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Abstract

Neurophysiological field-potential signals consist of both arrhythmic and rhythmic patterns 

indicative of the fractal and oscillatory dynamics arising from likely distinct mechanisms. Here, 

we present a new method, namely the Irregular-Resampling Auto-Spectral Analysis (IRASA), to 

separate fractal and oscillatory components in the power spectrum of neurophysiological signal 

according to their distinct temporal and spectral characteristics. In this method, we irregularly 

resampled the neural signal by a set of non-integer factors, and statistically summarized the auto-

power spectra of the resampled signals to separate the fractal component from the oscillatory 

component in the frequency domain. We tested this method on simulated data and demonstrated 

that IRASA could robustly separate the fractal component from the oscillatory component. In 

addition, applications of IRASA to macaque electrocorticography (ECoG) and human 

magnetoencephalography (MEG) data revealed a greater power-law exponent of fractal dynamics 

during sleep compared to wakefulness. The temporal fluctuation in the broadband power of the 

fractal component revealed characteristic dynamics within and across the eyes-closed, eyes-open 

and sleep states. These results demonstrate the efficacy and potential applications of this method 

in analyzing electrophysiological signatures of large-scale neural circuit activity. We expect that 

the proposed method or its future variations would potentially allow for more specific 

characterization of the differential contributions of oscillatory and fractal dynamics to distributed 

neural processes underlying various brain functions.
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1. INTRODUCTION

RICH temporal dynamics of neural activity is commonly captured by electrophysiological 

recordings, e.g. local field potential (LFP), electrocorticogram (ECoG), 

electroencephalography (EEG) and magnetoencephalography (MEG) (Nunez and 

Srinivasan, 2006). Such neural signals exhibit a variable mixture of rhythmic and arrhythmic 

*Correspondence Zhongming Liu, PhD, Assistant Professor of Biomedical Engineering, Assistant Professor of Electrical and 
Computer Engineering, College of Engineering, Purdue University, 206 S. Martin Jischke Dr., West Lafayette, IN 47907, USA, 
Phone: +1 765 496 1872, Fax: +1 765 496 1459, zmliu@purdue.edu. 

HHS Public Access
Author manuscript
Brain Topogr. Author manuscript; available in PMC 2017 January 01.

Published in final edited form as:
Brain Topogr. 2016 January ; 29(1): 13–26. doi:10.1007/s10548-015-0448-0.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



patterns (Buzsáki et al., 2012). The former arises from oscillatory network activity with a 

characteristic time scale (Buzsáki and Draguhn, 2004), whereas the latter is not confined to 

any specific scale and reflects the so-called fractal (or scale-free) dynamics (He et al., 2010). 

When these signals are transformed to corresponding power spectra, the oscillatory 

component results in multiple discrete peaks at specific frequencies, and the fractal 

component manifests itself as a descending straight line on the log-log plot suggesting a 

power-law relationship (Miller et al., 2009).

Oscillatory and fractal activities are likely generated through different mechanisms (Buzsáki 

and Draguhn, 2004; He et al. 2010) and report on distinct features of large-scale neural 

networks (Bullmore and Sporns, 2009; Engel et al., 2013; Siegel et al., 2012). In particular, 

neuronal oscillations have been of long-standing interest to neurophysiologists, and in 

practice are extracted by applying band-pass filtering to neural signals. However, the 

resulting band-limited signals, although appearing oscillatory, can result from filtering even 

in the absence of any biological oscillator, and thus may sometimes reflect artificially 

extracted fractions of the brain’s arrhythmic activity (He, 2014).

Analysis of fractal dynamics has also attracted growing interest with the current emphasis 

directed upon its frequency scaling property (Ciuciu et al., 2012; El Boustani et al., 2009; 

Fransson et al., 2013; Freeman, 2007; He et al., 2010; Manning et al. 2009). To characterize 

this property, power spectral density (PSD) of neural signals is often fitted by a power-law 

function, or equivalently a linear function in double-logarithmic coordinates, where the 

slope provides an estimate of the underlying power-law (or frequency-scaling) exponent 

(Manning et al., 2009; Miller et al., 2009). The precision of such estimation, however, is 

compromised in the presence of prominent oscillations that deviate the PSD from a power-

law distribution (He et al., 2010; Miller et al., 2009).

Therefore, it is desirable to separate fractal and oscillatory components in order to analyze 

their individual characteristics without being concerned about their mutual interference. 

Toward this end, a method known as the coarse graining spectral analysis (CGSA) has been 

developed to extract and analyze the fractal dynamics (Yamamoto and Hughson, 1991, 

1993) of human ECoG signals (He et al., 2010). Central to CGSA is the so-called self-

affinity property of any fractal time series: the statistical distribution remains unchanged 

when resampled at different time scales (Mandelbrot and Van, 1968). It follows that after 

resampling a time-series signal (e.g. by a factor of 2 or ½), the cross power spectrum of the 

original and resampled signals is expected to follow a power-law distribution if the signal is 

self-affine or fractal, but close to zero if the signal is simply periodic or oscillatory 

(Yamamoto and Hughson, 1991, 1993). For this reason, CGSA has been presumed to be 

able to extract the fractal component from the power spectrum of a time series that mixes 

both fractal and oscillatory processes (González et al., 1999; He et al., 2010; Pereda et al., 

1998; Yamamoto and Hughson, 1991, 1993). Although it sounds intuitively reasonable, this 

presumption is questionable in theory. When a signal is composed of both fractal and 

oscillatory time series, the cross power spectrum of this signal and its resampled version 

includes non-negligible contributions from the interactions of the original (or resampled) 

fractal time series and the resampled (or original) oscillatory time series. Such interactions 

are difficult to remove based on the cross-spectral analysis, bringing into question the 
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practical efficacy of CGSA for separating the spectral components attributed to the fractal 

and oscillatory dynamics.

Here we propose a new method, referred to as the Irregular-Resampling Auto-Spectral 

Analysis (IRASA), to separate fractal and oscillatory components in the power spectrum of 

neurophysiological signals. In IRASA, we resample a neural signal by multiple non-integer 

pairwise factors (positive numbers and their reciprocals), and then compute the geometric 

mean of the auto-power spectra of every pair of the resampled signals. In the resulting 

spectrum, the power associated with the oscillatory component is redistributed away from its 

original (fundamental and harmonic) frequencies by a frequency offset that varies with the 

resampling factor, whereas the power solely attributed to the fractal component remains the 

same power-law statistical distribution independent of the resampling factor. It follows that 

taking the median of the mean auto-power spectra of the variously resampled signals can 

extract the power spectrum of the fractal component, and the difference between the original 

power spectrum and the extracted fractal spectrum offers an approximate estimate of the 

power spectrum of the oscillatory component.

In what follows, we will show that IRASA is robust against the presence of the complex 

interaction between fractal and oscillatory components, being useful to extract the 

broadband activity that conforms to the scale-free dynamics. To demonstrate this point, we 

have evaluated IRASA with both simulation and experimental (MEG and ECoG) data. We 

have noted that the fractal dynamics in different behavioral states gives rise to distinct 

broadband features, suggesting that IRASA can be used to potentially reveal and 

differentiate the varying fractal signatures across brain states. Other implications and future 

applications are also discussed. In the online supplementary materials, we will further 

compare IRASA with CGSA in theory and with simulation data.

Methods and Materials

The problem addressed here is to separate the power spectra of the unknown fractal activity, 

f(t), and the unknown oscillatory activity, x(t), given the measured neural signal, y(t), which 

is assumed to consist of both f(t) and x(t) through a simple additive model without noise.

(1)

To solve this problem, we have developed the IRASA method that utilizes the self-affine 

property of fractal time series and the frequency-specific nature of oscillatory time series 

(Fig. 1). For IRASA, the spectral component due to the fractal activity was first extracted 

from the spectrum of the mixed neural signal, and then taking the difference between the 

mixed spectrum and the extracted fractal spectrum served to approximate the spectral 

component due to the oscillatory activity. In the following, we will first introduce the 

temporal and spectral characteristics of fractal and oscillatory signals; then we will elaborate 

the theory and algorithm for IRASA; lastly we will describe the simulation and experimental 

data used for performance evaluation. The theoretical basis and limitations of CGSA are 

elaborated in the online supplementary materials in addition to (Yamamoto et al. 1991, 

1993).
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2.1 Self-Affinity of Fractal Time Series

A fractal time series, f(t), satisfies a self-affine relationship expressed as (2).

(2)

It indicates that when the fractal time series is resampled by a factor of h (h>0), the 

resampled time series, denoted as fh(t), has the same statistical distribution as the original 

one scaled by a factor of hH, where H is called the Hurst exponent (Mandelbrot and Van, 

1968). Applying the Fourier transform to f(t) and fh(t) yields F(ω)ejα(ω) and Fh(ω)ejαh(ω) 

respectively, where F(ω) and α(ω) are the amplitude and phase at specific angular 

frequencies ω for f(t), and Fh(ω) and αh(ω) are the counterparts for fh(t). This self-affine 

relationship is equivalent to the frequency scaling property expressed as (3).

(3)

It means that the amplitude spectrum of the resampled fractal time series is the same as that 

of the original time series scaled by a factor of hH. Note that Eq. 3 holds true only if F(ω) 

follows a power-law distribution shown as a line in log-log coordinates.

2.2 Narrow-Band Nature of Oscillations

Let x(t) stand for an oscillatory time series and xh(t) be the time series obtained by 

resampling x(t) by a factor of h. Let X(ω)ejβ(ω) and Xh(ω)ejβh(ω) be the Fourier 

representations of x(t) and xh(t), respectively. By definition x(t) is a periodic and narrow-

banded signal. The power spectra of both x(t) and its resampled version xh(t) are non-zero 

only at specific frequencies and close to zero elsewhere. The “sparse” spectral distribution is 

the characteristic of oscillations in contrast to the fractal dynamics, which has a 

“continuous” broadband distribution.

2.3 Irregular-Resampling Auto-Spectral Analysis (IRASA)

In IRASA, we extract the fractal power spectrum through computing the auto-power spectra 

of the resampled signals that result from downsampling and upsampling the measured signal 

by a set of non-integer factors. As such, the resulting time series signals are “irregularly” 

resampled from the original signal.

The auto-power spectra of yh(t) and y1/h(t) are as (4) and (5), respectively.

(4)

(5)

where Ψh(ω) = Xh(ω)/Fh(ω), θh(ω) = αh(ω) − βh(ω), Ψ1/h(ω) = X1/h(ω)/F1/h(ω), θ1/h(ω) = 

α1/h(ω) − β1/h(ω). Note that Ψ and θ indicate the relationship between the oscillatory and 
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fractal components in terms of their ratio in magnitude and their difference in phase, 

respectively.

By computing the geometric mean of these two auto-power spectra, we can obtain an initial 

estimate of the fractal power spectrum, which is denoted as S̄h(ω) and expressed as (6).

(6)

If y(t) only contains the fractal component, Ψh(ω) and Ψ1/h(ω) are equal to zero for any ω, 

and Sh̄(ω) is then independent of h and always equals to the fractal power spectrum. If y(t) 

only contains the oscillatory component with a single harmonic frequency ω0, S̄h(ω) is equal 

to zero for any frequency.

If both fractal and oscillatory components are present in y(t), S̄h(ω) is as (7).

(7)

It suggests that S̄h(ω) is an unbiased estimate of the fractal power spectrum at the oscillatory 

frequency as well as other frequencies except ω0h and ω0/h. Importantly, since the 

estimation errors are expected to occur only at frequencies that are dependent on the 

resampling factor h, setting different non-integer values (e.g. between 1.1 and 1.9) to h 

relocates the oscillation-associated power and yields a set of estimates for the fractal power 

spectrum {S̄h(ω)}. In every one of these estimates, the oscillatory power is relocated to 

different frequencies (as illustrated in Fig. 2). In other words, these h-dependent spectral 

estimates, viewed at every individual frequency, are expected to mostly center about the true 

power of the underlying fractal component with typically one deviation due to the 

interference from the underlying oscillatory component. This deviation is an “outlier” within 

a set of otherwise unbiased fractal power estimates at each frequency (as illustrated in Fig. 

S2). We can eliminate the bias from the outlier by taking the median of these fractal power 

estimates at every frequency.

(8)

Since the median is a very robust sampling statistic against the presence of outliers with a 

breakdown point of 50% (Bassett, 1991), Eq. 8 is expected to yield an unbiased estimate of 

the power of the fractal component at any specific frequency as long as the number of 

outliers is less than half at this frequency. See Fig. 2 and Fig. S3 for more detailed 

illustrations and explanations.

To further estimate the PSD of the oscillatory component, we derive Eq. (9) from Eq. (1).
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(9)

It shows that the PSD of the oscillatory component is related not only to the difference 

between the PSD of the mixed signal and the PSD of the fractal component, but also to 

another confounding term that depends on the relative phase difference between the fractal 

and oscillatory components. Assuming no phase-phase coupling between the fractal and 

oscillatory components, the expectation of this confounding term is close to zero. To 

approximate the expectation, we can select multiple time segments within the given period 

during which the signal is assumed to be stationary. After averaging the PSD of the 

segmented signal across segments, the confounding term reduces to zero. Therefore, the 

difference of the averaged PSD of the raw signal and the estimated PSD of the fractal 

component can serve as an unbiased estimate for the expectation of the PSD of the 

oscillatory component.

2.4 Algorithm

a. From a given period of the time series signal, we chose ten time segments. Every 

time segment was 90% of the total length. These segments were evenly distributed 

within the total period and were partially overlapping.

b. For each segment defined in (a), the auto-power spectrum was estimated from the 

original signal by using fast Fourier transform (FFT) tapered with a Hanning 

window. The number of frequency points (NFFT) was chosen to be two times the 

smallest power of two that was greater than the number of time points in each 

segment. Given h<2 as used in (c), NFFT is guaranteed to be greater than the 

number of time points in the original signal or its down-sampled or up-sampled 

version, ensuring equal sampling in the angular frequency without losing any 

overall spectral energy.

c. For each segment defined in (a), we resampled the signal by h and 1/h, where h 

ranged from 1.1 to 1.9 with the increment of 0.05. In order to irregularly upsample 

the signal by h, we interpolated the signal by using a cubic spline method. To 

irregularly downsample the signal, we first applied an anti-aliasing low-pass filter 

and then used the cubic spline interpolation. Then we estimated the auto-power 

spectra of the resampled signals using the same FFT-based method and the same 

number of frequency points as in (b).

d. For each segment defined in (a), the geometric mean of the auto-power spectra of 

the up-sampled and down-sampled signals was calculated for each h value. The 

median of the results with all h-values was obtained to estimate the power spectrum 

of the fractal component.

e. The estimated PSD of the fractal component and the calculated PSD of the signal 

were both averaged across all time segments defined in (a).
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f. The average power spectrum of the fractal component was subtracted from the 

average power spectrum of the original signal to yield the estimated power 

spectrum of the oscillatory component.

The above algorithm was implemented in Matlab and will soon be made publicly available 

with example datasets on our website (http://engineering.purdue.edu/libi/lab/Resource.html).

The estimated power spectrum of the fractal component was transformed to the log-log scale 

only for the display and quantification of the power-law distribution. In the log scale, there 

are increasingly more spectral sampling points for higher frequencies. Therefore, we 

resampled the frequencies to be evenly spaced in the log scale, in order to prevent the higher 

frequency range from dominating the estimation of the power-law properties. Then we used 

the least squares estimation to obtain a linear function that best fitted the estimated fractal 

power spectrum. The slope of the linear function was the estimated power-law exponent, β, 

and the intercept of the linear function was referred to as the log-power intercept. The mean 

power in the log scale was the estimated broadband power (Miller et al., 2009).

Note that a sliding window can be used to progressively select shorter periods out of a 

relatively longer period, as commonly used in short-time Fourier transform. Within each 

sliding window, the above algorithm and quantification can be used to separate the power 

spectra of the fractal and oscillatory components of the signal, resulting in time frequency 

representations of the fractal and oscillatory components.

2.5 Computer Simulation

For the initial tests of the proposed IRASA method, we simulated fractal and oscillatory 

time series without considering noise. The fractal time series was generated by inverse FFT 

applied to a power-law Fourier spectrum as described in (Yamamoto and Hughson, 1993). 

Briefly, the power distribution followed a 1/f trend with a preset power-law exponent β. The 

phase distribution was random and followed a uniform distribution between 0 and θmax, 

where θmax ≤ 2π.

The oscillatory component was simulated as a single sinusoidal signal or the sum of a 

varying number of sinusoidal signals, and then added to the simulated fractal component. 

The amplitudes of the additive sinusoidal signals were systematically varied from 10 to 

400% of those of the fractal component at the same frequencies. All of the simulated time 

series signals included 8500 time points with a 1000-Hz sampling rate. With these noise-free 

simulation data, we evaluated the performance of separating and characterizing the power 

spectrum of the fractal component as a function of the number of oscillations, the phase 

distribution of the fractal time series, and the relative amplitude of the oscillatory component 

to the fractal component. In addition, we also applied the IRASA to estimate the PSD of the 

simulated multifractal time-series component that exhibited power-law distributions in 

multiple separate frequency ranges with different power-law exponents.

Although the aforementioned theoretical derivation is based on a noise-free model, we also 

simulated data with additive white noises. For an initial testing purpose, we first mixed one 

10Hz oscillatory signal with the simulated scale-free signal as aforementioned; then we 

added randomly generated noise to the mixed signal such that the signal to noise ratio, 
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defined as the ratio of the variance of the mixed signal to the variance of the additive noise, 

varied at 1, 10, and 100. With these data, we evaluated the robustness of IRASA against 

noise contamination.

2.6 Experiment Data and Analyses

We also used the proposed IRASA method to analyze in vivo ECoG and MEG data. The 

ECoG data were downloaded from the website of the Project Tycho (http://neurotycho.org). 

The ECoG data were originally collected with a sampling rate of 1kHz from macaque brain 

in the eye-closed wakeful resting state and the sleep state by using 128 sensors covering the 

entire lateral surface of the left macaque cortex. In this study, we analyzed data from two 

macaques, 4 sessions for each macaque, and each session included two segments of 5-min 

time series with one in wakefulness and the other in sleep. The MEG data were obtained 

from a previously published study (Liu et al., 2010). It was recorded in three different 

behavioral states, the eyes-closed, eyes-open and sleep states for a total of 40 minutes. We 

analyzed the MEG data from 5 subjects.

For both ECoG and MEG data, we applied IRASA to a sliding time-window to obtain a 

time-varying fractal and oscillatory spectra (i.e. time-frequency representation or 

spectrogram). The sliding window was set to be 3s with 1s increments. We fitted a power-

law function to the estimated fractal spectrum (1–30Hz) at every sliding time window, and 

obtained the time courses of the power-law exponent, the intercept of the power-law 

function in log-log coordinates, and the broadband power. We further averaged the time-

resolved spectral components within distinct behavioral states and compared the results 

across states. The purpose was to characterize and differentiate different behavioral states 

based on their broadband scale-free signatures as opposed to narrowband oscillations.

RESULT

We initially evaluated the efficacy of IRASA in comparison with CGSA by using simulated 

time-series signals with various mixtures of fractal and oscillatory components. Fig. 3.A and 

3.B show the PSD of the simulated signals and the PSD of the fractal components estimated 

by using CGSA and IRASA. For CGSA, the extracted fractal PSD generally followed a 

power-law (1/f) trend with “noisy” deviations especially at the oscillation frequencies where 

the spectral peaks remained obvious despite the reduced power. Note that CGSA could not 

lead to the complete separation of the fractal and oscillatory components even if the 

oscillation only had a single frequency (as predicted by its theoretical limitations elaborated 

in the online supplementary material), and its performance became worse when an 

increasing number of oscillations were included. In contrast, IRASA could be used to 

successfully remove oscillations and obtain an accurate fractal PSD that strictly obeyed the 

power-law distribution. The residual oscillation-related spectral peaks were negligible when 

the signal included a small number of oscillations. Even if as many as 50 oscillations were 

included, IRASA was still able to exclude most oscillations and resulted in a clean power-

law PSD that well characterized the underlying fractal component with minor interference 

from the oscillatory component. In addition, IRASA could also be used to estimate the PSD 
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of a multifractal time-series component, albeit blurred breakpoints between these frequency 

ranges (Fig. 3.C).

With various levels of additive white noises, we evaluated the robustness of IRASA against 

noise contamination. Fig. 4 shows that the performance of IRASA in extracting the fractal 

PSD deteriorated with decreasing SNR. When the overall SNR was as low as 1, the noise 

affected the high frequency range in which the measured signal was dominated by the noise; 

however, the extracted fractal component still followed a clear power-law distribution in the 

low frequency range. In general, IRASA performed well with modest to high SNR in a 

simulation setting.

To further test the practical utility of IRASA, we used IRASA to differentiate fractal and 

oscillatory neuroelectrical activities observed with ECoG and MEG data. Fig. 5.A shows the 

IRASA-extracted fractal and oscillatory PSD of the example ECoG signals recorded from 

one sensor located in the frontal lobe of a macaque brain. The fractal PSD depicted the 

broadband activity of the ECoG spectrum. This broadband activity was approximately an 

exponential function in the regular coordinate or equivalently a linear function in the double-

logarithmic coordinate. The PSD of the oscillatory component, obtained by subtracting the 

extracted fractal PSD from the raw ECoG PSD, provided a clear depiction of alpha (8–

13Hz) rhythm. Similarly, Fig. 5.B and 5.C show the separated fractal and oscillatory 

components of one MEG sensor over the occipital lobe under the eyes-closed and eyes-open 

conditions, respectively. The IRASA-extracted oscillatory component included peaks at the 

alpha and beta bands, as well as the 60Hz power-line noise. The eyes-open condition had 

much reduced alpha power and diminished beta power relative to the eyes-closed condition. 

Figures 6 and 7 show the results of the separated fractal dynamics in different brain regions 

as observed with macaque ECoG and human MEG data, respectively. These results 

demonstrate the efficacy of the proposed method to extract the fractal component from 

measured electrophysiological signals.

Moreover, one can also use IRASA to obtain the spectrograms showing the temporal 

dynamics of the fractal and oscillatory spectra by using short sliding time windows. To 

demonstrate this point, we separately extracted the fractal and oscillatory spectrograms and 

obtained the time courses of the alpha power (i.e. the average power in 8–13 Hz), the power-

law exponent, the log-power intercept, as well as the broadband power from the macaque 

ECoG and the human MEG signals.

Similar to previous studies (Olbrich et al., 2009), the distinct behavioral states exhibited 

different patterns of oscillations, especially in the alpha frequency range (Fig. 8.A and Fig 

9.A). We observed much stronger alpha oscillations during eyes-closed wakefulness relative 

to the eyes-open and sleep states (Fig. 9.A). Interestingly, we also found that the fractal 

component differed considerably across these behavioral and arousal states. In the macaque 

ECoG data (Fig. 8), we found that the power-law exponent was larger in the sleep state, with 

a mean and the standard deviation of 1.26±0.49, than the eyes-closed wakeful state 

(0.95±0.40) (Fig. 8.B and 8.C). For the human MEG data (Fig. 9), the power-law exponents 

increased from 0.81±0.24 to 1.14±0.27 as the subjects fell into sleep from eyes-closed 

wakefulness. We also observed greater variance in the power-law exponent during the sleep 
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state than the wakeful states. Moreover, the broadband power also differed across these 

behavioral and arousal states, being lower when the eyes were open than that in the eyes-

closed condition and being higher as the subjects fell asleep. These results suggest that 

distinct behavioral states may be characterized not only by frequency-specific oscillations 

but also by broadband fractal activities.

Discussions

The signal processing technique (IRASA) presented here allows the separation of fractal and 

oscillatory components of neurophysiological signals in the spectral domain, with the 

assumption that neural recordings are formed by the sum of scale-free and frequency-

specific components. Arguably, such separated oscillatory and scale-free dynamics may 

report useful information about rhythmic and arrhythmic dynamics emerging from 

interacting neural circuits. When applied to various electrophysiological signals, the values 

and dynamics of the power-law exponent and broadband power may provide complementary 

perspectives to those that report on neuronal oscillations. However, it awaits future studies 

to investigate whether the scale-free broadband component indeed originates from neuronal 

population activities with fractal dynamics, as well as the specific functional role of such 

activities.

In the following, we discuss multiple methodological considerations as well as speculative 

implications and applications to neuroscience research.

Comparison with CGSA

This work is inspired by the earlier CGSA methods (Yamamoto and Hughson, 1991, 1993). 

However, the cross-spectral analysis in CGSA suffers from theoretical limitations (see the 

online supplementary material). The difference between IRASA and CGSA has the 

following aspects.

Firstly, IRASA is based on the auto spectra of the up-sampled and down-sampled signals, 

whereas CGSA is based on the magnitudes of the cross spectra between the original signal 

and its up-sampled and down-sampled versions. This difference is critical in that it enables 

IRASA to relocate the spectral energy associated with oscillations away from their occurring 

frequencies, while part of such energy always remains at the original oscillation frequencies 

for CGSA.

Secondly, IRASA uses non-integer (irregular) resampling, whereas CGSA, as in (Yamamoto 

et al., 1991, 1993; He et al., 2010), uses integer (regular) resampling. Although it requires 

time-series interpolation with slightly higher computation demand, the irregular resampling 

is more advantageous than regular resampling in that the spectra of the resampled 

oscillations do not overlap with the original spectrum when the oscillatory component 

occurs at multiple harmonic frequencies, which is often the case in realistic neural signals. 

Although it has not been used with CGSA in published studies (to the best of our 

knowledge), the irregular resampling is expected to also benefit CGSA in addressing issues 

related to harmonic frequencies.

Wen and Liu Page 10

Brain Topogr. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Thirdly, IRASA uses a number of non-integer resampling factors, whereas CGSA uses only 

one, at least as described in (Yamamoto et al., 1991, 1993; He et al., 2010). Combined with 

the two features mentioned above, this feature utilizes the fact that changing the resampling 

factor in IRASA leads to relocation of the oscillation-related energy to different frequencies. 

It follows that taking the median of the results obtained with different resampling factors 

enables IRASA to almost completely exclude the contribution and interference from the 

oscillatory component in estimating the spectrum of the fractal component. However, this 

similar ‘trick’ does not benefit CGSA in the same way (Fig. 3 and Fig. S2).

Choosing the resampling factors

We choose the resampling factor (h and 1/h) as non-integer numbers for irregular 

resampling of the original time series. For any h>0, either h or 1/h is greater or equal to 1. 

Without loss of generality, we choose h>1. A large h value would lead to greater dispersion 

of the spectra of the resampled oscillatory component (Fig. 2). However, it would limit the 

bandwidth of the final estimate of the fractal spectrum, because the bandwidth is reduced by 

a factor of h following the resampling. For example, for a typical EEG sampling frequency 

of 1000 Hz, the bandwidth is 500 Hz. A resampling factor of 2 would reduce the bandwidth 

to 250 Hz but still covers the frequency range of interest. If the original sampling rate is 

overly high, it is more preferable to use a wider range for h. Within any range of choice, one 

may further choose more h values such that taking the median would likely yield a more 

accurate and robust estimate of the fractal PSD yet at the cost of increasing computational 

time. Balancing the above considerations, we choose the value of h between 1.1 and 1.9 with 

a 0.05 increment. Although such a choice is pragmatic and not entirely principle-driven, it 

has given rise to robust results in extracting the scale-free broadband activity in both 

simulation and experimental data included in this study.

For any choice of the h values, one can zero-pad all resampled time series to the same length 

equal to the power of 2. This will permit FFT with the same number of frequency points for 

all resampled signals and allow for subsequent computation in the frequency domain.

Multi-scale fractal dynamics

One assumption for both IRASA and CGSA is that the fractal dynamics obeys a power law. 

It should be noted that this assumption does not always hold true in practice when a very 

wide frequency range is of interest. Some neuronal signals have different frequency scaling 

properties for different frequency ranges (Hwa and Ferree, 2002; Miller et al., 2009; 

Robinson, 2003). We found that IRASA performed well even for such multi-scale fractal 

signals, although it blurred the ‘breakpoints’ where the frequency ranges of distinct fractal 

components intersected (Fig. 3.C). The practical utility of IRASA for multifractal time series 

awaits further investigation and should be taken with caution as of now.

Fractal vs. scale-free

The terms of fractal and scale-free have often been used or discussed interchangeably. 

Although these two concepts are closely related, there are some conceptual distinctions 

perhaps worth noting. For an extreme example, a deterministic signal (e.g. a linear drift) has 

the scale-free property and obeys a 1/f power law. But it is obviously of little interest for 
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brain research and may likely be mistaken as the spectral characteristic of the brain’s 

arrhythmic activity. Therefore, another important feature of the scale-free activity has to lie 

in its phase distribution. A random fractal process should possess a random phase 

distribution within [0, 2π] (Yamamoto and Hughson, 1993), whereas fractal processes are 

not all characterized by random phase distribution. The IRASA method serves to extract the 

PSD of the signal components that comply with the scale-free property, as expressed by Eq. 

(2) and (3). Such extracted spectral components contain no phase information, and may or 

may not reflect a fractal process of biological significance.

Magnitude vs. phase

Of note, IRASA, as well as CGSA, can only separate the power spectra of the fractal and 

oscillatory components of neurophysiological signals. It is currently difficult, if possible at 

all, to separate these components in the time domain or uncover their phase differences or 

relationship. This imposes a technical barrier for investigating phase-phase and phase-

amplitude couplings of fractal dynamics between different frequency points or between 

different spatial locations. Future technical development is highly desirable to resolve this 

barrier.

Other alternative solutions

In addition, it is also of future interest to compare the spectral analysis method with other 

alternative time-series analysis methods, e.g. DFA (Peng et al., 1995) or its recent variations 

such as adaptive fractal analysis (AFA) (Gao et al., 2011). Note that although IRASA is 

based on the Fourier transform, similar concepts might be useful for other time-frequency 

analysis methods, such as those based on wavelet transform.

Implication to neuronal oscillations

One motivation of this study is to better extract neural oscillations from electrophysiological 

signals. Here we assume that oscillations co-occur with the broadband activity that 

approximately follows a power-law distribution. As such, the temporal modulation in power 

or amplitude of oscillatory activity is mixed with the modulation of the underlying 

broadband activity. Both modulations contribute to the amplitude or power envelops of 

band-limited signals, or the power fluctuation observed with the time-frequency analysis. 

Without separating oscillatory and fractal activities, the fluctuation of band-limited signals 

may not be entirely specific to the frequency band of interest, but contains a variable 

fraction owing to the frequency non-specific broadband modulation. Arguably, separating 

the fractal component may provide more accurate estimation of the modulation of neuronal 

oscillations. This is beneficial when one is interested in the amplitude (not phase) 

relationship between distinct frequency bands, or in the contributions of various frequency 

bands to other brain signals, such as neuronal spikes or hemodynamic signals.

Unlike the ideal oscillations assumed in our model Eq. (1), realistic oscillatory activity is not 

always localized in frequency, but manifests itself in a frequency band. In such cases, the 

nominal fractal and oscillatory spectra, extracted by using IRASA (and likewise CGSA), 

may still contain residuals that comprise their corresponding spectral behaviors from being 

strictly scale-free or frequency specific. To partly overcome this, one could choose a larger 
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range of resampling values as permitted by the original sampling frequency and the desired 

overall frequency range of interest, as aforementioned for the practical choice of the 

resampling factors.

Implication to neuronal fractal activity

The fractal dynamics, as the broadband activity underneath neural oscillations, fluctuates 

over time in a way that seems functionally relevant. For example, it varies by voluntary eyes 

opening and closing in terms of the broadband power and the power-law exponent (Fig. 9). 

As such, the broadband fractal activity is at least not pure noise, and likely bears some 

functional significance. However, where the fractal dynamics comes from and how it serves 

brain functioning remain poorly understood and await future research (He et al., 2010; He 

2014). For example, it is of potential interest to investigate inter-regional correlations in the 

temporal fluctuation of fractal dynamics, and to compare the resulting correlational patterns 

against those based on oscillatory dynamics or the structural networks observed with 

diffusion MRI. This would help address the network origin of fractal vs. oscillatory 

dynamics. It is also of potential interest to investigate the spatiotemporal characteristics of 

fractal dynamics during not only simple behavioral tasks but also complex cognitive tasks in 

a rich and naturalistic behavioral context. This would help address the functional 

significance of fractal dynamics.

However, the proposed IRASA method is not intended to address the generative mechanism 

of the scale-free broadband signal or the frequency-specific narrowband signal observed in 

neural recordings. As a signal processing method, the IRASA method by itself offers little 

information about the theoretical basis and functional role of the apparent scale-free or 

oscillatory activity in the context of neural synchrony, coupling or computation.

Differentiate functional states with fractal characteristics

A large amount of literature has reported on neural oscillations in a variety of brain states 

(Başar, 2001; Buzsáki and Draguhn, 2004; Gray 1994; Hanslmayr et. al., 2011; Lakatos, at 

el., 2008; Rinzel and Ermentrout, 1998; Schabus et al., 2011). For example, the brain’s 

vigilance and attention level has been measured mainly by the oscillation power of a single 

frequency band, e.g. the alpha band (8–13Hz), or the relative amplitudes of several 

frequency bands, especially the alpha, theta and delta bands (Olbrich et al., 2009; Wong et 

al. 2013). Combined with other event-like signatures, e.g. k-complex, spindles, oscillatory 

patterns have been serving as the main clues for sleep staging.

However, how the broadband fractal dynamics varies across behavioral states remains 

poorly understood. Following IRASA, one can quantify the broadband fractal characteristics 

by using the power-law exponent (He et al., 2010; He 2014), the intercept of the power-law 

function at zero log-frequency, and the broadband power (Miller, et. al. 2009) as a linear 

function of the exponent and the intercept. These quantities collectively define the feature 

space for potential classification of various functional states based merely on the fractal 

characteristics. As an initial proof of concepts, the broadband power of fractal dynamics 

differed notably across behavioral and arousal states: higher in sleep than wakefulness, and 

higher in eyes-closed condition than the eyes-open condition.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Overall schematic illustration of IRASA. The input for IRASA is a mixed time series 

composed of both fractal and oscillatory signals and the output is the separated power 

spectra of these two components.
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Fig. 2. 
Procedures to estimate the power spectrum of the fractal component by statistically 

summarizing the geometric means of the auto-power spectra of the signals un-sampled and 

down-sampled by a set of non-integer factors
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Fig. 3. 
Comparison between the estimated power spectra of the fractal component based on CGSA 

(A) and IRASA (B), given different numbers (1, 2, 50) of oscillation frequencies, and the 

result of IRASA in multiple fractal components (C). Fractal time series has random phase 

uniformly distributed between 0 and 2π and power-law exponent is set to 1.5 in (A) and (B)
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Fig. 4. 
Robustness evaluation of IRASA on extracting the PSD of fractal component under different 

levels of additive white noise contamination.
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Fig. 5. 
Separated power spectra of the fractal and oscillatory components underlying the eyes-

closed awake state macaque ECoG (A), as well as human MEG signals in the eyes-closed 

(B) and eyes-open (C) conditions
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Fig. 6. 
Extracted PSD of fractal dynamics from macaque ECoG data of 128 sensors. (A) the colored 

dots are the 128 sensor in different brain regions. (B) Averaged fractal power spectra in 

different brain regions in the eyes-closed awake condition. (C) Averaged fractal power 

spectra in the sleep condition
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Fig. 7. 
Extracted PSD of fractal dynamics in human MEG data of 274 sensors. The black dots in the 

upper left figure are the MEG sensor locations. The fractal power spectra averaged within 

different brain regions are separately shown for the eyes-closed, eyes-open and sleep 

conditions
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Fig. 8. 
(A) Separated spectrograms of the fractal and oscillatory components averaged across all 

sensors underlying the macaque ECoG signals in the eyes-closed awake (from 0 to 5 min) 

and sleep (from 5 to 10 min) conditions. (B) Time courses of the power-law exponent, 

intercept and broadband powers derived from the power-law fitting of the fractal 

spectrogram. (C) Scatter plots and histograms of the power-law exponent and the log-power 

intercept in wakefulness and sleep
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Fig. 9. 
(A) Separated spectrograms of the fractal and oscillatory components averaged across all 

sensors underlying the human MEG signals in the eyes-closed (from 0 to 2 and 4 to 6 min 

periods), eyes-open (from 2 to 4 and 6 to 8 min periods) and sleep (from around 12min to 

the end) conditions. (B) Time courses of the power-law exponent, the log-power intercept 

and the broadband power derived from the power-law fitting of the fractal spectrogram. (C) 

Scatter plots and histograms the power-law exponent and log-power intercept in the three 

different states
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