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Abstract
Previous studies have indicated that extended exposure to a high level of sound might

increase the risk of hearing loss among professional symphony orchestra musicians. One

of the major problems associated with musicians’ hearing loss is difficulty in estimating its

risk simply on the basis of the physical amount of exposure, i.e. the exposure level and

duration. The aim of this study was to examine whether the measurement of the medial oli-

vocochlear reflex (MOCR), which is assumed to protect the cochlear from acoustic damage,

could enable us to assess the risk of hearing loss among musicians. To test this, we com-

pared the MOCR strength and the hearing deterioration caused by one-hour instrument

practice. The participants in the study were music university students who are majoring in

the violin, whose left ear is exposed to intense violin sounds (broadband sounds containing

a significant number of high-frequency components) during their regular instrument prac-

tice. Audiogram and click-evoked otoacoustic emissions (CEOAEs) were measured before

and after a one-hour violin practice. There was a larger exposure to the left ear than to the

right ear, and we observed a left-ear specific temporary threshold shift (TTS) after the violin

practice. Left-ear CEOAEs decreased proportionally to the TTS. The exposure level, how-

ever, could not entirely explain the inter-individual variation in the TTS and the decrease in

CEOAE. On the other hand, the MOCR strength could predict the size of the TTS and

CEOAE decrease. Our findings imply that, among other factors, the MOCR is a promising

measure for assessing the risk of hearing loss among musicians.

Introduction
Excessive noise exposure can cause temporary hearing deterioration as well as permanent hear-
ing damage to the cochlear, which is known as noise induced hearing loss (NIHL). Previous
studies have indicated that professional symphony orchestra musicians are exposed to a high
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level of sound, comparable to noise in industrial settings (between 79 and 98 dBA [1]), and are
at risk of hearing loss [1], [2]. Indeed, some previous studies reported a permanent threshold
shift (PTS) among professional symphony orchestra musicians (e.g., [3], [4], [5]).

At present, the risk factors for musicians’ hearing loss have not been sufficiently identified.
A considerable number of studies have assessed the risk of NIHL among musicians by sound
exposure. The degree of risk varies with environmental factors such as instrument type and
position in the orchestra. Nevertheless, the variation of PTS has only partially been explained
by the amount of exposure: Some studies reported that groups with a higher exposure level
tend to show larger PTSs [3], [6], while other studies failed to demonstrate any association
between exposure level and the PTS [7], [8], [9], [10]. It has also been reported that thresholds
among musicians cannot be predicted from ISO-1999 [8], [11].

Although the environmental factors involved in musicians’ hearing loss have been inten-
sively investigated, as mentioned above, very little attention has been focused on the inter-indi-
vidual variation of susceptibility to NIHL in musicians. Previous studies on occupational
hearing loss have revealed that the amount of hearing loss depends on the susceptibility to
NIHL, which varies substantially between individuals, as well as on the amount of exposure
[12]; individuals with ‘tough’ ears are more resistant to acoustic overexposure, whilst individu-
als with ‘tender’ ears are more vulnerable [13].

To identify factors underling the variability of susceptibility, previous studies have examined
various biological factors such as eye color, gender, age, and middle-ear muscle reflex, and
environmental factors such as exposure to drugs or chemicals [14]. Among them, the most
promising predictor of susceptibility was the strength of the medial olivocochlear reflex
(MOCR) [15]. Outer hair cells (OHCs) receive innervations from the medial part of the supe-
rior olivary complex (SOC) through MOC bundles. Those MOC fibers are activated by acoustic
stimulation and induce an inhibition effect on OHC motility. This suppressive effect has been
termed MOCR. There are two kind of MOCR: ipsilateral and contralateral MOCR. The ipsilat-
eral MOCR is double crossing reflex: Ipsilateral acoustic stimulation activates the contralateral
MOC neurons via crossed MOC bundles, and these MOC neurons innervate the ipsilateral ear
via crossed MOC bundles. In contrast, the contralateral MOCR is single crossing reflex: Con-
tralateral acoustic stimulation activates the ipsilateral MOC neurons via crossed MOC bundles,
and these MOC neurons innervate the ipsilateral ear via uncrossed MOC bundles.

Both types of MOCR have been implicated in protecting the ear from acoustic damage,
although their usefulness in natural environment is under debate [16]: Several animal studies
have demonstrated that electrical or acoustical stimulation of the MOC bundle decreases the
amount of temporary threshold shift (TTS) [17], [18] and sectioning of the MOC bundle
increases the amount of PTS after noise exposure [19]. An experimental animal study reported
that the MOCR strength could predict the size of the PTS induced by loud noise moderately
well [15]. Importantly, Maison et al. [15] assessed the MOCR as a suppression of otoacoustic
emission (OAE), which is assumed to reflect changes in the OHC function related to the
MOCR [20]. This assessment can potentially be applied to humans [21].

Despite extensive studies [22], the evidence for the protective role of MOCR in humans is
still equivocal. It was only recent that Wolpert et al. [23] reported a significant correlation
between MOCR-related OAE suppression and the size of TTS induced by intense white noise.
Even under similar laboratory-controlled conditions, however, Collet et al. [24] failed to find a
correlation between the TTS and the amount of MOCR-related OAE suppression. Engdahl
[25] reported an even “positive” correlation between OAE amplitude change after exposure to
intense band noise and the amount of MOCR-related OAE suppression. Under field study con-
ditions, Veuillet et al. [26] found a significant correlation between MOCR strength and the
amount of threshold recovery three days after exposure to rifle blasts. However, other field
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studies—a gun-shot exercise [26], [27], music [28], discotheque [29], and occupational noise
[30]—failed to find evidence for a correlation between MOCR strength and the size of the TTS.

We hypothesized that MOCR measurement could be applied to musicians to assess their
risk of NIHL, because musicians’MOCRs are stronger than non-musicians [31], [32] and
should also show a large variation, thereby being likely to determine their risk of NIHL. Never-
theless, this possibility has not been explored, despite a considerable number of studies on
NIHL among musicians.

To test this hypothesis, we examined whether MOCR strength can predict the hearing dete-
rioration caused by short-duration instrument practice. The temporary hearing deterioration
was quantified by measuring audiograms and click-evoked otoacoustic emissions (CEOAEs)
before and after a one-hour instrument practice. OAEs can exhibit an observable change before
changes in conventional audiometry associated with noise exposure [33] and may describe
hearing deterioration more clearly. We chose violinists as participants. Because of the proxim-
ity of the violin to the left ear, the left ear is exposed to intense violin sounds (broadband
sounds containing a significant number of high-frequency components) during regular instru-
ment practice. Violinists therefore have a higher probability of NIHL with potential interaural
differences than other musicians [5], [6], [34].

Methods

Participants
Sixteen audiometrically normal college-age violinists participated in the experiment. They
were students of Kyoto City University of Arts, majoring in violin. None reported a clinical his-
tory of hearing disorders. Three participants (#10, #14, and #15) whose CEOAE signal-to-
noise ratio was too low (< 2 dB) were not included in the post-experiment statistical analysis
relevant to the OAE and the MOCR data. Their distributions of their age, gender and violin-
playing experience are summarized in Table 1. All participants signed a consent form. The
experiments were approved by the Ethics Committee of NTT Communication Science Labora-
tories, and were conducted in accordance with the Declaration of Helsinki.

Equipment
For CEOAE and MOCR measurement, stimuli were digitally synthesized with sampling rates
of 96 kHz and converted to analog signals using an Edirol UA-101 (24 bits). The analog signals
were amplified by a headphone buffer and presented through Etymotic Research ER-4s ear-
phones connected to an ER-10B low-noise microphone system. Ear-canal sound pressure was
recorded with an Etymotic Research ER-10B low-noise microphone system inserted in each
ear. Sounds for eliciting the ipsilateral and contralateral MOCR were delivered by ER-4s ear-
phones. Prior to the measurement, the outputs from the ER-4s were calibrated using a DB2012
accessory (external ear simulator) of a Bruel and Kjaer Type 4257 ear simulator (IEC 711).

Sounds during the practice were recorded with custom-made equipment comprising two
microphones (SOUNDMANOKM-II) and headbands. This equipment allowed us to place
two small microphones 1–2 cm away from either ear. Recording of the practice session were
made by directing the line output of the microphones to a TASCAM DR-05 linear PCM
recorder with a 44.1-kHz sampling rate and 16-bit resolution. Prior to the measurement, the
frequency characteristics of the microphones were calibrated with Bruel and Kjaer BK4192
microphones. All measurements and violin practices were conducted in a quiet classroom or
conference room at Kyoto City University of Arts.
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Audiogrammeasurement
Hearing thresholds were measured with an audiometer (RION Type AA-58) and expressed as
hearing level (in dB HL). The thresholds were measured at five frequencies (500, 1000, 2000,
4000, and 8000 Hz) with 5-dB intensity resolutions using the audiometer’s search algorithm.
The order of the right- and left-ear measurement was randomized for each participant.

MOCR and CEOAEmeasurement
Wemeasured both the ipsilateral and contralateral MOCRs as CEOAE suppression induced by
noise presented to the ipsilateral and contralateral ear, respectively. The amount of suppres-
sion, typically ~ 4 dB, was assumed to be related to the MOCR strength [35].

In the measurement of the contralateral MOCR, a continuous noise was presented to the
contralateral (opposite) ear during the CEOAE recording [21]. The noise was band-pass fil-
tered between 100 and 10000 Hz and had a duration of 6 s, including a 10-ms raised-cosine
ramp. The noise was presented at 60-dB SPL. The click had a duration of 100μs and was pre-
sented at 60-dB peak-equivalent SPL. We chose a low intensity click and elicitor noise to avoid
producing additional hearing loss and eliciting the middle-ear reflex. One measurement block
was composed of without-noise and with-contralateral-noise conditions. In the without-noise
condition, a click alone was presented 50 times at intervals of 30 ms without presenting the
elicitor noise. In the with-contralateral-noise condition, the same click was presented 250 times
during presentation of the noise to the contralateral ear. In each measurement block, the with-
out-noise condition was always presented before the with-contralateral-noise condition.

In the measurement of the ipsilateral MOCR, we applied the forward suppression paradigm
[36], in which click was presented after the elicitor noise with a silent gap. The MOCR-related
suppression remains within 50 ms after the end of the noise [36], and we can separate the
MOCR-related suppression from suppression due to stimulus acoustic ringing, which generally
disappears within a few milliseconds, by setting an adequate interval between the elicitor noise
and click. The elicitor noise had a duration of 120 ms, including a 10-ms raised-cosine ramp.

Table 1. Participants’ demographic data. The participants who did not show a measurable OAE are marked with asterisk i.e., #10, #14 and #15.

Participant no. Gender Age [years] Music experience [years]

1 Female 21 15.5

2 Female 22 15

3 Female 20 16

4 Female 22 19

5 Female 21 16

6 Female 22 17

7 Female 20 17

8 Female 22 16

9 Female 19 13

10* Female 19 15.5

11 Female 20 17

12 Female 20 15

13 Female 19 14

14* Female 22 19

15* Male 18 15

16 Female 19 16

AVE 20.4 (SD 1.3) AVE 16.0 (SD 1.3)

doi:10.1371/journal.pone.0146751.t001
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The elicitor noise and click were presented alternately with 5- and 75-ms silent gaps between
the end of the elicitor noise and the click and between the click and the onset of the next elicitor
noise, respectively. One measurement block was composed of the without-noise and with-ipsi-
lateral-noise conditions. In the without-noise condition, the click was presented 50 times at
intervals of 30 ms without the elicitor noise. In the with-ipsilateral-noise condition, the combi-
nation of elicitor noise and click were presented 50 times. In each measurement block, the
without-noise condition was always presented before the with-ipsilateral-noise condition.

One set of MOCR measurements was composed of two blocks of contralateral-MOCR mea-
surement and ten blocks of ipsilateral MOCR measurement. The order of the blocks in one
measurement set was randomized. This MOCR measurement set was repeated three times for
both ears alternately (the order of left- and right-ear MOCR measurements was randomized
for each participant). Thus, a total of six and 30 blocks of contralateral and ipsilateral MOCR
measurements, respectively, were performed. Accordingly, for a given ear, each participant was
presented with a total of 1800 clicks without noise, 1500 clicks with the contralateral noise, and
1500 clicks with the ipsilateral noise.

Recorded waveforms were averaged for the without-noise, with-ipsilateral-noise, and with-con-
tralateral-noise conditions. MOCRwas computed by using the level of CEOAEs that were band-
pass filtered between 1 and 3 kHz, in which the largest MOCR-related CEOAE suppression was
observed [37]. The pressure levels of the band-pass filtered CEOAEs for each condition were
defined as RMS values in the region of 8–18 ms and are denoted as Pwithc, Pwithi and Pwithout (in
Pa). Contralateral and ipsilateral MOCR strength was defined as 20log10(Pwithc/Pwithout) and
20log10(Pwithi /Pwithout), respectively. To specify the frequency region where noise exposure has the
largest effect, CEOAEs for the without-noise condition were analyzed in three frequency bands
centered at 1, 2, and 4 kHz using a one-octave-wide band pass filter. The pressure level at each fre-
quency (in dB SPL) was defined as an RMS value in the 8–18 ms region of the band-passed wave-
form. In the following, we refer to those CEOAEs in the without-noise condition as “CEOAE”.

Time schedule of the measurements
Audiograms, CEOAEs, and MOCR strength were obtained just before and immediately after
the one-hour instrument practice session. To observe the recovery from the temporary deterio-
ration, we also conducted the same measurement 60 minutes after the end of the violin prac-
tice. The order of hearing thresholds and CEOEAs and MOCR strength measurement was
randomized for each participant. For a given participant, the order was identical for the pre-
and post-exposure measurements. The measurement of hearing thresholds took approximately
five minutes; that of CEOAEs and MOCR strength took approximately 15 minutes.

Exposure assessment
Participants were instructed to play the violin as in their usual solitary practice. Throughout
the instrument practice session, participants played the violin almost continuously, except for
short breaks to prepare scores for a next piece. The sounds to which they were exposed during
the one-hour practice were recorded by small microphones placed 1–2 cm away from either
ear. The average exposure level throughout the one-hour of violin playing was computed with
A-weighted root-mean-square (in dBA), 1/3 octave band and octave band sound levels (in dB
SPL) with center frequencies between 250 and 10000 Hz.

Statistical analysis
The effect of the exposure during the practice on CEOAE and audiogram was assessed by a
two-way split-plot analysis of variance (ANOVA) with condition (before and after the practice)
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and frequency as factors. Subsequent post-hoc pairwise comparisons were performed to sepa-
rately test significance of differences between the data before- and immediately after the prac-
tice and between the data before and 1h after the practice. Relationships among changes in
CEOAE or audiogram with exposure level and the MOCR strength were assessed by using
Pearson’s product-moment correlation coefficient. For all analyses, normality of distribution
and equality of variance were ascertained by a one-sample Kolmogorov—Smirnov test and
Levene’s tests, respectively. Statistical significance was set at a probability value of p = 0.05
except for the post-hoc pairwise comparisons in which p-values were adjusted by Bonferroni
correction.

Results

Characteristics of exposure
During the violin practice, participants played the violin almost continuously (Fig 1A). A-
weighted exposure levels to the right and left ear were 89.7 (SD 2.4) and 98.9dBA (SD 5.9),
respectively. The exposure level to the left ear was 9.2 dB (SD 4.3) larger than to the right ear
(T15 = 8.4, p<0.001). The exposure level to the left ear was larger than to the right ear in the
middle- to high-frequency region (> 500 Hz) (Fig 1B): A two-way split-plot analysis of vari-
ance (ANOVA) with laterality (left and right) and frequency as factors showed a significant
main effect (F1, 15 = 30.0, p<0.001) and significant interactions of laterality and frequency (F16,
240 = 10.3, p<0.001). Significant simple main effects were found at frequencies above 500 Hz
(F1,255> = 9.7, p< = 0.0021, Bonferroni-corrected α = 0.0029).

General characteristics of the measure before the instrument practice
All participants showed normal audiograms (HL< = 25 dB HL) before the violin practice and
no significant difference between the right and left ear: A two-way split-plot ANOVA with
laterality and frequency as factors shows no significant main effect (F1, 15 = 0.43, p = 0.52) or
interaction of laterality and frequency (F4, 60 = 1.50, p = 0.21). There was also no significant dif-
ference in CEOAE between the right and left ear (ANOVA as above, F1, 12 = 0.47, p = 0.5 and
F2, 24 = 0.81, p = 0.46, respectively).

CEOAE level was significantly smaller in the with-contralateral-noise and with-ipsilateral-
noise condition than the without-noise condition both for the right (T12 = 5.7, p<0.001 and
T12 = 4.0, p = 0.0017, respectively) and left ear (T12 = 5.3, p<0.001 and T12 = 4.2, p = 0.0012,
respectively). Mean ipsilateral MOCRs were -2.0 dB (SD 1.7) for the left ear and -2.2.dB (SD
1.9) for the right ear. Mean contralateral MOCRs were -2.5 dB (SD 1.6) for the left ear and -2.6
dB (SD 1.6) for the right ear. There was no significant difference between the right and left ear
for the contralateral MOCR (T12 = 0.25, p = 0.81) and ipsilateral MOCR (T12 = 0.43, p = 0.68).

Audiogram and CEOAE changes caused by the short-duration
instrument practice
The short-duration instrument practice caused a left-ear and 4-kHz specific TTS (Fig 2A): For
left ears, a two-way split-plot ANOVA with condition (before and after the practice) and fre-
quency as factors showed no significant main effect (F1, 15 = 0.0021, p = 0.96) and a significant
interaction of condition and frequency (F4, 60 = 4.2, p = 0.0048). A simple main effect was
observed at 4 kHz in audiograms (F1, 75 = 7.9, p = 0.0063, Bonferroni-corrected α = 0.01). An
ANOVA as above for the right ear showed no significant main effect (F1, 15 = 0.52, p = 0.48) or
interaction (F4, 60 = 1.1, p = 0.38). The right-ear hearing thresholds straight after the practice
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were lower in 1–2 kHz than before practice, but those differences were not statistically
significant.

The short-duration instrument practice caused a 4-kHz specific CEOAE decrease in both
ears (Fig 2B): For left ears, a two-way split-plot ANOVA with condition (before and after the
practice) and frequency as factors showed a significant main effect (F1, 12 = 20.4, p<0.001) and
a significant interaction of condition and frequency (F2, 24 = 15.1, p<0.001). An ANOVA as
above for the right ear showed no significant main effect (F1, 12 = 4.1, p = 0.067) or a significant
interaction (F2, 24 = 3.1, p = 0.062). A simple main effect was observed at 4 kHz in the left and
right ear (F1,36 = 48.1, p<0.001, Bonferroni-corrected α = 0.017 and F1,36 = 8.2, p = 0.0069,

Fig 1. Acoustic characteristics during the violin practice. A: Typical characteristics of the acoustic exposure during a violin practice for the left ear. B:
Comparison between exposure level for the left ear and right ear (* p<0.0029, Bonferroni-corrected α).

doi:10.1371/journal.pone.0146751.g001
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Bonferroni-corrected α = 0.017, respectively). The TTS at 4 kHz and the CEOAE decrease at 4
kHz were significantly correlated (R12 = 0.82, p<0.001; Fig 2C).

Correlation between exposure level and temporary hearing deterioration
The larger TTS and the greater CEOAE decrease in the left ear are likely to reflect the larger
exposure level in the left ear than in the right ear (Fig 3A and 3B): When the data for the left

Fig 2. Transient hearing deterioration caused by the short-duration violin practice. A: The audiogram of left ear (left panel) and right ear (right panel)
before (blue line) and after (red line) the violin practice. B: The CEOAE spectrum of left ear (left panel) and right ear (right panel) before (blue line) and after
(red line) the violin practice. Error bars show the standard errors across listeners. Significance of post-hoc pairwise comparisons is marked as *** p<0.001
and * p<0.05. The data obtained 60 minutes after the end of the violin practice are shown by gray dashed lines. C: Correlation between CEOAE decrease at
4 kHz and TTS at 4 kHz. Each participant’s data point is represented with participant number.

doi:10.1371/journal.pone.0146751.g002
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and right ear were pooled, the one-octave exposure level at 4 kHz was significantly correlated
with the TTS at 4 kHz (R31 = 0.47, p = 0.0069) and the CEOAE decrease at 4 kHz (R25 = 0.39,
p = 0.050); the data for the left ear were distributed around the right top, and the data for the
right ear were distributed around the left bottom on the regression line derived from the expo-
sure level and the size of hearing deterioration (Fig 3A and 3B). Nevertheless, separate analyses
showed a tendency towards (although not significant) positive correlation of exposure level
with TTS (R15 = 0.48, p = 0.057 for left ear; R15 = 0.24, p = 0.37 for right ear) and CEOAE
decrease (R12 = 0.49, p = 0.092 for left ear; R12 = 0.12, p = 0.69 for right ear) only for the left ear.

Correlation between MOCR strength and temporary hearing
deterioration
For the left ear, ipsilateral MOCR strength was negatively correlated with the TTS (R12 = 0.71,
p = 0.0064; Fig 4A) and the CEOAE decrease (R12 = 0.66, p = 0.014; Fig 4B). For the right ear,
MOCR strength was not correlated with the hearing threshold changes and CEOAE decrease
(R12 = 0.21, p = 0.49 for audiogram; R12 = 0.18, p = 0.56 for CEOAE). Contralateral MOCR
strength was not significantly correlated with the TTS or the CEOAE decrease in the right and
left ear (|R12|<0.27, p>0.37).

Recovery from temporary hearing deterioration
To observe the recovery from the temporary deterioration, we also conducted the same mea-
surement 60 minutes after the end of the violin practice and found that the left-ear hearing
thresholds were lower (better audibility) than before the practice (Fig 2A): A two-way split-
plot ANOVA with condition (before and 60 minutes after the practice) and frequency as

Fig 3. Amount of hearing deterioration reflects exposure level.Correlation of exposure level at 4 kHz with the elevation of hearing threshold at 4 kHz (A)
and with CEOAE decrease at 4 kHz (B). The data for the left and right ears are represented by the dots and crosses, respectively. The numbers attached to
the symbols are participant numbers. The Pearson correlation coefficients, R, with their p-values shown in the panels, and the regression lines were derived
for the pooled data for both ears.

doi:10.1371/journal.pone.0146751.g003
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factors showed a significant main effect (F1, 13 = 7.4, p = 0.018) and no significant interaction
of condition and frequency (F4, 52 = 1.7, p = 0.16) in the left ear. An ANOVA as above showed
no significant main effect or interaction in the right ear (F1, 13 = 1.3, p = 0.27 and F4, 52 = 0.31,
p = 0.87 respectively).

On the other hand, a significant CEOAE decrease persisted even 60 minutes after the prac-
tice for the left ear (Fig 2B): An ANOVA as above showed no significant main effect (F1, 11 =
3.83, p = 0.076) and a significant interaction (F2, 22 = 8.25, p = 0.0021). The simple main effect
at 4 kHz was significant (F1, 33 = 15.9, p<0.001, Bonferroni-corrected α = 0.017). For the right
ear, there was no significant difference before and 60 min after the practice: An ANOVA as
above showed no significant main effect (F1, 11 = 0.0041, p = 0.95) or significant interaction (F2,
22 = 5.90, p = 0.0089). There was no simple main effect (F1, 33<4.65, p>0.039, Bonferroni-cor-
rected α = 0.017).

Discussion
In this study, we showed that MOCR strength could predict hearing deterioration caused by a
short-duration instrument practice. To our knowledge, this is the first study to report an asso-
ciation between MOCR strength and the risk of hearing loss among musicians.

General characteristics of the measures
There was no significant difference between the left and right ear for audiograms and CEOAE
before the violin practice. In contrast, some studies have reported that professional violinists
tend to have left-ear-specific hearing loss in audiograms [3], [6]. Presumably, our participants
were younger than those in previous studies [3], [6] and had not developed permanent hearing
loss in the left ear.

Fig 4. MOCR strength could predict the size of hearing deterioration caused by a violin practice. Correlation of ipsilateral MOCR strength with the
elevation of hearing threshold at 4 kHz (A) and with CEOAE decrease at 4 kHz in the left ear (B). Pearson correlation coefficients are shown with their p-value
in parentheses. Regression lines were derived from linear least squares regression. Each participant’s data point is represented with participant number.

doi:10.1371/journal.pone.0146751.g004
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Although we should be cautious when comparing our results with previous studies because
of several methodological differences [38], [31], we note an interesting difference from those
previous studies. Our participants showed no significant left-and-right-ear difference in the
MOCR strength. Generally, the MOCR of the right ear has been reported to be stronger than
that of the left ear for both musicians and non-musicians [38]. This inconsistency might be due
to the asymmetry of exposure in violinists (i.e., larger exposure in the left ear than in the right
ear). An experimental animal study has shown that repeated exposures induce a functional
increase in the activity of MOC fibers [39]; therefore, the larger exposure to the left ear might
make the left-ear MOCR stronger and comparable to the right-ear MOCR.

Temporary hearing deterioration revealed in audiogram and CEOAE
An instrument practice as short as one-hour caused a 4-kHz and left-ear specific TTS, which is
similar to a typical pattern of the PTS among professional violinists [4]. Consistently, CEOAE
for the left ear decreased at 4 kHz proportionally to the TTS. This left-ear specific TTS and
CEOAE decrease could be accounted for by larger exposure to the left ear than to the right ear,
related to the proximity of instruments to the ears [3], [5], [6]. This is consistent with the posi-
tive correlation we found between the left-ear TTS and exposure level, although the p-value did
not reach the criterion value for the statistical significance, probably because of insufficient sta-
tistical power.

CEOAE decreased at 4 kHz also for right ears. CEOAE might be sensitive to a slight func-
tional change of the right ear that could not be revealed in the conventional audiometry. It has
been shown that CEOAE can exhibit an observable change before conventional audiometry
changes [33].

Recovery from temporary hearing deterioration
Interestingly, the left-ear hearing thresholds one hour after a violin practice were even lower
than those before it. Considering that a significant CEOAE decrease persisted even 60 minutes
after the practice, this enhanced hearing sensitivity may originate in functional changes in the
retrocochlear auditory pathway. Indeed, several animal studies observed enhancement of neu-
ral responses after acoustic exposure: Salvi et al. [40] measured evoked responses in inferior
colliculus before and after exposure to a 2 kHz pure tone of 105-dB SPL and observed larger
maximum responses at 0.5 and 2 kHz after the acoustic exposures. Willott and Lu [41] reported
that some neurons showed enhanced evoked responses immediately after the exposure to 95-
or 100-dB white noise. Taken together, the acoustic exposure during the violin playing might
induce short-term plastic changes in the central auditory pathway, leading to the enhanced
hearing sensitivity after a practice.

Prediction of individual susceptibility to noise exposure by MOCR
measurement
MOCR strength was negatively correlated with the TTS and the CEOAE decrease caused by a
short-duration instrument practice; the participants who had strong efferent activity tended to
show a small TTS and small OAE decrease. This result is consistent with studies of NIHL
reporting that individuals with a stronger MOCR show a smaller TTS [23] (in humans) and
smaller PTS [15] (in guinea pigs) induced by intense white noise.

Despite extensive studies [22], the evidence for the protective role of MOCR in humans is
still equivocal. Especially under field study conditions in which noise exposures are varied to
some extent among participants, no earlier study reported that MOCR strength can predict
hearing deterioration: MOCR strength did not correlate with the TTS caused by exposure to
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one day of occupational noise [30], three hours of a discotheque [29], five gun shots [27], or
one hour of music from an MP3 player [28]. An exception was that a significant correlation
was found between MOCR strength and threshold recovery from TTS caused by exposure to
rifle discharge [26]. The critical difference between those previous studies and the current one
was that our participants were musicians. The relation between the MOCR strength and hear-
ing deterioration might be clearer in the current study than those in previous ones; Musicians’
MOCRs are stronger than those of non-musicians [31], [32], [38]. They therefore would gener-
ate a larger variation, which could be a dominant factor determining the hearing deterioration.
Unfortunately, we cannot make a direct comparison of the variability with those previous stud-
ies because of several methodological differences (described below); however there is some
indirect evidence: In Perrot et al. [38], the variability of the contralateral MOCR in musicians
was larger than in non-musicians (its statistical significance was not mentioned), whereas both
the variability and average of the ipsilateral MOCR strength in the current study were larger
than those in non-musicians reported in Berlin et al. [36].

Regarding differences between our study and previous ones [26], [28], [29], [30], it should
be noted that the temporary hearing deterioration was correlated with the ipsilateral MOCR
but not with the contralateral MOCR in our experiments. This is consistent with the fact that
previous studies have failed to find a correlation between contralateral MOCR and TTS [26],
[28], [29], [30]. However, it is still unclear whether the ipsilateral MOCR plays a more impor-
tant role in protection against NIHL than the contralateral MOCR; During the violin practice,
the ipsilateral MOCR to the left ear was more activated by stronger exposure to the violin
sound than the contralateral MOCR, which was activated by the exposure to the right ear. As a
result, the ipsilateral MOCR might provide stronger noise-protective role and more predomi-
nantly determine the size of the temporary hearing deterioration than the contralateral MOCR.

It is not yet clear why musicians’MOCR (or its variation) is larger than non-musicians’ and
what produces the inter-individual variation of MOCR strength among musicians. Perrot and
Collet [32] suggested that there are two possible neuroplastic factors that may enhance the
musicians’MOC system activity: sound conditioning of the MOCR due to the exposure to
musical sounds and central nervous plasticity caused by active musical practice. As to sound
conditioning, it is known that sound exposure itself induces plastic changes in the MOC sys-
tem. Brown et al. [39] reported that repeated sound exposure induces a functional increase of
the activity of MOC fibers, which might reflect a long-term neuroplasticity in the SOC [42].
Kujawa and Liberman [43] have also shown that the PTS induced by intense sound is smaller
after long-term exposure to a moderate level of sound and that the smaller PTS is accompanied
by an enhancement of MOCR. Active training during musical practice can also vary the
MOCR strength. Boer and Thornton [44] reported that training for a speech-in-noise discrimi-
nation task improved the task performance, concomitantly with an increase in MOCR
strength. This improvement presumably reflects training-induced short-term plasticity of cor-
ticofugal neural pathways, as demonstrated in experimental animals [45], [46]. An alternative
to the possible involvement of neuroplasticity in developing a strong MOCR would be the
notion that people whose MOCR is innately stronger are more likely to become musicians. In
other words, the MOCR might constitute innate predispositions to music, e.g., MOCR might
facilitate musical training, and people with innately stronger MOCR would show greater musi-
cianship. Taken together, the differences in exposure and active training during musical prac-
tice as well as innate biological factors might produce the inter-individual difference in
musicians’MOCR strength.
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Conclusion
A short-duration instrument practice causes a temporary hearing deterioration among violin-
ists. The larger exposure level in the left ear could account for the more pronounced hearing
deterioration in the left ear than in the right ear, but it could not entirely explain the inter-indi-
vidual variation of the hearing deterioration. On the other hand, MOCR strength assessed by
CEOAE suppression could predict the size of the hearing deterioration moderately well. Our
findings imply that the exposure level depending on the proximity of the instrument can partly
determine the risk of hearing loss and that MOCR measurement is promising for assessing the
risk of hearing loss among musicians.
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