estimate the number of supercoil domains in E. coli by assessing the number of nicks 

required to fully relax the chromosome, assuming that an individual nick relaxes only the 

DNA within a given supercoil domain. Initially, relaxation was assessed by measuring the 

incorporation of trimethyl-psoralen, an intercalating dye that preferentially interacts with 

negatively supercoiled DNA; these assays suggested that E. coli harbors ∼40 topologically 

isolated domains during exponential growth (Sinden & Pettijohn 1981). A subsequent study 

examined supercoil domains by assessing the transcriptional response to double-strand 

breaks (Postow et al. 2004). The idea was that only DNA within a single, topologically 

isolated domain will be relaxed after a double-strand break, leading to changes in the 

transcription of supercoiling-sensitive genes only within that domain. This method estimated 

the average supercoil domain at ∼10 kb, implying ∼400 domains in the E. coli 

chromosome, a number that agrees well with the number of loops in chromosomes from 

lysed cells imaged by EM (Postow et al. 2004).

Supercoil domains have also been probed using recombination as an indirect readout. Unlike 

λ-Int, the γδ and Tn3 resolvases only recombine if two res sites are brought into precise 
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alignment through the slithering of plectonemic DNA. The rate of recombination thus 

depends on the genomic distances between res sites, being almost undetectable if separated 

∼100 kb, thereby setting a likely upper limit on the size of plectonemes in vivo (Higgins et 

al. 1996). Studies with the γδ and Tn3 resolvases indicate that the average plectoneme size 

in wild-type S. typhimurium is ∼10 kb, again implying ∼400 supercoil domains per 

chromosome (Stein et al. 2005). Certain gyrase mutants can, however, harbor double the 

number of supercoil domains.

Hi-C data has also contributed to our understanding of plectonemes in vivo. A polymer 

model of the Caulobacter chromosome comprised of plectonemes was recently constructed 

with parameters corresponding to plectoneme length, width, diameter, flexibility, and radius 

of collisions (Le et al. 2013). A search for parameter values that reproduced Hi-C data 

suggested an average length for plectonemes of ∼8 kb, similar to that measured by 

recombination and relaxation assays (Stein et al. 2005).

The boundaries between supercoil domains are often dynamic, and may depend on both 

DNA-binding proteins and gene expression. DNA-binding proteins (discussed below) can 

bridge distant loci, topologically isolating the intervening DNA and preventing the spread of 

supercoils between adjacent domains. Gene expression also plays a major role in 

establishing supercoil domains. As noted for chromosomal interaction domains, loci 

undergoing high rates of transcription can be boundary elements that prevent plectoneme 

diffusion, although the precise underlying mechanism is not clear. Additionally, 

transcription contributes to the supercoiling structure of the genome as RNA polymerase 

introduces negative supercoils behind it and positive supercoils in front.

Some supercoil domains likely vary significantly between cells in a population and within a 

given cell over time. This variability in supercoil location may, in turn, impact the 

expression of genes whose promoters are sensitive to supercoiling status. However, the 

domain boundaries associated with very highly expressed genes, and observed by Hi-C, are 

static. Notably, these domain boundaries are relatively well distributed across the genome 

and bioinformatic analyses indicate that such a distributed pattern of highly expressed genes 

is common (Wright et al. 2007). The advantage, if any, of distributing domains across a 

genome is not known, but domain boundaries could help periodically pause DNA replication 

to promote compaction of recently replicated domains and the decatenation of sister 

chromosomes. Alternatively, or in addition, dividing the genome into domains may help 

limit how much of the chromosome relaxes following a nick or double-strand break.

In sum, the relationship between various domains - macrodomains, chromosomal interaction 

domains, and supercoil domains - is not fully clear yet, but we envision a hierarchical 

organization. Megabase-sized macrodomains are likely comprised of multiple chromosomal 

interaction domains, each ∼100-200 kb and containing multiple, diffusible supercoil 

domains, each ∼10 kb in size. Very highly expressed genes appear to play a critical role in 

establishing chromosomal interaction domain boundaries and are relatively fixed in a 

population of cells. The expression of other genes may form transient domains and transient 

boundaries. The position of genes within domains (at every level) may influence their 
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expression, but the precise relationship between chromosome structure and gene expression 

remains to be defined.

Nucleoid-associated proteins (NAPs)

The organization of bacterial chromosomes is profoundly influenced by DNA-binding 

proteins, and in particular by a heterogeneous class of abundant proteins called nucleoid-

associated proteins (NAPs). NAPs typically bind relatively non-specifically across bacterial 

genomes, wrapping, bending, or bridging DNA (Fig. 4). The local action of NAPs ultimately 

influences global chromosome organization and, in many cases, transcriptional patterns 

(reviewed in Dillon & Dorman 2010).

E. coli H-NS is a small (15.5 kDa) protein that can bridge DNA, bringing loci separated on 

the primary sequence level into close physical proximity (Fig. 4). H-NS has an N-terminal 

domain, which drives oligomerization that is connected by a flexible linker to a C-terminal 

DNA-binding domain. ChIP studies indicate that E. coli H-NS binds hundreds of sites in the 

genome, with a preference for AT-rich or curved DNA (Grainger et al. 2006, 

Kahramanoglou et al. 2011). Bridging of different segments of DNA by H-NS has been 

directly demonstrated by both single-molecule and atomic force microscopy (Dame et al. 

2000, 2006).

DNA bridging by H-NS likely enables it to constrain negative supercoils, by effectively 

isolating the intervening, looped region of the chromosome. H-NS binding sites also often 

coincide with supercoiling-sensitive promoters further suggesting a tight relationship 

between H-NS and supercoiling (Higgins et al. 1988); in fact, H-NS was originally 

discovered in a screen for E. coli mutants with reduced negative supercoiling (Hardy & 

Cozzarelli 2005). H-NS has also been examined in vivo by super-resolution microscopy, 

forming two discrete foci within the cytoplasm (Wang et al. 2011), although the functional 

significance of these foci and the DNA loci associated with them are unknown. In addition 

to bridging distant DNA segments, H-NS can also oligomerize and spread along DNA. Such 

oligomers can occlude binding sites for RNA polymerase or transcription activators, thereby 

enabling H-NS to regulate gene expression. This oligomerization of H-NS also enables it to 

silence spurious transcriptional promoters and horizontally acquired DNA, which is often 

more AT-rich than host chromosomal DNA (Lucchini et al. 2006, Navarre et al. 2006, Singh 

et al. 2014). H-NS orthologs, and paralogs called StpA, are found in many species, although 

H-NS is not universal. However, other, unrelated proteins, such as Rok in B. subtilis, may 

similarly bridge DNA or oligomerize along AT-rich DNA (Smits & Grossman 2010).

HU is another small (18 kDa), abundant (∼30,000 copies/cell) NAP found in many bacteria 

that coats and wraps chromosomal DNA around itself, grossly similar to histones (Azam et 

al. 1999) (Fig. 4). There are two HU subunits, alpha and beta, and both homo- and hetero-

dimers exist, depending on growth phase in E. coli (Claret & Rouviere-Yaniv 1997). HU 

inserts conserved proline residues into the minor groove of DNA, inducing a sharp bend in 

the DNA (Swinger et al. 2003). Structural studies also suggest that HU can form an 

octameric structure with DNA coiled around it (Guo & Adhya 2007, Swinger et al. 2003).
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HU has little or no DNA-binding specificity based on ChIP-Seq analyses, and given its 

abundance in E. coli, HU may coat ∼10% of the chromosome (Prieto et al. 2012). 

Consistent with widespread genomic binding, strains lacking HU often produce anucleate 

cells suggestive of a general chromosome compaction or segregation defect (Huisman et al. 

1989), and strains harboring HU variants with higher DNA binding affinity have over-

compacted nucleoids (Kar et al. 2005). Additionally, Hi-C studies of an HU mutant in 

Caulobacter revealed a significant decrease in short-range interactions, supporting the 

notion that HU helps to broadly compact the chromosome, possibly by stabilizing 

plectonemes (Le et al. 2013). HU binding to DNA may also affect supercoiling status of the 

chromosome as HU mutants in E. coli show decreased supercoiling, are rescued by 

mutations in gyrase, and are synthetically lethal with mutations in topoisomerase I (Bensaid 

et al. 1996, Malik et al. 1996). Additionally, the variants of HU with increased affinity for 

DNA also increase global supercoiling levels (Kar et al. 2005).

Some organisms encode divergent HU paralogs. For example, S. coelicolor and 

Mycobacteria encode an HU paralog called HupS/Hlp that has an extensive C-terminal 

extension with homology to eukaryotic histone H1 (Mukherjee et al. 2009, Salerno et al. 

2009). In M. tuberculosis, the phosphorylation of HupS decreases its interaction with DNA 

highlighting the possibility of post-translational regulation of DNA compaction (Gupta et al. 

2014).

Two proteins that can sharply bend DNA are integration host factor, IHF, and factor for 

inversion stimulation, Fis. IHF bears some sequence similarity to HU and is similarly 

composed of two subunits, although IHF binds DNA more specifically and introduces 

dramatic ∼160° bends (Rice et al. 1996) (Fig. 4). Consequently IHF can dramatically alter 

DNA shape and facilitate the formation of loops, frequently bringing RNA polymerase 

together with distant regulatory proteins. IHF also impacts a range of other DNA-based 

processes, including replication initiation and recombination (Leonard & Grimwade 2005, 

Mumm et al. 2006).

Like IHF, Fis can bend DNA. It is among the most highly expressed genes during fast 

growth in E. coli, especially following nutrient upshifts (Azam et al. 1999). Fis homodimers 

bind to AT-rich DNA sequences with narrow minor grooves, bending the DNA by ∼50-90° 

and forming very stable, long-lived nucleoprotein complexes (Stella et al. 2010) (Fig. 4). Fis 

binds throughout the genome (Kahramanoglou et al. 2011), impacting transcription, 

replication and recombination. Given its genome-wide distribution, Fis probably also 

influences chromosome compaction and organization in significant ways. Fis-mediated 

bending of DNA can displace nearby supercoils and it can preserve the writhe of DNA, 

potentially maintaining supercoiled plectonemic loops (Auner et al. 2003). Indirectly, Fis 

also influences global supercoiling levels by modulating the expression of gyrase (Schneider 

et al. 1999).

Although NAPs are generally small proteins, some large proteins also stably associate with 

and influence the structure of chromosomes. Most prominent in this category is the widely-

conserved protein SMC, homologous to eukaryotic condensin (reviewed in Nolivos & 

Sherratt 2014). The >125 kDa SMC forms an extended, antiparallel coiled coil with a so-
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called hinge domain at one end and an ATPase domain at the other (Fig. 4). 

Homodimerization via the hinge domains creates a ring-like structure that may encircle 

DNA. SMC associates with two regulatory proteins, ScpA and ScpB, that likely modulate 

the ATPase activity of SMC, thereby affecting the opening and closing of the homodimeric 

ring. E. coli and other γ-proteobacteria do not encode SMC/ScpA/ScpB, and instead produce 

an analogous complex MukB/MukE/MukF (Nolivos & Sherratt 2014).

Mutations in SMC produce a range of chromosomal defects in different bacteria, often 

including an increase in anucleate cells. SMC likely contributes to both chromosome 

segregation (discussed in detail below) and chromosome compaction. In B. subtilis and E. 

coli, mutations in smc and mukB, respectively, lead to chromosome decondensation visible 

by DAPI staining (Tadesse et al. 2005, Weitao et al. 1999). Additionally, in E. coli, mukB 

mutants display altered supercoiling levels, and these mutants can be partially rescued by 

other mutations that increase DNA gyrase activity and negative supercoiling (Sawitzke & 

Austin 2000).

Precisely how SMC proteins affect chromosome compaction is not yet clear. By virtue of its 

extended, ring-like structure, SMC may bridge different loci in the chromosome. This 

bridging could help compact the DNA and it may also constrain supercoils by producing 

topologically isolated DNA loops. Notably, in both E. coli and B. subtilis, SMC proteins 

associate with origin-proximal regions and are required for the proper positioning of origins 

(Danilova et al. 2007, Gruber & Errington 2009, Sullivan et al. 2009). Whether the origin-

proximal regions are preferentially compacted by the associated SMC proteins is not yet 

clear. ChIP-chip analysis in B. subtilis also indicated enrichment of SMC at regions of high 

transcription, a pattern also seen with eukaryotic SMC, but the functional significance of this 

localization is unknown (Gruber & Errington 2009).

In Caulobacter, cells lacking SMC do not exhibit major defects in chromosome organization 

(Le et al. 2013), as originally suggested (Jensen & Shapiro 1999), although an ATPase 

defective mutant shows a severe defect in sister chromosome separation (Schwartz & 

Shapiro 2011). Additionally, Hi-C studies of a Δsmc strain indicated lower frequencies of 

interactions between loci at approximately equivalent positions on opposite arms of the 

chromosome down nearly the entire long axis of the cell (Le et al. 2013). This could indicate 

that SMC tethers the arms together. Alternatively, SMC could promote the colinearity of the 

two chromosomal arms by promoting the compaction of each arm along the long axis of the 

cell. Cells lacking SMC may then end up with irregularities in the relative positions of loci 

in each chromosomal arm, disrupting the colinearity of loci observed by Hi-C.

Some traditional transcription factors also have NAP-like properties. The cyclic AMP 

regulatory protein CRP, which can bend DNA ∼90°, binds several hundred sites in the E. 

coli chromosome (Grainger et al. 2005). The leucine-responsive regulatory protein, Lrp, 

which may influence the expression of ∼10% of E. coli genes, can form a dimer, octamer, 

and hexadecamer, with its DNA-binding domain exposed, potentially enabling Lrp to bend 

or wrap DNA (Chen & Calvo 2002).
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The abundance of many NAPs varies significantly depending on growth phase and 

environmental conditions. Indeed, nucleoid-associated proteins likely play a critical role in 

shaping or adjusting chromosome organization in response to different growth conditions. 

For example, in stationary phase, the E. coli nucleoid contains fewer loops than in 

exponential phase and each loop has more relaxed DNA; however, on the cellular level, the 

nucleoid becomes significantly more compact in stationary phase. These changes in 

structure result in part from the elimination of Fis as cells enter stationary phase and the 

massive upregulation of Dps (DNA-binding protein from starved cells). Dps binds 

throughout the chromosome, inducing a stable, crystalline state for the DNA that persists 

even if cells are lysed (Wolf et al. 1999). Dps physically protects the chromosome from 

damage during stationary phase. Additionally, Dps chelates Fe2+, helping to prevent it from 

producing hydroxyl radicals via a Fenton reaction that could damage the DNA (Frenkiel-

Krispin & Minsky 2006). How Dps is released from DNA as cells exit stationary phase is 

unknown. SASP (small acid soluble protein) has a similar role as Dps in protecting the 

chromosome of B. subtilis and Clostridium difficile during sporulation (Nicholson et al. 

2000). SASP non-specifically coats the chromosome and induces a ring-like structure that 

likely physically shields the chromosome and that may promote non-homologous end-

joining repair following double-strand breaks by preventing the cut ends from diffusing 

apart (Frenkiel-Krispin et al. 2004).

In sum, NAPs and other chromosome-associated proteins are clearly central players in 

chromosome organization. Although the local, biophysical properties of many of these 

proteins have been well-studied, much remains to be learned about their in vivo functions 

and how, on a global level, they combine to compact, shape, and organize the genome, and, 

in turn, how they affect DNA-based transactions within cells.

Non-proteinaceous factors that contribute to chromosome organization

Other factors, beyond DNA-binding proteins, also contribute significantly to chromosome 

organization. Macromolecular crowding in the viscous bacterial cytoplasm may help with 

compaction (de Vries 2010). As noted, the movement of chromosomal loci is generally 

subdiffusive, implying that the viscoelastic cellular environment influences motion and 

compaction. Occasional super diffusive motions, which may reflect stress-relaxation 

mechanisms, further suggests that the chromosome is subject to strong mechanical forces 

that ultimately impact its compaction and organization.

The physical properties of the chromosome as a large polymer may also influence its 

organization. One model suggested that the chromosome is a self-avoiding polymer, and 

argued that entropic forces may significantly influence chromosome organization, favoring 

the separation of supercoil domains (Jun & Mulder 2006). Indeed, in some bacteria, such as 

Caulobacter, the chromosome occupies nearly the entire cytoplasmic space, further 

suggesting that the inner membrane influences chromosome organization through physical 

confinement. Additionally, Hi-C studies of Caulobacter chromosomes during DNA 

replication indicated little interaction between sister chromosomes (Le et al. 2013), possibly 

consistent with DNA supercoiling loops repelling each other. However, in many species, the 

chromosome does not fill the entire cell, and nucleoid-associated proteins that decorate 
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bacterial DNA likely render chromosomes self-adherent filaments (Hadizadeh Yazdi et al. 

2012).

Another factor that may affect chromosome organization is transertion, the coupled 

translation and insertion of proteins into the membrane by the signal recognition particle 

SRP and the Sec translocase. Transertion may tether DNA to the cell membrane, pulling 

some DNA out of the nucleoid, which could affect chromosome compaction and 

segregation. Evidence for transertion has been scant, but a recent FROS study tracking the 

intracellular position of tetA, which encodes a membrane efflux pump, showed that this 

locus, and nearly 90 kb around it, moves toward the membrane shortly after inducing tetA 

expression (Libby et al. 2012). Additionally, treating cells with either a transcription 

inhibitor (rifampicin) or translation inhibitor (chloramphenicol) causes radial shrinkage of 

the E. coli nucleoid, further supporting the notion that transertion represents an expansion 

force for the chromosome (Bakshi et al. 2012).

Bacterial Chromosome Segregation

Chromosome segregation is essential for daughter cells to each inherit a full copy of the 

genome. Unlike in eukaryotes, chromosome replication and segregation occur concomitantly 

in bacteria and, apparently, without a dedicated, spindle-like apparatus (Nielsen et al. 2006a, 

Viollier et al. 2004, Wang et al. 2006). The molecular mechanisms responsible for bacterial 

chromosome segregation are only just beginning to emerge, and involve both specific 

protein components as well as non-protein, mechanical-based mechanisms.

One of the earliest models for bacterial chromosome segregation was proposed by François 

Jacob who suggested that newly replicated origins may get anchored to the cell membrane 

and segregated passively by cell growth/elongation between them (Jacob et al. 1963). 

However, subsequent studies tracking origins have shown that they segregate much faster 

than the rate of cell elongation (Fiebig et al. 2006, Viollier et al. 2004, Wang & Sherratt 

2010).

DNA replication has also been implicated in chromosome segregation. Early work in B. 

subtilis suggested that the replisomes formed a factory at midcell, pulling DNA toward it for 

replication and extruding replicated DNA to either side of it (Lemon & Grossman 1998). 

Although this “capture-extrusion” model could explain bulk, symmetric segregation of 

chromosomal regions after replication, it cannot apply to bacteria where the chromosome is 

asymmetrically replicated and segregated. Additionally, recent studies using fluorescence 

time-lapse microscopy in E. coli, C. crescentus, and B. subtilis have indicated that the 

replisomes are mobile, tracking independently along the chromosome (Bates & Kleckner 

2005, Jensen et al. 2001, Reyes-Lamothe et al. 2008, Wang et al. 2014a). Thus, while the 

replisome and act of DNA replication per se could aid chromosome segregation, it likely 

cannot provide all of the force necessary.

The ParAB system for origin segregation

The first section of the chromosome segregated is usually the origin-proximal region. In 

many bacteria, origins are segregated actively via the parABS partitioning system (Fogel & 
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Waldor 2006, Ireton et al. 1994, Lin & Grossman 1998, Mohl et al. 2001), first discovered 

in plasmids where they are often essential for plasmid maintenance (Austin et al. 1985, 

Gerdes et al. 2010). Homologs of parABS were subsequently found to facilitate chromosome 

segregation in some bacteria, with nearly 65% of bacteria harboring this system (Livny et al. 

2007). In some cases, the parABS system is essential for viability; even when not formally 

essential, deletion of the system often leads to a significant increase in anucleate cells, 

demonstrating its importance in chromosome segregation.

In most bacteria, parS sites are located near the origin. ParB specifically recognizes and 

binds to these parS sites, often spreading in that region and perhaps bridging more distant 

DNA to form a large nucleoprotein complex (Graham et al. 2014, Lin & Grossman 1998, 

Murray et al. 2006). On its own, ParA has weak ATPase activity and binds DNA non-

specifically; its ATPase activity is directly stimulated by ParB (Easter & Gober 2002, 

Leonard et al. 2005). It was originally proposed, based on studies of plasmids (Ebersbach et 

al. 2006, Gerdes et al. 2010, Ringgaard et al. 2009), that ParA forms dynamic filaments that 

segregate the ParB:parS complexes that form on sister chromosomes after replication by 

either a pulling or pushing mechanism. According to the pulling model, a ParA filament 

forms away from the partition complex; the edge of this filament captures a ParB:parS 

complex and the filament retracts, pulling the DNA with it. According to the pushing model, 

a ParA filament forms between duplicated ParB:parS complexes and grows between them, 

thus pushing them apart.

Early evidence for a pulling mechanism came from studies of origin segregation in V. 

cholerae, which encodes two par systems, one for each chromosome (Fogel & Waldor 

2006). ParAI was proposed to segregate origins by pulling as ParAI-YFP does not localize 

between ParBI:parSI complexes and instead localizes between the new cell pole and the 

segregating ParBI:parSI complex. ParAI appeared, based on epi-fluorescence microscopy, 

to form dynamic filaments that retract toward the cell pole in concert with the movement of 

the ParBI:parSI complex in the same direction, implying a pulling mechanism. However, the 

precise mechanism of pulling and whether ParAI forms a continuous filament are not clear.

ParAB-dependent origin segregation has also been studied in C. crescentus and initial 

studies also proposed a pulling mechanism (Ptacin et al. 2010, Shebelut et al. 2010). Origin 

segregation in C. crescentus is a two-step process. After replication, the duplicated origins 

are first released from the pole and separate slightly from one another before one of the 

origins is translocated to the opposite cell pole, effectively unidirectionally (Shebelut et al. 

2010). The initial separation does not require ParA, but the subsequent step does (Shebelut 

et al. 2010, Toro et al. 2008).

ATP-bound ParA was postulated to form a filamentous structure across the cell (Ptacin et al. 

2010). ParB bound to parS sites would contact the edge of this filament and stimulate ParA 

ATPase activity, resulting in dissociation of ParA molecules from the edge of the filament 

and a net retraction of the filament away from ParB. Brownian movement of the ParB:parS 

complex would then renew contact with the ParA filament, and the ATP hydrolysis and 

dissociation cycle would repeat. The higher affinity of ParB for ATP-bound ParA would 
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ensure that a ParB:parS complex moves with the retracting ATP-bound ParA filament 

toward the opposite cell pole.

Although attractive, this pulling model initially assumed that ParA forms a single, 

continuous filament. Whether such filaments actually occur in vivo is uncertain, and recent 

studies suggest that an extended filament is not necessary for directional movement; instead, 

the Mizuuchi group has proposed a “diffusion-ratchet” model (Hwang et al. 2013, 

Vecchiarelli et al. 2010, 2012, 2014). By reconstituting a plasmid parABS system in vitro, 

they showed that ParA-ATP binds DNA non-specifically. ParB bound to parS on a plasmid 

stimulated ParA ATPase activity, resulting in the release of ParA and local depletion of 

ATP-bound ParA. The ParB:parS complex then diffused up the ParA-ATP gradient, 

resulting in net directional movement of the ParB-bound plasmid.

The “diffusion-ratchet” model was derived from studies of plasmid partitioning, and a 

subsequent study suggested that it may also apply to chromosome partitioning in 

Caulobacter (Lim et al. 2014). However, that study argued, based on mathematical 

modeling, that the diffusion of ParB:parS up short-range ParA-ATP gradients was 

insufficient to provide the observed directionality of chromosome segregation. Instead, it 

was suggested that the elasticity and dynamic motion of the chromosome helps relay, or 

drive translocation of, the chromosome short distances. This ‘DNA relay’ model essentially 

extends the ‘diffusion-ratchet’ model, providing a plausible mechanism for the directional 

segregation of chromosomal loci via the parABS system, without invoking or requiring large 

ParA filaments (Fig. 5a).

The polar anchoring protein PopZ, discussed above, may also help ensure directional 

movement of one origin toward the new cell pole in Caulobacter by anchoring the origin 

region to the cell pole (Bowman et al. 2008, Ebersbach et al. 2008, Laloux & Jacobs-

Wagner 2013). PopZ may also regulate ParA activity (Ptacin et al. 2014, Schofield et al. 

2010), possibly by sequestering ATP-hydrolysed ParA generated near the translocating 

origin away from the nucleoid, and by regenerating ParA-ATP that can bind the nucleoid 

again near the pole (Ptacin et al. 2014). This PopZ-dependent regulation of ParA may help 

ensure unidirectional movement of the translocating origin.

Although many organisms segregate replicated origins to opposite cell poles, some species 

produce multiple chromosomes that must be spaced out evenly across the cell, such as 

Synechococcus elongatus and S. coelicolor during sporulation (Jain et al. 2012, Jakimowicz 

et al. 2007). In the latter case, ParAB is required to space out chromosomes, and ParB itself 

is regularly distributed across the cell. ParA ATPase activity is essential for segregation and 

ParA forms an apparent filament during segregation that disassembles prior to septation 

(Jakimowicz et al. 2007).

Although widespread, parABS is absent from some species, including E. coli. However, E. 

coli does harbor a parS-like site called migS that helps promote the bipolar segregation of 

origins in E. coli, although migS is not formally essential for successful chromosome 

segregation (Fekete & Chattoraj 2005, Wang & Sherratt 2010, Yamaichi & Niki 2004). 

Interestingly, a recent study in E. coli suggested that the MinDE system, which directly 
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regulates cell division, could also promote chromosome segregation, albeit not by binding a 

specific site as ParAB does (Di Ventura et al. 2013). MinD and MinE normally oscillate 

back and forth across cells, inhibiting polymerization of the cytokinetic ring protein FtsZ at 

the poles and thereby helping force cell division to occur at mid-cell. MinD was proposed to 

also simultaneously bind the membrane and DNA non-specifically, with MinDE oscillations 

biasing the movement of replicated DNA regions towards cell poles. However, the role of 

the Min system in chromosome segregation is difficult to discern given that MinDE may 

indirectly affect chromosome organization and segregation through their effect on cell 

division.

In addition to promoting the segregation of origins, ParA, ParB, and parS sometimes have 

additional functions and interaction partners. In B. subtilis, ParA (Soj) can regulate DNA 

replication initiation by interacting with DnaA (Murray & Errington 2008, Scholefield et al. 

2011). Monomeric ParA/Soj inhibits DnaA from forming an oligomeric helix on DNA, 

thereby preventing replication initiation. In contrast, dimeric ParA/Soj, which binds DNA, 

appears to promote replication initiation through DnaA, although the precise mechanism of 

activation is still unclear. Other work in B. subtilis has shown that ParB (Spo0J) interacts 

with SMC, recruiting it to the origin region (Gruber & Errington 2009, Sullivan et al. 2009). 

This origin-localized SMC helps promote chromosome segregation (see next section) and 

somehow promotes the transient left-ori-right configuration of B. subtilis chromosomes 

noted above (Wang et al. 2014a) (Fig. 5b).

In Caulobacter, ParB interacts directly with MipZ, a protein similar to MinD, that helps 

determine the mid-cell placement of FtsZ (Thanbichler & Shapiro 2006). MipZ inhibits FtsZ 

polymerization; hence, by associating with ParB, MipZ ends up localized primarily to the 

polar regions of the Caulobacter, leaving the mid-cell region free for FtsZ polymerization. A 

recent study suggested that the parS site in Caulobacter interacts not only with ParB, but 

potentially also with DnaA, providing a link between DNA replication initiation and origin 

segregation (Mera et al. 2014). The model proposed posits that DnaA binds parS sites, 

somehow altering the structure of the DNA around it in a manner that promotes ParB 

binding and, consequently, proper segregation.

Bulk chromosome segregation and SMC proteins

The faithful segregation of two recently replicated origins by parABS, and the subsequent 

anchoring of these origins to opposite cell poles, may dictate the organization and 

segregation of the rest of the replicated chromosome (Umbarger et al. 2011). In other words, 

once the global orientation of chromosomes is set by polar anchoring of the origins, purely 

physical forces could then drive the rest of segregation. As noted, the extrusion of DNA 

from replication forks may help push DNA toward opposite poles. One study suggested that 

segregation might result largely from entropic forces, arguing that, if the chromosome is a 

self-avoiding polymer, the maximization of entropy will intrinsically separate two 

chromosomes (Jun & Mulder 2006, Jun & Wright 2010). However, entropy alone may not 

explain the speed of bulk chromosome segregation in E. coli. Additionally, chromosomes 

are thought to be self-adherent rather than self-avoiding polymers (Fisher et al. 2013, 

Hadizadeh Yazdi et al. 2012, Kleckner et al. 2014).
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Studies in E. coli have shown that replicated sisters are initially cohesed together for ∼7-10 

minutes before being rapidly segregated apart, with some origin-proximal loci remaining 

cohesed even longer (Joshi et al. 2011). The cohesion of DNA is modulated, at least part in 

E. coli, by SeqA, which binds recently duplicated, hemi-methylated DNA (Joshi et al. 2013, 

Sánchez-Romero et al. 2010). Additionally, sister chromosomes likely form precatenanes, 

structures in which the DNA from sister chromosomes effectively becomes topologically 

entangled (Joshi et al. 2011, 2013, Wang et al. 2008). Thus, recently replicated regions 

cannot separate until sisters are disentangled via topoisomerase IV. Once free of topological 

constraints and protein-based tethers, duplicated DNA moves bidirectionally, likely 

producing a more relaxed state of the nascent, sister chromosomes. In this way, the periodic 

build up and release of mechanical stress may ultimately drive bulk chromosome 

segregation (Fisher et al. 2013, Kleckner et al. 2014). Some sister loci with particularly long 

periods of cohesion separate very rapidly and abruptly, consistent with the study noted 

earlier in which certain regions of the nucleoid displayed near-ballistic movements, 

sometimes during chromosome segregation (Javer et al. 2014).

Notably, Hi-C analysis of Caulobacter cells progressing synchronously through the cell 

cycle showed that chromosomal interaction domains get re-established coincident with or 

shortly after replication, which may help prevent the two newly synthesized chromosomes 

from becoming entangled, aiding chromosome segregation (Le et al. 2013).

Although purely physical forces play a major, and perhaps dominant, role in bulk 

chromosome segregation, NAPs and other chromosome-associated proteins likely contribute 

as well (Junier et al. 2014). For instance, nucleoid-associated proteins that compact DNA, 

such as HU and IHF, probably facilitate the segregation of recently duplicated DNA to 

opposite sides of cells (Hong & McAdams 2011, Swiercz et al. 2013). Indeed, strains 

deleted of various NAPs often exhibit increased production of anucleate cells, an indicator 

of defective chromosome segregation (Huisman et al. 1989, Kaidow et al. 1995)

Similarly, supercoiling likely promotes bulk chromosome segregation by compacting DNA, 

and mutations in gyrase, topo IV, and topo I can each lead to defects in chromosome 

segregation (reviewed in Vos et al. 2011). Topo IV, which resolves the precatenanes that can 

form between sister chromosomes, may be particularly critical. When Topo IV activity is 

disrupted, cells can complete chromosome replication, but sisters often remain colocalized 

(Wang et al. 2008).

Another key player in chromosome segregation is the SMC/ScpA/ScpB complex, or the 

related MukB/MukE/MukF complex found in E. coli and other γ-proteobacteria (Fig. 5b-c) 

(Britton et al. 1998, Danilova et al. 2007, Jensen & Shapiro 1999, Niki et al. 1991). In E. 

coli, the absence of MukB prevents the formation of the usual left-ori-right chromosome 

organization pattern and leads to an increase in anucleate cell formation, indicating that 

MukB/E/F may promote proper chromosome segregation. MukBEF complexes cluster 

around the origin region, although the mechanism of recruitment is unknown (Danilova et 

al. 2007) (Fig. 5c). It also remains unclear precisely how MukBEF contributes to 

chromosome segregation and whether it primarily affects the origin, or whether it also 

contributes to bulk chromosome segregation. Additionally, a major challenge is to determine 
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whether MukBEF promotes chromosome segregation indirectly by condensing DNA, which 

may make other mechanisms of segregation operate more efficiently, or whether the 

MukBEF complex plays a more active role in directly partitioning sister chromosomes. 

Recent studies have demonstrated that MukBEF directly stimulates Topo IV, implying that 

MukBEF contributes to the disentangling of sister chromosomes (Hayama & Marians 2010, 

Li et al. 2010, Nicolas et al. 2014).

In B. subtilis, SMC proteins are also thought to promote chromosome segregation, as cells 

lacking SMC exhibit a range of chromosome partitioning defects (Britton et al. 1998, Gruber 

& Errington 2009, Sullivan et al. 2009). In particular, rapid depletion of SMC has revealed a 

requirement of SMC for origin segregation (Gruber et al. 2014, Wang et al. 2014a,b). And, 

as in E. coli, SMC is recruited to the origin-proximal regions of the chromosome, via a 

direct interaction with ParB. However, in contrast to E. coli MukB, SMC does not appear to 

function by promoting Topo IV activity (Wang et al. 2014b). Instead, SMC may act 

primarily to condense chromosomal DNA, helping sister chromosomes from becoming 

entangled and increasing the overall efficiency of chromosome segregation. Notably, ChIP 

studies in B. subtilis showed that SMC proteins are also found at regions of high 

transcription. Thus, in addition to origin condensation, SMC may also aid in bulk 

chromosome condensation, ensuring fast and efficient segregation (Gruber & Errington 

2009).

Terminus segregation

While much of chromosome segregation is accomplished by partitioning the origins and by 

the ensuing bulk segregation of DNA, the final segregation of chromosome termini, the ter 

regions, requires dedicated machinery, in part because replication of circular chromosomes 

can result in catenated or dimeric chromosomes if sister chromosomes recombine (Adams et 

al. 1992, Peter et al. 1998, Steiner & Kuempel 1998). One major component of the ter 

segregation apparatus is the DNA translocase FtsK, which localizes with cell division 

proteins to mid-cell (Bigot et al. 2007, Lesterlin et al. 2004). There, FtsK binds and may 

stimulate Topo IV to decatenate chromosomes (Espeli et al. 2003). Additionally, FtsK can 

pump chromosomal DNA to opposite sides of the cell (Lesterlin et al. 2008). This pumping 

also brings together, near FtsK, the ter-proximal dif loci from sister chromosomes. FtsK 

directly activates the tyrosine recombinase XerCD, which can resolve dimeric chromosomes 

by catalyzing site-specific recombination between two dif loci (Fig. 5d) (Grainge et al. 2007, 

Steiner et al. 1999).

Bringing the dif loci together requires that FtsK-dependent pumping be directional. In E. 

coli, FtsK recognizes short motifs, called KOPS (FtsK Orienting Polar Sequences) that are 

overrepresented in the chromosome and heavily biased in their orientation toward dif (Bigot 

et al. 2005, Löwe et al. 2008, Sivanathan et al. 2006). Although FtsK translocase activity is 

not essential in E. coli, presumably because dimeric chromosomes are produced in only 

∼15% of cells per replication cycle, ftsK is essential for viability in the absence of MukBEF. 

This latter finding underscores the idea that FtsK contributes to bulk chromosome 

segregation, in addition to specifically promoting the decatentation and resolution of sister 

chromosomes. Moreover, FtsK is present in bacteria with linear chromosomes where 
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decatenation and dimer resolution are not essential for terminus segregation (Chaconas & 

Kobryn 2010, Flärdh & Buttner 2009); in these organisms, FtsK probably functions mainly 

to pump DNA from sister chromosomes to opposite sides of the division plane. The FtsK 

homolog SpoIIIE in B. subtilis also pumps DNA, localizing to the septum formed during 

sporulation between a mother cell and forespore compartment. As discussed above, the 

polarly-localized protein RacA helps anchor one origin inside the forespore, with SpoIIIE 

then pumping most of the rest of the chromosome into that compartment (Fig. 5e) (Ben-

Yehuda et al. 2003, Wu & Errington 1994, 1998).

In most bacteria, cytokinesis is actively delayed until sister chromosomes are fully 

segregated to opposite sides of the cell, preventing the guillotining of DNA. In E. coli the 

mechanism responsible, called nucleoid occlusion, involves a protein called SlmA that binds 

to specific DNA sites that are enriched in the terminus-proximal region of the chromosome. 

SlmA also binds to and blocks FtsZ polymerization (Bernhardt & de Boer 2005). Hence, 

SlmA blocks cell division until the terminus-proximal regions of the chromosome have been 

segregated away from mid-cell. In B. subtilis a similar mechanism occurs, involving the 

unrelated protein Noc, which binds to DNA sequences across the chromosome. Noc does 

not specifically target FtsZ, or other cell division protein, and instead appears to form large 

nucleoprotein complexes that physically occlude the division apparatus (Adams et al. 2015, 

Wu & Errington 2004, Wu et al. 2009).

Chromosome segregation in the absence of replication

Although chromosome segregation is usually concomitant with, and linked to, DNA 

replication, cells may sometimes need to segregate regions of their chromosomes 

independent of replication. For example, DNA damage can require major movements of 

chromosomal DNA if homologous chromosomes must pair to promote recombination-based 

repair. Recent work in E. coli showed that DNA near the site of a double-strand break can 

move, pair with its homologous partner, and then be resegregated to its approximate, 

original position (Lesterlin et al. 2014). This movement appears to involve large RecA 

filaments, but the nature of these filaments and how they drive homolog pairing, and 

whether they also participate in locus resegregation, is unknown as yet. Nevertheless, this 

initial work suggests that bacteria have mechanisms to move and resegregate portions of 

their chromosomes; it will be critical to determine whether the mechanisms responsible 

overlap with or are different from those used to drive the segregation that occurs 

concomitantly with DNA replication.
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Future Perspectives

There are many outstanding questions and challenges in understanding the principles and 

mechanisms of chromosome organization and segregation in bacteria. New, powerful 

tools have been developed, including Hi-C and super-resolution fluorescence 

microscopy, which are enabling investigations in unprecedented ways and at many 

different spatial scales. Studies of model organisms continue to provide new insights, 

with work on other species helping to reveal the general, conserved properties of 

bacterial chromosomes and the idiosynchracies of specific bacteria. Future work will 

undoubtedly continue to provide important new insights into the fundamental 

organization and functioning of bacterial chromosomes. Because of the central 

importance of chromosomes, this work promises to impact our understanding of nearly 

every physiological function of bacteria. Some of the immediate goals and questions for 

future studies are:

• How does chromosome organization influence gene expression and vice versa?

• How does chromosome organization, including its domain structure, influence 

DNA-based transactions such as DNA replication, DNA repair, and 

recombination?

• Many NAPs are individually dispensible, but display synthetic effects when 

deleted in combination; how do NAPs work together to organize the 

chromosome, support chromosome segregation, and regulate transcription?

• How do the biochemical and biophysical properties of SMC and NAPs 

ultimately enable the cellular-level phenomena of chromosome compaction and 

segregation?

• How do chromosomes successfully segregate in species that do not have the 

ParAB-parS system?

• What drives bulk chromosome segregation, and what are the relative 

contributions of purely physical forces and protein-based systems?
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Figure 1. The global organization of bacterial chromosomes
For the organism indicated in each panel, the schematics represent the origin of replication 

(oriC) as a red dot and terminus (ter) as blue dot or line. The left and right arms of the 

chromosome are colored green and orange, respectively. Thick zigzag lines denote 

compacted parts of the chromosome, while newly-synthesized DNA and hypothetically less-

organized DNA are illustrated as thin lines. Overall nucleoid distribution is illustrated by 

grey shading. Black arrows indicate the progression of the global chromosome organization 

through a cell cycle.
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Figure 2. Protein-based systems that anchor specific DNA regions
Schematics of polar anchoring complexes are shown for (a) C. crescentus, (b) sporulating B. 

subtilis, (c) V. cholerae and (d) vegetative B. subtilis. The likely global chromosome 

organization defect of a B. subtilis strain lacking RacA is shown in panel b. Specific DNA 

elements and proteins common to each organism are represented as shown in the legend 

(right), with species-specific factors indicated adjacent to each panel. Note that Soj/ParA is 

not represented in B. subtilis; although Soj/ParA is required for the bipolar localization of 

origins, its own localization is complex (Murray & Errington 2008), and precisely how 

localization impacts function is unclear. Schematics derived from similar drawings in (Wang 

& Rudner 2014).
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Figure 3. Macrodomains and chromosomal-interaction domains
(a) Macrodomain-organization of E. coli chromosome, shown as in Figure 1 (left) or with 

the four macrodomains, Ori, Ter, Left and Right, and the two non-structured regions (NR) 

(right). MatP (colored purple) organizes the Ter macrodomain. The crystal structure of two 

MatP dimers, each bound to a matS recognition site is shown (PDB: 4D8J). (b) 

Chromosome conformation capture assay (5C and Hi-C) and computational modeling have 

revealed the organization of the C. crescentus chromosome. The Hi-C heat map (Le et al. 

2013) indicates frequency of DNA-DNA interactions across the genome using the color 

scale shown. The most prominent diagonal indicates frequent interactions within a 

chromosomal arm (black dotted lines), while the other, less prominent diagonal shows 

interactions between the two arms (grey dotted lines). Orange triangles in the inset (right) 

indicate CIDs, or chromosomal-interaction domains (see text for details). Highly-transcribed 

genes are thought to create a less compacted, plectoneme-free region (blue) that serves to 

spatially insulate DNA (green and red) in adjacent domains, creating a CID boundary.
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Figure 4. Nucleoid-associated proteins with DNA bridging, wrapping, or bending activities 
contribute to the organization of the chromosome
The functions of well-studied NAPs are schematized at the top, with the corresponding 

crystal structures below. H-NS dimers of dimers (blue) bridge DNA. The abundant HU 

(green) introduces ∼90° bending to DNA and may wrap DNA around itself, thereby 

promoting short-range DNA interactions. IHF (red) binding to DNA induces a dramatic U-

turn on DNA that drastically changes the trajectory of the DNA backbone. Fis (orange) is 

another NAP with DNA-bending activity. SMC complexes (cyan) likely form a ring 

structure that can bring together and handcuff loci that are distal in primary sequence. The 

protein and protein:DNA complexes shown have PDB IDs: 1P78, 1IHF, and 3JRA for HU, 

IHF, and Fis, respectively. A hypothetical model of H-NS was constructed from PDB 

structures 3NR7 and 1HNR. A model of SMC-ScpA-ScpA was derived from PDB structures 

4I98, 4I99 and 3ZGX.
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Figure 5. Chromosome segregation
(a) Origin segregation in C. crescentus relies on the parABS system. ParB (green) binds 

parS sites located near the origin. Shortly after replication, one ParB:parS complex remains 

polarly localized while the second complex comes in contact with ATP-bound ParA (light 

brown). ParB stimulates ParA ATPase activity, resulting in the release of ParA from DNA 

(dark brown) and contraction of the cloud of ParA-ATP. The migrating ParB:parS complex 

can then move toward the retracting ParA-ATP and thus toward the opposite pole, 

eventually resulting in full segregation of the origin. PopZ (purple) influences ParAB 

activity directly or indirectly to promote origin segregation. (b) In vegetatively growing B. 

subtilis, chromosome organization oscillates between ori-ter and left-ori-right patterns. 

While ParA/Soj and ParB/Spo0J (green) ensure origin movement towards opposite poles, 

the SMC complex (cyan) relocates the origins to mid cell during the initial phase of DNA 

replication. This oscillation in chromosome organization may promote chromosome 

segregation by preventing entanglement of the chromosomes. (c) Origin segregation in E. 

coli. Unlike Caulobacter and B. subtilis, E. coli does not have a ParAB-like system for 

origin segregation. A distant relative of the SMC complex, MukBEF (cyan), localizes 

around the origin region and is thought to promote origin segregation and origin-proximal 

chromosome organization. MukBEF may also promote bulk chromosome segregation. (d) 

Badrinarayanan et al. Page 33

Annu Rev Cell Dev Biol. Author manuscript; available in PMC 2016 November 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Circular chromosome replication can result in dimeric or catenated chromosomes, whose 

resolution requires the action of the DNA translocase FtsK (purple) and the tyrosine 

recombinase XerCD (blue-brown). Schematic shown is for E. coli. (e) Chromosome 

segregation in sporulating B. subtilis. Segregation of the origin region depends on RacA 

(pink) and Spo0J (green), with the rest of the chromosome pumped into the forespore by the 

DNA translocase SpoIIIE (blue). The origin is anchored to the cell pole by RacA and 

DivIVA (purple sticks).
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