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Introduction

The urinary bladder functions to collect urine and then to 
expel it under the voluntary control. It generally performs 
this function well until later life when problems often arise 
with voluntary control (incontinence), urgency/frequency 
[overactive bladder (OAB)] or urgency-frequency-pain 
[interstitial cystitis/painful bladder syndrome (IC/PBS)], 
although the latter can occur at any age (1). Urine contains 
a number of noxious substances that need to be kept out 
of the bladder tissue. Therefore, the bladder urothelium 
evolved to be the most impermeable membrane in the 
mammalian body (2). In this article we review the structure 
of the urothelium, particularly discussing how the structure 

of the urothelium contributes to its unique function how it 
can fail in disease, and how loss of barrier function may be 
a major factor in bladder disorders. Our hypothesis is that 
the loss of impermeability of the bladder urothelium is not 
only responsible for the symptoms of pain and urgency but 
also is the trigger for degenerative changes often seen in the 
urothelium that may be irreversible. We also will show that 
the urothelium can become permeable both as the result of 
endogenous factors (i.e., neural modulation) as well as from 
failure of the bladder defenses against urine substances such 
as organic cations. Thus, instead of viewing the organs of 
the lower abdomen in isolation, they must be viewed as an 
interconnected system and that disorders of one organ may 
perturb the homeostasis of others.
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Structure of urothelium and its barrier function

Anatomical structure

The urothelium consist of three layers of cells (2-4). Adjacent 
to the lamina propria is a layer of basal cells that likely 
contain stem cells with each stem cell being responsible 
for a monoclonal patch (5,6). Increasing knowledge of 
urothelial stem cells is identifying markers and the lineage 
of urothelium (7,8). Virtually all cell division is restricted 
to the basal layer. Above the basal cells is a layer of partially 
differentiated intermediate cells. Their function is to rapidly 
terminally differentiate when one of the highly specialized 
apical or umbrella cells is lost. This outer layer comprises 
the main protective barrier against urine. These cells are 
relatively long-lived (turnover more than 6 months) (9),  
so the normal level of mitosis in the healthy bladder is very 
low (10). In case of injury or infection, in which the apical 
cells typically slough off and carry infecting bacteria with 
them, the intermediate layer cells rapidly differentiate 
into apical layer cells and cell division is ramped up in the 
basal layer and replaces the intermediate layer cells that 
differentiated into apical layer cells (11). Even before the 
intermediate cell is fully differentiated into an umbrella 
cell, it forms tight junctions (12), which illustrates the 
importance of the urothelial barrier. When repairing 
damage, the normally quiescent urothelium expresses 
among the highest levels of cell division of any epithelium 
in the body (13).

The apical cells are highly evolved for their function of 
providing an impermeable barrier to urine in the bladder 
lumen. The barrier function is comprised of multiple 
defensive molecules—tight junctions, uroplakin plaques, 
and a dense layer of glycosaminoglycan (GAG) on the 
apical surface (the “GAG layer”) The apical cells highly 
express tight junction proteins on their basolateral surfaces 
(12,14,15) that provide a barrier to urine passing between 
cells. The apical surface of the apical cells also is composed 
of plaques of uroplakins, which are tetraspannin proteins 
that form hydrophobic plaques on the cell surface (16,17).  
Loss of uroplakin in knockout mice increases the 
permeability about 2-fold (18). The urothelium also 
expresses a unique means for stretching and contracting. 
When contracted, small segments of membrane are 
removed from the cell surface and then stored in specialized 
vesicles, and when the bladder again is stretched, this stored 
membrane is reintegrated with the luminal surface (19).

Figure 1 schematically illustrates the structure of 

the bladder and illustrates the relationships among the 
urothelium and nerves and blood vessels. The urothelium 
itself is not enervated nor do capillaries penetrate within it. 
Therefore nutrients must diffuse across the lamina propria, 
a relatively large distance as compared to the vascularization 
observed in other tissues. Urothelial cells also have some 
very unique properties. They are both immune cells and 
also have characteristics of neurosensory cells in the form of 
receptors that are typically found in neural cells (20-22).

The GAG layer

The apical surface is also densely coated with a layer of 
GAG that comprises a major component of the permeability 
barrier. This layer can be seen with Alcian blue staining (23) 
or by immunohistochemical staining for chondroitin sulfate 
(23,24). It has long been suggested that this GAG layer 
was substantially responsible for bladder impermeability 
(25,26). The GAG layer visualized by Alcian blue and 
immunochemical staining of bladder tissue for GAG layer 
components are illustrated in papers from our group (see 
figures in all three papers, all of which can be accessed from 
PubMed) (23,27,28). The presence of the GAG layer was 
demonstrated previously by Hurst and co-workers (28-32),  
who characterized its composition and demonstrated that 
its removal with dilute HCl, which causes loss of the apical 
cells within 24 hrs, leads to enhanced permeability to 86Rb+, 
a K+ mimetic. Restoring the GAG with exogenous GAG 
(e.g., intravesical administration of chondroitin sulfate) 
restores impermeability to 86Rb+ to baseline levels (33) and 
also substantially inhibits the recruitment of inflammatory 
cells to permeabilized areas (23). The reason that excluding 
K+ is important is that one theory for the origin of pain in 
the bladder in interstitial cystitis (IC) is that penetration 
of bladder tissue by K+ depolarizes sensory nerves (34-36).  
This observation led to the development of the potassium 
sensitivity test (PST) in which 0.1 m KCl (but not 0.1 m 
NaCl) instilled into the bladder elicits a pain response 
in most IC patients (35) as well as about 40% of patients 
diagnosed with OAB (37). These earlier findings were 
completely confirmed recently by Janssen and co-workers, 
who also showed that without introducing any damage to 
the urothelium other than to digest the GAG layer with 
chondroitinase ABCase the permeability could be increased 
in a cell culture model (24). Recently our group has 
demonstrated that in vivo digestion of the GAG layer with 
chondroitinase ABC led to a decrease of the transepithelial 
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Figure 1 Schematic illustration of bladder anatomy. The stroma is composed of the detrusor muscle, connective tissue, nerves, and the 
veins, arteries and capillaries of the connective system. The urothelium sits atop the lamina propria. The nerves, and capillaries do not 
penetrate the lamina propria but do connect with it. Therefore the bladder urothelium is less well supplied than are other epithelia. Also 
found are neurons, including the sensory, sympathetic and parasympathetic systems. These generally are found adjacent to the lamina 
propria, indicating the lamina may respond to neural signals. The basal layer is the lowest layer of cells. These are generally the only cells 
that divide. The stem cells, here one is shown in pink, also exist within the basal cell layer. Atop the basal cells is a layer of 3-5 cells deep 
comprised of intermediate cells. Not shown is that these cells maintain a connection via a cytoplasmic process to the lamina propria (not 
shown). Most likely this connection serves a cell communication function. The outer layer of cells, or umbrella cells, are highly specialized 
and terminally differentiated. They may be multinucleated as the result of cell fusion. Their lifetime is as much as 6 months or more. Loss of 
an umbrella cell immediately leads to the underlying intermediate cell to differentiate and replace the lost umbrella cell. The umbrella cells 
are coated with a dense layer of GAG, mostly if not exclusively, chondroitin sulfate. They also have tight junctions here shown in red along 
their basolateral surfaces. Together the uroplakin plaques (not shown) and GAG on the apical surface plus the tight junctions combine to 
make the urothelium the least permeable mammalian epithelium. GAG, glycosaminoglycan.
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electrical resistance (TEER) as measured in the Ussing 
chamber. In control and sham treated rat bladders, the 
TEER measurements were means of 2,524±1,117 vs. 
2,623±1,124 vs. 1,175±518 Ωcm2 and 1,080±687 Ωcm2 in 
the protamine sulfate-treated and chondroitinase-treated 
rat bladders (P=0.0016 and P=0.0039 respectively). Similar 
differences were seen in dextran permeability. Thus, 
treatment with organic cations and specific removal of the 
GAG layer both produce permeability.

Loss of barrier function in human bladder disorders

IC and loss of barrier function

IC is the disorder most closely associated with loss of 
bladder permeability. Although IC can appear at any age, it 
becomes more common in women, during middle age and 

does not seem to vary with race or ethnicity (38). IC was 
initially thought to be quite rare following its description by 
Hunner (39). At that time there was an objective diagnostic 
criterion, namely the presence of Hunner’s lesion or ulcer 
upon cystoscopy. As time went by and the disorder was 
investigated in more detail came the realization that a 
great many more patients were very similar to the classic 
description, but had more diffuse symptoms. In 1978 
Messing and Stamey (40) introduced a new diagnostic 
criterion, namely the observation of petechial bleeding on 
hydrodistention. This was incorporated into the research 
criteria promulgated by the NIDDK in 1987 (41), but these 
rapidly became the clinical definition of the disorder in spite 
of the specific intent of the NIDDK that this not be the case. 
This conflict between the strict research definition that was 
intended to improve the power of clinical trials and a looser 
definition that seemed to be emerging in practice led to a 
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re-examination of the diagnostic criteria (42) and a further 
broadening of the definition such that the disorder is no 
longer rare (1). It is diagnosed by the triad of pain, urgency 
and frequency and is a diagnosis of exclusion (43-45),  
and no objective diagnostic criteria have stood the test. 
Although some investigators claim that objective criteria for 
diagnosis can be derived from histology (46-48), these have 
not proven specific or sensitive enough for diagnostic use. As 
a consequence, the syndrome is undoubtedly heterogeneous, 
which greatly complicates clinical trials because non-
responders are automatically included in any clinical trial (49).

A number of investigators have reported changes in the 
urothelium that suggest loss of the barrier function may 
be a factor, at least in many patients. In the classic ulcer 
patients typically show a very thin urothelium that even 
erodes away in places, leaving ulcers that can be plainly 
seen by cystoscopy (43). In the more common non-ulcer 
form histopathologic changes, including loss of umbrella 
cells (28,46-48,50), which leads to loss of the GAG layer, 
have been reported. However, some patients show nearly 
normal-appearing urothelium (28,47,48). Whether this 
heterogeneity of loss of the GAG layer is a sampling 
difference, that is the loss of impermeability is focal and 
just was not sampled, or whether it is widespread in some 
bladders and those that do not show this loss represent a 
different class of patients is not known. However, a recent 
study in a feline model of IC by our group in which large 
sections of bladder were available for analysis showed 
considerable heterogeneity in the molecular pathology 
of the GAG layer, uroplakin and cell adhesion molecule 
distribution (51), suggesting that the changes reported in 
human IC biopsies may be focal. Wider sampling therefore 
might prove more useful diagnostically, but imposes a 
greater burden on patients. Several investigators have 
suggested an altered differentiation program in the IC 
urothelium could be responsible for these histopathologic 
changes (29,52-55). Although a number of papers have been 
published on urothelial differentiation (56-62), the flaw in 
IC is unknown. In recent years it has been recognized that 
IC may represent a manifestation of a wider problem called 
painful bladder syndrome (PBS) that likely is even more 
heterogeneous than IC itself (1,44,63,64). Evidence for a 
wider etiology is the observation that patients with IC have 
a roughly 70% comorbidity with irritable bowel syndrome 
(IBS). Recent work has shown a link between bowel and 
bladder such that dysfunction with one organ can lead to 
dysfunction in the other (65,66). This suggests that the 

origins of the changes in the urothelium could be quite 
complex and could result from both neurally modulated 
mechanisms as well as from intravesical toxins.

Parsons and coworkers in 1983 suggested that a defect 
in the bladder barrier function was the root cause of 
IC symptoms (67). It certainly is an attractive theory 
because it both suggests a diagnostic criterion and therapy. 
Interestingly, although Parsons demonstrated in 1991 that 
IC patients absorbed a significantly higher amount of urea 
instilled into the bladder than did controls (68) the theory 
has remained controversial. Other, indirect evidence has 
supported the increased permeability of the bladders of IC 
patients. A high percentage of IC patients exhibit a positive 
potassium sensitivity test as compared to controls (43,69,70), 
and IC patients show a slower elimination of fluorescein 
administered intravenously, presumably due to resorption 
through the bladder (71). As discussed above considerable 
evidence from several laboratories suggests that the 
urothelium has adopted an aberrant differentiation program 
that could lead to loss of terminal differentiation of the 
apical cells or altered protein expression that could lead 
to loss of the barrier function with increased permeability. 
Clearly, this is an area for further research, given the 
heterogeneity within the IC/PBS population. The question 
of whether phenotypically these patients divide into 
“leakers” and “non-leakers” that may respond completely 
differently to various treatments is unresolved (72).  
In our laboratory we have recently shown (unpublished) 
that bladder permeability in rats can be measured directly 
by instilling fluorescein into the bladder and sampling a 
small volume every 2 minutes. This should be able to be 
performed on humans as well.

GAG replenishment therapy

Given that we demonstrated a deficiency in the GAG 
layer in at least some IC patients and that exogenous GAG 
preferentially adheres to damaged urothelium (33,73), it is 
surprising that most clinical trials of GAG replacement show 
that although some patients clearly benefit and often have 
nearly complete remissions, other patients derive very little 
benefit (74-80). Clinical trials are often ambiguous because 
most are underpowered to detect an effect that occurs in only 
about 50% of the treated population. Similar observations 
apply to other therapies (81,82). GAG has been delivered 
orally as well as intravesically. The only GAG to be delivered 
orally is pentosan polysulfate (Elmiron), which is about  
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7,000 Da molecular weight and a few percent of the oral dose 
ends up in circulation, where it is apparently cleared into the 
urine. There are several possible explanations for the failure 
of GAG replenishment therapy to be more successful. One 
could be that the disorder is heterogeneous and comprised of 
“leakers” and “non-leakers”. A second is the disorder could 
be progressive, and the non-responders could represent an 
end stage where progressive damage has altered the bladder 
to the degree that it can no longer respond. Third, the 
optimal dosing regimen is incorrect and either the agent 
needs to be delivered more frequently or the dosing is too 
frequent and is producing side effects.

Bladder-bowel intercommunication

One of the more interesting recent developments in 
research into the clinical disorder of PBS/IC is the link 
between the bladder and the bowel. It has long been known 
that IBS shows a high comorbidity with IC/PBS, and a 
recent meta-analysis confirmed this finding, albeit with 
significant criticisms of experimental design (83). Other 
disorders with significant comorbidity include fibromyalgia 
and other generalized lower abdomen pain syndromes. 
Buffington attempted to identify a stress-related subset of 
patients (66) because stress was shown to be a major factor 
in feline IC (84). Whether the stress experienced by these 
patients is a product of the disorder or a causative factor 
in the disorder remains to be resolved. As is discussed 
above these findings have led some to suspect that IC 
actually represents a urologic manifestation of a more 
generalized pelvic pain syndrome and possibly whether 
there is a causative relationship between bowel and bladder 
symptoms. Supporting the latter hypothesis have been 
a number of recent papers demonstrating visceral organ 
crosstalk, as summarized in a recent review (85). The 
main question is whether the intercommunication arises 
from cellular communication by migratory cells such as 
mast cells or whether information is transmitted through 
neural communication and release of neurosecretory 
proteins that can alter one organ according to the status 
of another. There is evidence for both theories. Mast cells 
were implicated in a recent study that showed the cross-
communication was not observed in Kit–/– mice lacking 
mast cells, but whether this was an effect of the loss of 
kit or of mast cells is unclear. Recent exciting work by 
Kevin Tracey and colleagues has shown that inflammatory 

cells such as mast cells and macrophage respond to 
neural signals in a kind of neuroinflammation, the  
so-called inflammatory reflex (86-90). Interestingly, an  
anti-inflammatory network also has been identified (90,91).  
Up-regulation of innervation has been reported in IC (92), 
as upregulation of neuropilins and VEGF receptors.(93). 
This intercommunication is not restricted to IC and IBS. 
Constipation can worsen symptoms of OAB, and treatment 
of OAB with antimuscarinics can worsen constipation (85).  
Our group has recently shown that in rats, induction of 
bowel inflammation with trinitrobenzenesulfonic acid 
produces increased bladder permeability within 24 hrs as 
measured ex vivo in the Ussing chamber, and conversely, 
induction of bladder permeability with dilute protamine 
sulfate (which did not produce overt physical damage) 
resulted in increased bowel permeability (94). Moreover, 
the increased permeability was also detectable by magnetic 
resonance imaging (MRI), suggesting the technique 
could be used clinically to stratify patients according to 
permeability and to monitor response to therapy (95).

Directions of future research and summary

Figure 2 summarizes the mechanisms that could produce 
bladder permeability. It should be obvious from the figure 
and discussion that the bladder, bowel (and possibly other 
organs as well), cytokine-responding and secreting cells, and 
the neuroendocrine system form a complex and interacting 
system that can no longer be considered as individual parts 
in isolation. Clearly one of the most pressing clinical needs 
is to better be able to classify patients. Finding effective 
treatments would be greatly improved if patients could be 
stratified into more homogeneous groups for clinical trials. 
An effective method of measuring bladder permeability 
could also represent an important step forward in this 
regard because it could offer an improved diagnostic as 
well as an objective measure of response to therapy that 
could be used to optimize therapies. Our group has recently 
shown that MRI can clearly demonstrate increased bladder 
permeability that correlates with patient condition (96). The 
mechanisms by which information concerning the status of 
one pelvic organ is communicated to another, and how this 
information affects the other organ is critical to know and is 
being actively investigated by a number of groups. Finally, 
understanding the role of the brain, stress, and past life 
experiences also needs to be investigated.
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