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Even though speech signals trigger coding in the cochlea to convey speech information to the

central auditory structures, little is known about the neural mechanisms involved in such processes.

The purpose of this study was to understand the encoding of formant cues and how it relates

to vowel recognition in listeners. Neural representations of formants may differ across listeners;

however, it was hypothesized that neural patterns could still predict vowel recognition. To test the

hypothesis, the frequency-following response (FFR) and vowel recognition were obtained from

38 normal-hearing listeners using four different vowels, allowing direct comparisons between

behavioral and neural data in the same individuals. FFR was employed because it provides

an objective and physiological measure of neural activity that can reflect formant encoding. A

mathematical model was used to describe vowel confusion patterns based on the neural responses

to vowel formant cues. The major findings were (1) there were large variations in the accuracy

of vowel formant encoding across listeners as indexed by the FFR, (2) these variations were

systematically related to vowel recognition performance, and (3) the mathematical model of vowel

identification was successful in predicting good vs poor vowel identification performers based

exclusively on physiological data. VC 2016 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4931909]

[ELP] Pages: 1–11

I. INTRODUCTION

Vowels convey critical information for speech under-

standing. Among a wide range of models that attempted to

explain vowel recognition in normal-hearing (NH) listeners,

the majority of the previous models proposed that NH listen-

ers identify vowels on the basis of either (i) the formant

frequency pattern (i.e., formant model) or (ii) the gross shape

of spectral envelope, or some combination thereof (for

reviews, see Klatt, 1982; Nearey, 1989; Hillenbrand and

Nearey, 1999). The formant model is based upon the

assumption that vowels are identified primarily by the

distribution of formant frequencies (primarily the first two

formants). This model is supported by the findings of the

relationship between measures of formant frequencies and

vowel recognition (e.g., Peterson and Barney, 1952; Bladon

and Lindblom, 1981) and the high intelligibility of signals

synthesized using formant information alone (e.g., Remez

et al., 1981; Klatt, 1982).

In most cases, the formant model has been tested using

acoustic manipulations of signals (e.g., Strange et al., 1983;

Jenkins et al., 1983; Kewley-Port and Zheng, 1998; Liu and

Kewley-Port, 2004) or by examining the relationship

between discrimination thresholds for formants and vowel

recognition performance (e.g., Sagi et al., 2010a; Sagi et al.,
2010b, for cochlear implant users). Such an approach is use-

ful to understand the importance of acoustic formants to

vowel recognition; however, little is known about how these

formants are encoded in the auditory neural system and sub-

sequently contribute to vowel perception. The purpose of

this study was to examine how the auditory system encodes

vowel formants and how such neural encoding of formants

relates to vowel recognition performance across individual

listeners. The primary hypothesis was that individual differ-

ences in neural encoding of vowel formants may account for

a portion of the underlying uncertainty that explains vowel

confusions across subjects.

To test this hypothesis, we compared frequency-

following responses (FFRs) to vowel identification in adults

with NH. The FFR was chosen because it provides an objec-

tive and physiological measure of neural activity that can

reflect vowel formant encoding (e.g., Smith et al., 1975;

Krishnan, 2002; Aiken and Picton, 2008; Zhu et al., 2013).

Previous studies showed that neural representations of form-

ant information are different across individual listeners (e.g.,

Anderson et al., 2012; Bidelman et al., 2014; Sadeghian

et al., 2015; Ruggles et al., 2011, 2012; Clinard et al., 2010;

Clinard and Tremblay, 2013). In the current study, individuala)Electronic mail: jhwon15@gmail.com
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differences in neural encoding of vowel formant information

were examined across 38 NH listeners. To this end, formant

information was extracted from FFR waveforms elicited by

four different synthesized vowels. These synthesized vowel

stimuli were used for both vowel recognition and FFR re-

cording in the same group of NH subjects. Finally, a mathe-

matical model, called “multidimensional phoneme

identification” (MPI) (Svirsky, 2000) was used to understand

the effects of neural formant representation on vowel recog-

nition performance. Previous studies have used mathemati-

cal models to evaluate the effects of specific acoustic

features [e.g., fundamental frequency (F0), vowel formant

frequencies, spectral representation of loudness density, etc.]

on vowel perception and quality (e.g., Bladon and Lindblom,

1981; Kewley-Port and Zheng, 1998), but the question of

how the central auditory system utilizes such acoustic vowel

information is largely unknown.

The MPI model was originally proposed by Svirsky

(2000) to predict phoneme confusion matrices based on a lis-

tener’s discrimination ability for a set of postulated acoustic

cues. In the current study, the MPI model was used to predict

vowel confusion patterns based on FFR-derived estimates of

first (F1) and second (F2) formant frequencies extracted

from individual listeners. These predictions, obtained exclu-

sively from physiological (FFR) data, were then compared

to vowel confusion patterns observed from the same human

listeners. Comparing speech-evoked FFRs to the recognition

of the same synthesized speech tokens makes it possible to

examine perceptual and physiological aspects using the

same vowel stimuli. With this theoretical framework, the

effect of individual differences in encoding of vowel for-

mants (inferred from FFRs) on behavioral vowel recognition

was evaluated.

II. MATERIALS AND METHODS

A. Subjects

Thirty-eight native speakers of American English (age

range¼ 22–67 yrs; mean age¼ 36 yrs; one standard

deviation¼ 16 yrs; 28 females and 10 males), who were resi-

dents in the Pacific Northwest, and who had NH participated

in this study (thresholds� 20 dB hearing level at octave fre-

quencies between 250 and 8000 Hz). NH subjects with a

wide range of age were enrolled in the current study to have

variability in vowel identification performance. This study

was approved by the University of Washington Institutional

Review Board.

B. Stimuli

Four synthesized vowels (/u, U, ˆ, A/), as in the words

“who’d, hood, hud, and hod,” were synthesized using the

SynthWorks software (Scicon R & D Inc., Beverly Hills,

CA), which implements the Klatt synthesizer (Klatt and

Klatt, 1990). These synthetic vowels were used for the vowel

identification test and FFR recording. Table I shows the

formant frequencies and formant bandwidth information for

the four vowel stimuli employed in this study. The top row

of Fig. 1 shows spectrograms for the four synthetic vowel

stimuli. From the left to the rightmost columns, spectro-

grams of the synthetic vowel /u/, /U/, /ˆ/, and /A/ are shown.

The stimuli were set to be 70 ms long in duration to elimi-

nate duration cues and to increase the difficulty of the vowel

identification task. F0 for the four vowels was fixed at

100 Hz. First and second formant frequencies (F1 and F2)

were set to the average midpoint frequencies for male speak-

ers from the Pacific Northwest region (Wright and Souza,

2012). F1 and F2 for these four vowels are typically below

1500 Hz, which makes them ideal for FFR study; FFRs gen-

erally show spectral magnitude greater than the noise floor

below 1500 Hz (e.g., Plyler and Ananthanarayan, 2001;

Krishnan, 2002; Zhu et al., 2013). The third formant fre-

quency (F3) for each vowel was estimated using regression

formulas proposed by Nearey (1989), and the fourth formant

frequency (F4) was fixed at 3500 Hz. Formant bandwidths

were calculated from the algorithm described in Johnson

et al. (1993). Finally, the vowels were low-pass filtered at

2000 Hz (second order Butterworth filter). Because of the

stimulus characteristics, we expected that F1 and F2

frequencies would be the primary acoustic cues for listeners

to identify vowels. As a result, F1 and F2 were the two

dimensions that we used in the mathematical model (see

Sec. II E).

C. FFR recording

FFRs were recorded at a 20 kHz analog-to-digital sam-

pling rate using a NeuroScan RT acquisition system

(Compumedics USA, Charlotte, NC). An active electrode

was placed at Cz, a ground electrode was placed at forehead,

and two linked on-line reference electrodes were placed on

each earlobe (one at each mastoid) with all impedances

below 5 kX. Stimuli were presented binaurally through

magnetically-shielded ER-3 insert earphones in a sound-

attenuating booth. Stimuli were equated in the same root-

mean-square (rms) value and presented at 80 dB sound pres-

sure level (SPL) in alternating polarities with a repetition

rate of 8.33 per second. Previous studies showed that robust

FFR neural responses can be obtained at this level of stimu-

lation (e.g., Krishnan, 2002; Skoe and Kraus, 2010). Two

thousand individual artifact-free sweeps were collected for

each stimulus polarity. Artifact rejection was performed

online, rejecting any sweeps with voltage exceeding

630 lV. During FFR recordings, subjects were comfortably

seated in a reclined chair in a sound-attenuating booth and

they were instructed to relax quietly. For offline processing,

FFRs were bandpass filtered from 70 to 2000 Hz (12 dB/

octave, zero phase-shift) using NeuroScan Edit 4.3. FFRs

were additionally low-pass filtered at 1500 Hz in MATLAB

TABLE I. Formant frequency (F) and associated bandwidth (B) information

for the synthesized vowels (in Hz).

IPA /hVd/ F1 F2 F3 F4 B1 B2 B3 B4

u Who’d 324 1223 2149 3500 65 110 140 200

U Hood 465 1444 2180 3500 80 100 80 200

ˆ Hud 575 1200 2355 3500 80 50 140 200

A Hod 700 1110 2486 3500 130 70 160 200
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(third order Butterworth filter) to remove energy beyond the

phase-locking limits of the FFR (Palmer and Russell, 1986;

Zhu et al., 2013). These filtering processes did not have a

significant effect on F1 and F2 information in the FFR wave-

forms because F1 and F2 were located below 1500 Hz in the

acoustic signals. FFR waveforms were averaged for each

stimulus polarity and then subtracted. This method preserves

the information of the spectral frequency of the input stimu-

lus in FFR waveforms (Aiken and Picton, 2008).

In order to evaluate the variability in neural representa-

tions of formants across listeners and for further model simu-

lations, formant frequencies were extracted from the FFR

waveforms using PRAAT software (Boersma and Weenink,

2009). A PRAAT batch processing was run on 152 raw FFR

data files, implementing the following parameters: time

step¼ 0.01 s, maximum number of formants¼ 2, maximum

formant¼ 1500 Hz, window length¼ 0.04 s, and pre-

emphasis filter cutoff¼ 50 Hz. Out of the 152 raw data files

(i.e., 4 vowels� 38 subjects), undefined formant values (i.e.,

formant estimation failure) were shown for 1.9% of the FFR

waveforms. Such FFR waveforms were not included in fur-

ther data analyses, thus results (i.e., FFR-derived formant

values) are reported for 35 subjects. In the middle and bot-

tom rows of Fig. 1, spectrograms of FFR waveforms for two

different individual subjects are shown. The middle row

shows spectrograms of FFRs recorded from the subject who

had the best match between formant frequencies of the

original acoustic stimuli and those of the FFR response. In

contrast, the bottom row shows spectrograms of FFRs

recorded from the subject who showed the greatest differ-

ence between formant frequencies of the acoustic stimuli

and those of the FFR response, showing a poor representa-

tion of formant frequency in FFRs.

D. Vowel identification

A MATLAB graphical user interface running on a personal

computer was used to present acoustic vowel stimuli to

listeners. Stimuli were equated in the same rms value and

presented at 80 dB SPL binaurally through magnetically-

shielded ER-3 insert earphones, just like it was done for FFR

recording. Before testing, subjects listened to each vowel

three times by selecting the virtual buttons on the computer

screen labeled with each vowel to ensure that they were

familiar with the task using these synthesized vowel stimuli.

During testing, two random sequences of 40 presentations

were created for each subject (4 different vowels� 10

presentations per vowel). Subjects responded by clicking on

virtual buttons labeled with each vowel in the /hVd/ context

on a computer screen. Thus, percent correct scores for each

subject were based on 80 responses, 20 per vowel. Feedback

was not provided. The order of vowel identification vs FFR

recording was counterbalanced across subjects.

E. MPI model

To assess if vowel identification could be predicted by

an individual subject’s neural representation of the same

vowel, the MPI model was implemented. Three steps were

FIG. 1. Spectrograms of the synthetic vowels (upper row) and the corresponding FFRs recorded from two different subjects (middle and bottom rows). From

the left to the rightmost columns, spectrograms for the vowel /u/, /U/, /ˆ/, and /A/ are shown. In the middle row, spectrograms of FFRs for the subject who

showed the smallest difference in formant frequencies between the original (i.e., from the synthetic vowels) and estimated values from the FFRs are shown. In

the bottom row, spectrograms of FFRs for the subject who showed the greatest difference in formant frequencies are shown. In these spectrograms, different

amplitudes of the synthetic vowels or FFRs are depicted as a gray scale over a dynamic range of 20 dB. For these spectrograms, the number of a fast-Fourier

transform was set to 10 000 points, and Hanning window and overlap were set to 20 and 19 ms, respectively.
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used to implement the model. Step 1: dimensions relevant to

vowel recognition were postulated, providing a framework

for the model. Step 2: the mean location of each vowel along

each postulated perceptual dimension was measured. Step 3:

Monte Carlo simulation was performed to produce simulated

confusion matrices that best fit with each subject’s vowel

confusion matrices. A detailed description of each step is

described below as well as in Sagi et al. (2010b). Figure 2

shows the summary of the MPI model implementation.

1. Step 1: Define perceptual dimensions

Frequencies of the first two formants (as measured ei-

ther from the FFRs or from the acoustic waveforms) were

defined as the relevant perceptual dimensions for vowel

identification by human listeners. Only the first two formants

were proposed because FFR is most sensitive below 1500 Hz

as indicated above.

2. Step 2: Stimulus measurement

For each individual subject, the formant frequencies (in

Hz) were converted to units of distance along the cochlea

(millimeters from the most basal turn) using Greenwood’s

function (Greenwood, 1990), because Greenwood’s function

captures the relationship between the anatomical positions of

the cochlea and their corresponding resonance frequencies in

response to sound.

3. Step 3: Monte Carlo simulation

Figure 2 shows two sub-components of the MPI model:

an internal noise model and a decision model. The internal

noise model postulates imperfect representation of a given

stimulus due to sensory and memory noise (Durlach and

Braida, 1969), so listeners would have a slightly different

perception from successive presentation of the same vowel

token. The distribution of the locations of vowel percepts

relative to the vowel token locations is modeled with a two-

dimensional Gaussian distribution. The center of this

Gaussian distribution along each dimension is equal to the

value of the mean formant frequency locations (in mm), and

the standard deviation is a model parameter proportional to

the listener’s just-noticeable difference (JND) for the vowel

formants. The decision model takes the percept generated by

the internal noise model and selects the vowel that has the

response center closest to the percept. The “response center”

represents the listener’s internal exemplar about how a given

vowel should sound. Response centers are assumed to be

equal to the average locations of vowels in the perceptual

space (i.e., stimulus centers). This way, the present study

treats listeners as ideal experienced listeners without a bias

between the response and stimulus centers. A total of 500

iterations were used to construct a simulated confusion

matrix.

F. Model analysis I: Model predictions and
comparisons of the formant JND parameters for
acoustic and neural conditions

As described above, vowel confusions are related to

uncertainty in vowel formant values in the MPI model. This

uncertainty can be treated as a black box that includes sen-

sory and memory components (i.e., from peripheral to cogni-

tive processing). The upper row of Fig. 3 (i.e., case 1)

illustrates the input and output relationship for vowel confu-

sions when listeners are presented with the acoustic vowel

formants. Here, the uncertainty is captured in the JND pa-

rameter for the acoustic vowel formants and larger JND pa-

rameters are related to more confusion in the behavioral

vowel identification performance. Presumably, the uncer-

tainty in the FFR-derived formant values contributes to this

chain. With this assumption, the uncertainty in the upper

row of Fig. 3 could be broken down into two separate levels:

(1) from the acoustic formants to the FFR representations

(i.e., “uncertainty 1”), and (2) from the FFR representations

to the vowel confusion output (i.e., “uncertainty 2”). In the

lower row of Fig. 3, the JND parameter is now only a mea-

sure of uncertainty 2, because the uncertainty related to the

sensory component is reflected in the FFRs. Based on these

theoretical assumptions described above, the first model

analysis was designed to test the primary hypothesis of the

current study that individual differences in neural encoding

of vowel formants may account for a portion of the underly-

ing uncertainty that explains vowel confusions across sub-

jects. If differences in the FFR-derived formant values

contribute to the overall uncertainty, then the overall JND

parameter in case 1 (i.e., upper row of Fig. 3) should be

reduced when the FFR-derived formant values are included

FIG. 2. Implementation of the MPI model. See text for details. FIG. 3. Theoretical framework for Model analysis I. See text for details.
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in the MPI model (i.e., case 2 in the lower row of Fig. 3)

without worsening the fit to the behavioral data. The hypoth-

esis would be supported if this model prediction holds true.

To this end, two sets of simulations were performed. For

the first set of model simulations, vowel confusion matrices

across 35 subjects were pooled together to construct a grand

confusion matrix. Then the MPI model was run with acoustic

measures of F1 and F2 values (shown in Table I) to find the

JND parameter that provides a best fit to the grand confusion

matrix by minimizing the rms difference between the model

and observed matrices. For each model simulation, the JND

parameter was varied independently for F1 and F2 from

0.01 to 3.91 mm in steps of 0.1 mm. The lower bound of

0.01 mm was selected as it represents a reasonable estimate

of the frequency discrimination in NH listeners (Moore,

1973). A Monte Carlo algorithm was used to construct 1600

simulated confusion matrices (i.e., 40 JNDs for F1� 40

JNDs for F2) and compute rms differences between the

simulated and observed grand matrices. The rms difference

is computed by taking the square-root of the sum of the dif-

ference between each element of the simulated and observed

matrices divided by the total number of elements in the dif-

ference matrix. When calculating rms difference, rows of

simulated and observed matrices were expressed in percent,

and rms difference is in units of percent. The model-

predicted matrix that shows the lowest rms (i.e., min-rms)

was defined as the best-fit to the observed matrix, and a

percent correct for this best-fit matrix was obtained as a

model-predicted score. A total of 1000 model simulations

were performed to compute the distributions of rms values

and JNDs for F1 and F2 (hereafter referred to as the acoustic

MPI condition). For the second set of model simulations, the

MPI model was run using mean FFR-derived F1 and F2

values averaged across 35 subjects to find the JND that pro-

vides a best fit to the grand confusion matrix by minimizing

the rms difference between the model and observed matrices

(hereafter referred to as the neural MPI condition). Another

1000 model simulations were carried out to compute the

distributions of rms values and JNDs for F1 and F2 for the

neural MPI condition. Finally, the distributions of the rms

values, and JNDs for F1 and F2 for the acoustic and neural

MPI conditions were compared.

G. Model analysis II: Predicting good vs poor
performers in the vowel identification task

This analysis was designed to examine predicted vs

observed vowel identification scores at several fixed values

of vowel formant JND. The goal was not to obtain optimal

fits to the data, as previous studies have shown that good fits

require assuming that there are individual differences across

listeners in JND (Sagi et al., 2010a; 2010b; Svirsky et al.,
2011). Instead, the goal of this analysis was to see whether

the individual differences indexed by the FFR-derived form-

ant values would have any explanatory power. For each

value of JND, the neural MPI model was run to predict the

confusion matrix and the corresponding vowel identification

score assuming that JND was constant across listeners.

Again, because the goal was not to obtain optimal fits but

rather to assess the predictive power of a very simple model

we also assumed that JND was constant across the two for-

mants (F1 and F2). This analysis was conducted separately

for each subject using their own confusion matrix for 6 dif-

ferent values of JND: 0.05, 0.1, 0.2, 0.4, 0.6, and 0.8 mm.

III. RESULTS

A. Vowel identification performance

Mean vowel identification performance averaged across

35 subjects was 64.2%. Identification scores for individual

subjects are displayed in Fig. 4 along the vertical axis. For

the purpose of this initial discussion please disregard scores

along the horizontal axis, which represent the model predic-

tions and are discussed later. Note that chance performance

for the 4-alternative forced-choice vowel identification test

was 25%, which was significantly lower than the observed

mean score [t(34)¼ 11.0, p< 0.001]. More importantly, a

wide range of performance was observed in vowel identifica-

tion, represented by one-standard deviation of 21.0%.

Despite the use of only four vowel stimuli, such a wide range

of vowel identification performance was observed partly due

to the design of the vowel stimuli with which subjects were

forced to use partial speech cues (i.e., formant information

only) to identify vowels. There was no significant correlation

between the subjects’ ages and vowel identification scores.

B. Neural representations of formant frequencies

Figure 5 shows scatterplots of F1 and F2 that were esti-

mated from individual subjects’ FFR waveforms in response

to the synthetic vowel stimuli. Some subjects showed F1 and

F2 extracted from FFRs that were fairly close to the original

acoustic F1 and F2 values for the synthetic vowels. Most

importantly, for each synthetic vowel, there was substantial

variability in F1 and F2 extracted from FFRs across subjects.

Visual inspections on Fig. 5 show that for the vowel /A/ (i.e.,

/Hod/), the variation in F1 extracted from FFRs was more

variable than the variation in F2, but for the vowels /u, U/

(i.e., who’d and hood) the variation in F2 was more variable

than the variation in F1. To test whether F1 and F2 values

extracted from FFRs significantly differed across subjects,

two separate one-way repeated measures analysis of variance

(RM ANOVA), one for F1 and another one for F2, were

conducted with subject as a factor. The Shapiro-Wilks test

for normality indicated that the distribution of F1 values

extracted from FFRs was normally distributed. However, the

distribution of F2 values was not normally distributed; thus

for F2 values, we report results for RM ANOVA on ranks.

These RM ANOVA analyses indicated that the effect of

subject on F1 values extracted from FFRs was significant

[F(34, 102)¼ 2.43, p< 0.001]. The effect of subject on F2

values extracted from FFRs was also significant [df¼ 34,

Chi-square¼ 59.4, p¼ 0.004]. Therefore, these results are

consistent with the previous studies (e.g., Bidelman et al.,
2014; Sadeghian et al., 2015; Anderson et al., 2012; Ruggles

et al., 2011, 2012) that neural representations of formants

differ across individual listeners.
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The accuracy of neural encoding of vowel formant was

quantified with an assumption that subjects showing a

smaller difference between the original and FFR-derived

formant frequencies may have more accurate neural encod-

ing of vowel formants. For this analysis, the original formant

frequencies shown in Table I and FFR-derived formant fre-

quencies (in Hz) for each subject were converted to units of

distance along the cochlea (mm from the most basal turn)

using Greenwood’s function (Greenwood, 1990). Then

differences (in mm) between the original and FFR-derived

formant were computed for F1 and F2 for the four vowels.

Finally, mean differences averaged across the four vowels

were computed for each individual subject. Hereafter, these

mean differences are referred to as the “accuracy metric.”

Figure 6 shows that there was a significant correlation

(r¼ 0.45, p¼ 0.007) between the accuracy metrics for F1

and F2, suggesting that listeners with a better F1 representa-

tion also showed a better F2 representation in the FFR wave-

forms. However, there were no significant correlations

between the accuracy metrics (both for F1 and F2) and

vowel identification scores, highlighting the importance of

mathematical models to link physiologic data to behavioral

performance. Furthermore, there were no significant correla-

tions between the accuracy metrics and subjects’ age.

C. Model analysis I

For model analysis I, two different sets of model simula-

tions were done. For both simulations, the MPI model used a

grand confusion matrix that was pooled together across 35 sub-

jects. For the first condition (referred to as the “acoustic” MPI

condition), the model was run with acoustic measures of F1

and F2 values that are shown in Table I. For the second condi-

tion (referred to as the “neural” MPI condition), the FFR-

derived formant frequencies were provided to the model.

Figure 7(A) shows histograms of minimum rms (min-

rms) values for the acoustic (black bars) and neural (gray

bars) MPI conditions out of 1000 model simulations. Mean

min-rms values for all considered JND combinations aver-

aged across 1000 simulations were 9.54% for the acoustic

MPI condition and 8.72% for the neural MPI condition. An

independent samples t-test indicated that min-rms values for

FIG. 5. Scatterplots of first (F1) and second (F2) formant frequencies esti-

mated from FFR waveforms (shown as triangles) for individual listeners.

Original F1 and F2 frequencies for the synthetic vowel stimuli that were

used to evoke FFRs are shown as filled circles.

FIG. 4. Vowel identification scores

measured from human subjects vs

scores predicted by the MPI model for

fixed JND values of 0.05, 0.1, 0.2, 0.4,

0.6, and 0.8 mm are shown. Despite

the coarseness of the implementation,

the model accurately predicts good and

bad performers for a wide range of

JND values (0.05 to 0.2, inclusive).

Predictions become weaker for higher

values of JND.
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the neural MPI condition were significantly smaller than for

the acoustic MPI condition (p< 0.001). Similar patterns

were observed for model JNDs for both F1 [Fig. 7(B)] and

F2 [Fig. 7(C)], showing that JND parameters for F1 and F2

were significantly smaller for the neural than for the acoustic

MPI conditions. These model simulations demonstrate that

the JND parameters were significantly reduced in the neural

MPI condition without worsening the fit to the observed

vowel confusion matrix from human subjects.

D. Model analysis II

Two different types of approaches were used to assess

the ability of the MPI model to predict vowel identification

scores for each simulated JND value: (1) simple comparison

of the observed and predicted vowel identification scores,

and (2) examining the potential relationship between the

observed vowel scores and the JND values that produced the

best-fit. The first approach compared observed and predicted

scores across subjects, which are shown in Fig. 4 for each

fixed value of JND. The top left panel shows results for a

JND of 0.05 mm. Clearly, the prediction is not 100% accu-

rate. Most predicted percent correct values are either very

poor (essentially zero) or very good (100% correct or at least

close to that). What is remarkable here is that all 11 subjects

who were predicted to show poor performance indeed scored

below 50% correct and all 24 subjects who were predicted to

show good performance had scores of 50% or higher. In

other words, a prediction obtained with zero degrees of free-

dom and based only on physiological data was perfectly

accurate in terms of predicting good vs poor performers, as

shown in the top left panel of Table II. Predictions obtained

with JND values of 0.1 or 0.2 also resulted in very accurate

predictions of good vs poor performers (see two rightmost

top panels of Table II). Higher values of JND resulted in

weaker predictions, as can be observed in the bottom panels

of Fig. 4 and Table II.

With regard to the second approach, data shown in

Fig. 4 and Table II illustrate a trend for individuals with

higher (i.e., better) observed vowel identification scores to

have more accurately predicted vowel identification scores

with JND values less than 0.4 mm (i.e., better formant dis-

crimination). Given these patterns, the second type of

measure utilized a more global comparison between model

predictions and observed vowel identification perform-

ance. For this analysis, of the six possible JND parameter

FIG. 6. Relationship between the “accuracy metrics” for F1 and F2. See

text for details. A linear regression is represented by the solid line.

FIG. 7. Histograms of minimized rms values (A) and associated input JNDs for F1 (B) and F2 (C) that provided a best fit to the observed grand confusion ma-

trix. Each histogram represents multiple iterations of the following procedure. Model-predicted confusion matrices were generated for different JND values

(i.e., 40 JNDs for F1� 40 JNDs for F2). The model-predicted matrix that showed the minimum rms difference from the observed grand confusion matrix was

chosen as the best-fit. This procedure was repeated 1000 times and resulting minimized rms values and associated JND inputs were compiled to produce the

histograms. Black and gray bars indicate the acoustic and neural MPI conditions, respectively.
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values, the one that best estimated each subject’s observed

vowel identification score was determined. Then each sub-

ject’s observed vowel identification score is plotted as a

function of these best JND values. Figure 8(A) shows that

there was a significant correlation between best-predicted

JNDs and observed vowel identification scores, supporting

the prediction that subjects with better vowel identification

performance show more accurately predicted vowel identi-

fication scores with smaller JND values. To examine if

subjects’ ages affected this analysis, a correlation was

computed between subjects’ ages and best JND values;

however, there was no significant correlation.

Next, predicted scores obtained with these JND values

that showed the best fits were used for an additional linear

regression analysis. This analysis was done with the expecta-

tion that allowing the JND value to be variable across

subjects may result in a more accurate prediction by allow-

ing for individual variability. Figure 8(B) illustrates that

observed vowel identification scores were accurately pre-

dicted when an individual’s best predicted score was used

(r2¼ 0.86, p< 0.001). In Fig. 8(B), different symbol types

represent predicted scores from different JND parameter

values. Higher observed scores were best associated with

smaller JNDs (i.e., better formant discrimination), while

poorer observed scores were best associated with larger

JNDs (i.e., poorer formant discrimination).

IV. DISCUSSION

A. Variability in neural encoding of F1 and F2 across
individual subjects

In the current study, a multidisciplinary approach was

used employing psychoacoustics, electrophysiology, and a

computational model to understand the effects of neural

encoding of formants on behavioral vowel recognition.

Formant locations were estimated from far-field recordings

of the FFR from human subjects. Within individual listeners,

different neural activities associated with F1 and F2 were

observed across the four different vowel stimuli. Substantial

across-subject variability was also observed in the F1 and

F2 values extracted from the FFR waveforms.

Previous studies have demonstrated that JNDs for vowel

formant discrimination for NH subjects depend on the form-

ant frequency being tested and measurement methods as

well (e.g., Liu and Kewley-Port, 2004; Oglesbee and

Kewley-Port, 2009). For example, Oglesbee and Kewley-

Port (2009) tested 11 NH subjects on vowel formant discrim-

ination using a 2-alternative forced-choice paradigm for the

first two formant frequencies of the vowels /I/ and /ˆ/.

Oglesbee and Kewley-Port’s JND values for F1 and F2 for

the vowels /I/ and /ˆ/ corresponded to 0.31–0.48 mm with

respect to the cochlear locations for F1 and F2. More impor-

tantly, Oglesbee and Kewley-Port (2009) observed a wide

range of across-subject variability in formant frequency dis-

crimination thresholds, which is largely consistent with the

across-subject variability in the neural encoding accuracy of

formant frequencies found in the current study (Fig. 4).

Furthermore, the effects of subject on F1 and F2 values

extracted from FFRs reached were significant, suggesting

that neural representations of vowel formants would differ

across individual listeners.

B. Contribution of variability in neural encoding of
formants to vowel confusion patterns

The variability observed in vowel identification scores

and FFR-derived formant values raised the possibility of pre-

dicting vowel identification performance based on physio-

logical responses. To explore this possibility, the current

study used the MPI model to link the neural encoding of

formant frequencies to behavioral vowel identification

TABLE II. Summary of MPI predictions for the model analysis II. Two-by-two contingency tables are shown for each modeled JND; comparing observed and

predicted vowel identification performance. A cutoff value of 50% was used to separate 34 subjects into “good” and “poor” performers on the vowel identifica-

tion test.

JND¼ 0.05 mm JND¼ 0.1 mm JND¼ 0.2 mm

Observed� 50% Observed< 50% Observed� 50% Observed< 50% Observed� 50% Observed< 50%

Predicted� 50% 24 0 24 1 24 4

Predicted< 50% 0 11 0 10 0 7

JND¼ 0.4 mm JND¼ 0.6 mm JND¼ 0.8 mm

Observed� 50% Observed< 50% Observed� 50% Observed< 50% Observed� 50% Observed< 50%

Predicted� 50% 23 8 19 9 12 5

Predicted< 50% 1 3 5 2 12 6

FIG. 8. (A) Relationship between the best JND values that showed most

accurate predictions and observed vowel identification scores. (B) The pre-

dicted vowel identification scores that were most accurate are plotted against

the observed scores for each subject. Different JNDs are represented by the

following symbols: 0.1 mm (down triangles), 0.2 mm (squares), 0.4 mm

(circles), 0.6 mm (�), 0.8 mm (up triangles).
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performance. Two sets of model analyses were performed.

Model analysis I compared the distributions of rms values

and JNDs for F1 and F2 that provides a best fit to the

observed grand confusion matrix when acoustic formant

values were provided to the model vs when FFR-derived

formant values were provided to the model. These model

simulations demonstrated that the minimum rms values and

JND parameters were significantly smaller for the neural

MPI condition.

In the MPI model, vowel confusions were related to

uncertainty in formant values. This uncertainty was treated

as a “black box” that included sensory and memory compo-

nents (i.e., early and late stages of auditory processing) (see

case 1 in Fig. 3). Therefore, this uncertainty could be further

divided by two separate levels: one is from the acoustic

formants to the FFR representations (i.e., reflecting early

auditory processing) and another is from the FFR representa-

tions to the vowel confusion output (i.e., reflecting late stage

of auditory processing) (see case 2 in Fig. 3). In the acoustic

MPI condition, the model outputs (e.g., minimum rms, JNDs

for F1 and F2) were expected to capture the uncertainty of

the entire peripheral and central processing. In contrast, for

the neural MPI condition, the uncertainty of the neural proc-

essing up to the generator of FFRs (i.e., inferior colliculus;

Smith et al., 1975) was already inferred by F1 and F2 values

extracted from FFRs; therefore, the model outputs might be

more restricted to the uncertainty of higher levels of central

processing beyond the inferior colliculus.

With this theoretical framework of the model implemen-

tation shown in Fig. 3, we predicted that the overall mini-

mum rms values and JNDs for F1 and F2 would be reduced

in the neural MPI condition without worsening the fit to the

observed grand confusion matrix. Note that for the neural

MPI condition for model analysis I, mean FFR-derived F1

and F2 values for the four vowels averaged across 35 sub-

jects were used as an input to the MPI model. For the acous-

tic MPI condition, four sets of the acoustic F1–F2 locations

of the vowels were provided as an input to the MPI model.

The results for model analysis I showed that the neural MPI

condition provided a slightly better fit to the group vowel

matrix with lower values of the JND parameters in compari-

son to the acoustic MPI condition (Fig. 6). This observation

supports the hypothesis of the current study that neural

representations of formant values (inferred by FFR-derived

formant values) may account for a portion of the underlying

uncertainty that explains vowel confusion patterns in NH

subjects. Furthermore, this finding suggests the intriguing

possibility that a better account of the group vowel confusion

pattern may be obtained with neurally-derived formant

values than with acoustic formant values.

C. Model predictions of vowel identification using
physiological responses

Model analysis II provided interesting information in

support of the hypothesis of the current study that individual

differences in neural encoding of vowel formants may

account for a portion of the underlying uncertainty that

explains vowel confusions across subjects. Recall that the

predicted scores in each panel in Fig. 4 were obtained based

only on physiological data, with zero degrees of freedom.

The predictions were not perfect and we should not expect

them to be perfect because different listeners are likely to

have different JNDs. Nonetheless, the predictions of good vs

poor listeners (defined as those whose scores were above or

below 50% correct) were remarkably accurate for a wide

range of possible JND values, from 0.05 to 0.2 mm as shown

in Table II. This suggests that the FFR captures important

information about early stages of speech processing in the

auditory system, given that FFRs reflect brainstem level

activity (e.g., inferior colliculus; Smith et al., 1975). Neural

activity related to FFRs can be modulated by listening

experience and may contribute to individual differences

(Krishnan et al., 2012; Chandrasekaran and Kraus, 2010).

Further studies are needed to better understand how the early

and late (i.e., central) auditory processing explain listeners’

vowel identification performance.

D. Implications of the use of mathematical model to
link perceptual and neural data

The approach shown in the current study is particularly

useful for understanding the encoding of speech cues in the

central auditory system. It advances our current state of

knowledge that has been limited mostly to animal models of

auditory-nerve responses. For example, Swaminathan and

Heinz (2012) related consonant identification measured from

human listeners to the temporal processing quantified from a

phenomenological model of the cat’s auditory-nerve (Zilany

and Bruce, 2006, 2007). Furthermore, Svirsky et al. (2011)

showed that many aspects of consonant identification from a

degraded signal (such as the one provided by a cochlear

implant) may be based on identification of the relevant form-

ant frequency values. Here, we measured vowel identifica-

tion and vowel-elicited FFRs from the same group of human

subjects using the same set of stimuli, allowing us to develop

a more direct comparison between the perceptual and neural

domains. This is an important aspect of the design of the

current experiment in light of the mounds of evidence docu-

menting the role of central auditory processing in speech

perception (for reviews, see Molfese et al., 2005). Previous

FFR studies also demonstrated such evidence (Galbraith

et al., 1995; Parbery-Clark et al., 2009; Song et al., 2011;

Marmel et al., 2013); however, these studies recorded elec-

trophysiological responses using one stimulus (e.g., a synthe-

sized speech syllable) and compared them to behavioral

measures that are cognitively and linguistically loaded using

completely different sets of speech stimuli (e.g., sentence

recognition in noise). Such an approach is useful when

evaluating normal and disordered neural coding in different

subject populations with different ages (Anderson et al.,
2012), neurological diseases (Hornickel and Kraus, 2013),

and different degrees of musical training (Parbery-Clark

et al., 2009; Skoe and Kraus, 2012), but less sensitive when

investigating the specific relationship between acoustic cues

and speech perception.

The present study demonstrates how the MPI model can

be used to study vowel perception and encoding for NH
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listeners, making it possible to analyze the relationship

between behavioral and physiological data. This may be partly

due to the design of the vowel stimuli with which subjects

were forced to use partial speech cues to identify vowels (i.e.,

formant information only). In the current experiment, the

implementation of the MPI model was specific to static form-

ant coding. Given the numerous cues for vowel identification,

this implementation is rather simple; however, the framework

can easily be used to assess other acoustic cues, e.g., F0 and

formant transitions, spectral envelope shape, or vowel dura-

tion. Moreover, the experimental and modeling design here

will be readily applicable to understand the neural coding of

speech cues when the original speech signals are degraded ei-

ther by the presence of background noise or by the signal proc-

essing for hearing prostheses.

Furthermore, one can combine physiologically plausible

auditory-nerve models (e.g., Patterson et al., 1995; Zilany and

Bruce, 2006, 2007; Zilany et al., 2014; Ronne et al., 2012)

with the general framework of the present study to take into

account the contribution of peripheral auditory processing.

The MPI model did not take into account the effect of a tem-

poral coding deficit in the current study. However, one can

process vowel waveforms using the vocoder processing pro-

posed by Lopez-Poveda and Barrios (2013), which provides

researchers with a useful tool to manipulate signals to test spe-

cific hypotheses. Then, the vocoded vowels could be presented

to listeners for vowel identification, FFR recordings, and the

MPI model analysis. This point is particularly important for

hearing prostheses given that there is an increasing awareness

of the importance of central processing for performance when

using hearing aids or cochlear implants (Friesen et al., 2009;

Billings et al., 2011; Tremblay and Miller, 2014). In addition,

previous work has shown abnormal brainstem encoding to

occur for both simple and complex signals in middle-aged and

older people; the population most often affected by decreased

speech understanding related to peripheral and central aspects

of presbycusis (Clinard et al., 2010; Clinard and Tremblay,

2013). Such information may guide efforts to develop hearing

prostheses to enhance neural coding of important speech cues.
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