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Purpose: To evaluate the accuracy and robustness of a simple, linear, separable, two-parameter
model (basis vector model, BVM) in mapping proton stopping powers via dual energy computed
tomography (DECT) imaging.
Methods: The BVM assumes that photon cross sections (attenuation coefficients) of unknown
materials are linear combinations of the corresponding radiological quantities of dissimilar basis
substances (i.e., polystyrene, CaCl2 aqueous solution, and water). The authors have extended this
approach to the estimation of electron density and mean excitation energy, which are required param-
eters for computing proton stopping powers via the Bethe–Bloch equation. The authors compared
the stopping power estimation accuracy of the BVM with that of a nonlinear, nonseparable photon
cross section Torikoshi parametric fit model (VCU tPFM) as implemented by the authors and by
Yang et al. [“Theoretical variance analysis of single- and dual-energy computed tomography methods
for calculating proton stopping power ratios of biological tissues,” Phys. Med. Biol. 55, 1343–1362
(2010)]. Using an idealized monoenergetic DECT imaging model, proton ranges estimated by the
BVM, VCU tPFM, and Yang tPFM were compared to International Commission on Radiation
Units and Measurements (ICRU) published reference values. The robustness of the stopping power
prediction accuracy of tissue composition variations was assessed for both of the BVM and VCU
tPFM. The sensitivity of accuracy to CT image uncertainty was also evaluated.
Results: Based on the authors’ idealized, error-free DECT imaging model, the root-mean-square
error of BVM proton stopping power estimation for 175 MeV protons relative to ICRU reference
values for 34 ICRU standard tissues is 0.20%, compared to 0.23% and 0.68% for the Yang and
VCU tPFM models, respectively. The range estimation errors were less than 1 mm for the BVM
and Yang tPFM models, respectively. The BVM estimation accuracy is not dependent on tissue type
and proton energy range. The BVM is slightly more vulnerable to CT image intensity uncertainties
than the tPFM models. Both the BVM and tPFM prediction accuracies were robust to uncertainties
of tissue composition and independent of the choice of reference values. This reported accuracy does
not include the impacts of I-value uncertainties and imaging artifacts and may not be achievable on
current clinical CT scanners.
Conclusions: The proton stopping power estimation accuracy of the proposed linear, separable BVM
model is comparable to or better than that of the nonseparable tPFM models proposed by other
groups. In contrast to the tPFM, the BVM does not require an iterative solving for effective atomic
number and electron density at every voxel; this improves the computational efficiency of DECT
imaging when iterative, model-based image reconstruction algorithms are used to minimize noise and
systematic imaging artifacts of CT images. C 2016 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4939082]
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1. INTRODUCTION

Dual energy computed tomography (DECT) imaging consists
of scanning an object (patient) at two distinct energies, usually
at low- and high-energy photon spectra. The underlying

problem of establishing one-to-one correspondence between
CT image intensity [i.e., Hounsfield Units (HUs)] and material
composition is addressed by quantitative dual energy CT
(QDECT). QDECT measures two properties of each voxel,
thereby disambiguating the dependence of HU on material
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composition and density. For example, the earliest QDECT
applications characterized tissues in terms of the effective
atomic number Z∗ and electron density ρe.1 Numerous
QDECT applications have been developed, including bone
mineral density estimation2,3 and production of iodine-free
images from contrast images.4 Recently, it has been proposed
that QDECT be applied to estimate radiological quantities5

in support of radiation therapy treatment planning both for
charged particle therapy6 and low-energy brachytherapy.7 In
proton-beam therapy, the goal is to more accurately estimate
the depth of the Bragg peak in patients. For example,
Schneider et al.8 found that the measured Bragg peak depth
in dogs treated for nasal tumor deviated from the estimated
peak depth by 3.6 mm on average when a state-of-the-
art quantitative single energy CT (QSECT) stoichiometric
calibration method9 was used to determine the proton stopping
power. Yang et al.6 first proposed a QDECT process for
imaging stopping power ratios (SPRs) based upon a simplified
parametric fit model of linear attenuation coefficients first
introduced by Torikoshi.10 Using idealized simulated QDECT,
Yang et al.6 showed that DECT can outperform single energy
CT (SECT) in prediction accuracy and robustness. A root-
mean-square error (RMSE) of 0.26% with maximum relative
errors of about 1% was reported for standard human tissues.
Bourque et al.11 extended SECT stoichiometric calibration
to DECT and found that the mean absolute error of proton
stopping power is about 0.08% for 34 standard human
tissues, excluding the thyroid tissue. Hünemohr et al.12 first
experimentally implemented post processing DECT SPR
mapping and validated it for different materials. By taking
into account both the effective atomic number Z∗ and
electron density ρe, indicating that a mean accuracy of 0.6%
could be achieved from the measured 80/140Sn kVp DECT
images. Hünemohr et al.13 also estimated SPR by correlating
electron density ρe calculated from acquired DECT images.
In the application of tissue characterization, Landry et al.14

first proposed that DECT outperforms the assignments of
% wt. of oxygen and carbon than SECT in the absence of
image noise. Hünemohr et al.15 suggested that QDECT can
improve the accuracy of tissue characterization in predicting
mass density and elemental compositions of representative
tissues.

A possible problem of current proton QDECT is that
most models are based on nonlinear, nonseparable parametric
models that are computationally complex. Obtaining estimates
of (ρe,x,Z∗x) requires solving nonlinear equations iteratively
using Newton–Raphson or similar techniques, at each voxel
x. While this is not a problem for the postprocessing
(image domain) QDECT techniques investigated to date,
it could significantly add to the computational burden of
iterative model-based QDECT reconstruction algorithms.
Since QDECT solutions are sensitive to noise and image arti-
facts,11,12 there is growing interest in iterative techniques, e.g.,
maximum likelihood techniques or compressed sensing,17 to
implement principled beam hardening and scatter corrections
to improve the image uniformity and dose efficiency beyond
the level achieved by sinogram preprocessing corrections.5

Such techniques use physically realistic signal formation

models, i.e., polyenergetic forward projectors, based upon the
previously characterized scanning beam spectra, with judi-
ciously chosen regularization penalties, to produce smoother,
more uniform, and less artifactual images with a lower patient
dose than conventional filtered backprojection techniques.5,18

Forward projections require an accurate estimation of linear
attenuation coefficients, µ(x,E) at any energy E in the
scanning spectrum and voxel x in the scan subject. The
polyenergetic forward projectors used by the iterative QDECT
techniques reported to date5,18,19 have been based upon the
linear, separable, closed basis vector model (BVM),16 which
was first introduced into the CT image reconstruction field by
Alvarez and Macovski.20

In this study, we propose an adaptation of the linear
separable two-parameter DECT BVM model for estimating
proton stopping powers. Previously, our group demonstrated
the accuracy of the two-parameter model in parameterizing
linear attenuation coefficients in the photon energy range of
20 keV to 1 MeV for elemental and composite biological
media.21 In this work, we show that our simple BVM
extension accurately estimates proton stopping powers for
175 MeV protons with an accuracy equivalent to that of
the more computationally intensive Torikoshi parametric fit
models (tPFMs).10 In addition, we assess the sensitivity
of QDECT performance to both image uncertainties and
tissue composition variations lying outside the International
Commission on Radiation Units and Measurements (ICRU)
published values.

2. METHODS AND MATERIALS

In this study, we evaluated two-parameter models for
mapping the proton stopping power by means of an idealized
QDECT process. Using this highly idealized model, we
were able to isolate radiological quantity modeling errors
from image intensity uncertainties and artifacts. Hence the
errors identified in this study represent the lower bound
of clinically achievable performance. The images intensity
HUSk of each pixel in CT images for unknown tissue were
termed

µ

µwat


Sk

=
HUSk

ASk

+BSk, (1)

where µwat, µ are the linear attenuation coefficients of water
and unknown tissue. The subscripts Sk = 1, 2 represent the
low- and high-energy CT spectra, respectively. By convention,
ASk and BSk take values near 1000 and 1, in quantitative
CT, these parameters are determined by maximizing the fit
between experimentally measured HUSk values and spectrally
averaged ⟨µx/µwat⟩Sk values calculated values for scanned
samples of known composition and density.

Protons lose energies primarily by means of Coulombic
interactions with electrons when passing through tissues. The
Bethe–Bloch equation22 approximates the rate of energy loss
and stopping power of tissues at a given proton energy (Eproton)
as follows:
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where k1 and k2 are products of physical constants; β = v/c; c
is the speed of light; Tmax is the maximum energy transferred
to a single electron; and ρe and I are the electron density and
mean excitation energy (I-value), respectively. The I-value
depends on the composition and the density of the medium.
The density correction, δ(β) is significant only at proton ener-
gies above several hundred MeV. The shell correction, C(β)
is significant only when proton velocity is comparable to that
of atomic electrons. These two corrections were ignored since
they are negligible for the energies considered in this study.

In this work, reference stopping power values were
computed by Eq. (2) for 34 standard tissues6 using the
elemental compositions, electron density and mass density
data, along with I-value for each constituent element from
ICRU reports.23,24 The mean excitation energy for each
tissue was computed from elemental I-values (including
ICRU recommended solid/liquid phase to gaseous phase
corrections)35 using the Bragg additivity rule:

ln(I)=

i
ωi

�
Z
A

�
i
ln(Ii)

i
ωi

�
Z
A

�
i

(3)

where ωi, Zi, Ai and Ii are the mass fraction, atomic number,
atomic mass and mean excitation energy of the i-th element
in the tissue, respectively. For water and polystyrene, the
experimentally measured I-values recommended by ICRU
were used,25 while for CaCl2 solution, the I-value was
estimated by applying the Bragg additivity rule to the
recommended water I-value of water and the I-value of CaCl2,
which is estimated by the Bragg additivity rule from elemental
values.

In this study, we evaluated the accuracy of stopping power
predicted by competing DECT models at proton energy of
175 MeV for 34 standard tissues. To assess the relationship
between accuracy and proton energy, prediction errors were
evaluated for three typical tissues (adipose, muscle, and
cortical bone) for energies ranging from 5 to 300 MeV.26 We
also computed proton range for each of 34 tissues starting
from 175 MeV by utilizing the continuous slowing down
approximation (CSDA),

R(E0)=−
 Emin

E0

dEproton

S
�
Eproton

� . (4)

S(Eproton) is the stopping power of protons at energy E. E0 is
the initial energy at the tissue-phantom surfaces. Emin is the
energy where integration of the model is terminated, which
was set to 1 MeV.

2.A. Basis vector model

The BVM (Ref. 16) assumes that the linear attenuation
coefficient of an unknown material at location x can be
represented as a linear combination of the linear attenuation
coefficients of two dissimilar basis materials, e.g., polystyrene
and aluminum,

µ(x,E)= c1(x)µ1(E)+c2(x)µ2(E), (5)

where µk (E) represents the linear attenuation coefficient of
pure samples of the basis materials, k = 1,2. Once the voxel
dependent, but energy independent and possibly negative c1(x)
and c2(x) images from DECT images are derived, the linear
attenuation coefficient for any energy within the range that the
BVM has been validated can be obtained. Let us assume that a
phantom consisting of unknown compounds and/or mixtures
is scanned with a commercial CT scanner at low- (Sk = 1)
and high-energy (Sk = 2) spectra, characterized by normalized
photon fluence spectra ϕSk(E), where

 ∞
0 ϕSk (E)dE = 1.

Because the BVM is separable and expressed as the sum of
the products of energy- and position-dependent terms, Eq. (5)
becomes
µ(x,E)
µwat(E)


Sk

≡


E ·ϕSk (E)µ(x,E)dE
E ·ϕSk (E)µwat(E)dE

= c1(x)

µ1(E)
µwat(E)


Sk

+c2(x)

µ2(E)
µwat(E)


Sk

. (6)

Since spectra of commercial CT scanner are generally
unknown, and HU measurements may be affected by beam
hardening, scattering, noise and preprocessing corrections,
Sk(E) is often approximated by a single effective energy,
ESk, such that µk

�
ESk

�
/µwat

�
ESk

�
≈ ⟨µk (E)/µwat(E)⟩Sk for

the two basis materials. Experimentally, this is commonly
achieved27 by scanning a series of samples, x, of known
composition, including pure basis materials, and then finding
the effective energy for each spectrum that maximizes the
accuracy of Eq. (1). With this calibration in hand, Eq. (6)
becomes

µ
�
x,ESk

�

µwat
�
ESk

� = c1(x) µ1
�
ESk

�

µwat
�
ESk

� +c2(x) µ2
�
ESk

�

µwat
�
ESk

� . (7)

For low- and high-energy scans, Eq. (7) describes a system of
two linear equations with two unknowns which can be solved
for c1(x) and c2(x) at each voxel. If the scanning beam spectra
are known, then the need for effective mean energies can be
avoided since ⟨µx (E)/µwat(E)⟩Sk can be calculated directly,
simplifying the identification of optimal parameters ASk and
BSk. In iterative statistical image reconstruction, the need for
this calibration procedure is completely avoided. Given esti-
mates of the spectra and detector scatter profiles, optimal c1(x)
and c2(x) images can be iteratively estimated by minimizing
the discrepancy between the predicted polyenergetic forward
projections and measured transmission sinograms. Since this
investigation focuses only on the accuracy of the BVM model
itself, in isolation from any additional uncertainties with
the image acquisition process, the idealized monoenergetic
DECT scanning process described by Eq. (7) is assumed.
In this study, DECT with 90 and 140 kVp beams was
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approximated5,16 using effective energies of 45 (E1) and 80
(E2) keV. Thus, the linear attenuation coefficients of the basis
materials and 34 ICRU standard human tissues were evaluated
at these two effective energies based on the knowledge of the
elemental composition.

The choice of basis material has been discussed previously
by Weaver and Huddleston,28 who used principal components
analysis. However, the choice of water as the boundary
material between low-Z and high-Z mixtures was suggested
by Williamson et al.16 For our study, a water and polystyrene
pair was selected for soft tissues (low-Z materials), while
a water and aqueous CaCl2 solution (23% concentration)
pair was chosen for bony tissues (high-Z materials).16 The
ratio of coefficients c1/(c1+ c2) for each material is closely
correlated with its effective atomic number, Z∗ (Fig. 1).
The details of the Z∗ calculation are described in Sec. 2.B.
As suggested by Williamson et al.,16 the basis pair for a
given voxel x can be selected by evaluating the ratio ξ(x)
= (µ(x,E2)/µwat(x,E2))/(µ(x,E1)/µwat(x,E1)): x is assigned
to the polystyrene–water pair if ξ(x) ≥ 1 and water–CaCl2
solution otherwise. Figure 1 shows that the boundary between
low-Z and high-Z tissues falls near the thyroid tissue data
point, which has about 8.4. Figure 1 also shows that c1/(c1+c2)
can be used as an alternative to Z∗ for characterizing material
composition.

To apply the BVM to the estimation of proton stopping
power, we hypothesized that the electron density and mean
excitation energy of an arbitrary biological material can
be accurately predicted by the following linear combina-
tions where c1 and c2 were derived from DECT analysis
Eq. (7):

ρex = c1ρe1+c2ρe2,

ρex lnIx,BVM= c1ρe1lnI1+c2ρe2lnI2, (8)

where ρe1 and ρe2 are the electron density of water and
polystyrene or CaCl2 solution. The electron densities of basis

F. 1. The linear relationship between c1/(c1+c2) and effective atomic
number of the 34 human tissues selected from the ICRU reports. The effective
atomic number was calculated based on the knowledge of the elemental
composition.

mixtures was estimated by

ρe_mixture= ρmNA


i

ωi
Zi

Ai
, (9)

where ρm is the mass density of the mixture and ωi is the
mass fraction of the ith element. The mean excitation energy
of an arbitrary tissue is given by

Ix,DECT= f I

(
c1

c1+c2

)
exp

(
c1ρe1 ln I1+c2ρe2 ln I2

c1ρe1+c2ρe2

)
, (10)

where f I is an empirical correction function that mitigates the
residual error of the prediction of I-value by Eq. (8). It was
assumed that the ratio of I-values from Eq. (8) to the ICRU
reference values and c1/(c1+c2) is linearly dependent,

f I

(
c1

c1+c2

)
=

Ix,Re f

Ix,BVM
= a · c1

c1+c2
+b. (11)

To determine the parameters a and b in Eq. (11), the
precomputed ratios of IRe f /IBVM for 34 standard human
tissues were separated into two groups: soft tissues and
bony tissues, and each of which had the best linear fit that
minimized the summed squared difference between predicted
ratios and precomputed ratios. The linear empirical correction
function was then used to update the estimation of I-
values from Eq. (8). This correction function can also be
generated from scanning calibration phantoms for a specific
scanner. For example, CT numbers of calibration phantoms
acquired by scanning at two different energies can be used
to compute c1 and c2, which can then be used to estimate
the uncorrected I-value of calibration phantoms from Eq. (8).
Since the references of I-value can be obtained using the
Bragg additivity rule given the exact elemental compositions
of phantoms, the correction function was constructed by
comparing reference values against uncorrected I-values with
respect to c1/(c1+c2). In our study, the linear fits for the soft
and bony tissues are shown in Fig. 2. A voxel falling into
the overlap region of Fig. 2 would be described as a bony
tissue or soft tissue depending upon which basis pair it was
assigned based on the ratio ξ (x) of its DECT image intensities
as described above.

2.B. Torikoshi parametric fit models

The previously investigated model for two-parameter
estimation of proton stopping power by Yang et al.6 was
based on Torikoshi’s nonseparable model of photon cross
sections, termed tPFMs, which assumed that the linear
attenuation coefficient of each unknown material is a function
of ρe and Z∗. For photon energies lower than 1.02 MeV,
the linear attenuation coefficient of tissue was modeled by
Torikoshi et al.10 as

µ(x,E)= ρe(x)�
Z∗4(x)F (E,Z∗)+G(E,Z∗)� , (12)

where ρe(x) and Z∗(x) are the effective atomic number and
electron density at voxel x. The terms ρe(x)Z∗4(x)F (E,Z∗(x))
and ρe(x)G(E,Z∗(x)) represent photoelectric absorption and
scattering, respectively. The pretabulated correction functions
F (E,Z∗) and G(E,Z∗) were determined by forcing Eq. (12) to
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F. 2. The linear relationships between c1/(c1+c2) and I -value prediction
error by the BVM for soft tissues and bony tissues. This empirical function
was used to correct the error of the I -value estimated by the BVM.

reproduce exact linear attenuation coefficients for the elements
(Z = 2−20), as tabulated by the National Institute of Standards
and Technology (NIST) XCOM database.29 For tissues that
are unknown mixtures of elements with Z between 1 and 20,
Eq. (12) can be solved iteratively for noninteger Z∗ and ρe
values for each CT voxel. To apply these results to proton
stopping power estimation, an empirical relationship between
ln I and Z∗ or I and Z∗ is required. The standard effective
atomic number of human tissue was defined as

Zm
std=

( ωiZi
Ai

Zm
i

)
 ωiZi

Ai

, (13)

respectively, since it is repeated in Eq. (3). m was deter-
mined to be 3.4 by minimizing the sum of the squared
difference between Zstd and Z∗, which was calculated using
Eq. (12).

In Yang’s simulation study, the linear attenuation coeffi-
cients were approximated by

⟨µ⟩ j = ρe

2
j=1

φl, j


Z∗4(x)F �

El, j,Z∗
�
+G

�
El, j,Z∗

�
, (14)

where φl, j is the weighting function of the l-th energy bin of
the j-th spectrum ( j = 1,2 denoting 100 and 140 kVp spectra,
respectively). The beam spectra of the CT scanner at two
energies were calculated by the SpekCalc x-ray spectrum
generator in the implementation of Yang et al.6

To fairly and consistently compare the tPFM to our BVM
model, we have implemented a modified version of Yang’s
process (hereafter termed the Yang tPFM) and a second
model (hereafter designated as the VCU tPFM). There are
two differences between the VCU tPFM and Yang tPFM. In
the VCU tPFM, each energy spectrum was approximated by
its effective energy, while in the Yang tPFM, two synthetic
energy spectra were used. The VCU tPFM used a different
empirical relationship for inferring mean excitation energy
from effective atomic number than the Yang tPFM (shown

F. 3. The polynomial relationship (Ref. 11) between Z∗ and mean excita-
tion energy was implemented in the VCU tPFM. Data for 34 soft tissues and
bony tissues are shown.

for the same set of human tissues in Fig. 3). In addition, the
thyroid tissue was assigned to the soft tissues category for
estimating I-values in the Yang tPFM of our study; however,
the thyroid tissue was excluded from the Yang et al.6 analysis.
The nonlinear equation with unknowns Z∗ and ρe were solved
iteratively using the  (version 12.0, The Math Works,
Inc., Natick, MA) function fminsearch in the implementation
of the VCU tPFM. To reproduce the results of the SPR
estimation from the Yang et al.,6 I-values and electron density
of tissues estimation from the Yang et al.6 were used in the
Yang tPFM study.

2.C. Robustness analysis of the DECT models’
estimation of the proton stopping power

Our idealized QDECT simulation used the elemental
compositions, mass, and electron densities for different
body tissues recommended by ICRU reports23,24 and other
studies.30,31 To make conservative estimates of the impact
of poorly characterized tissue composition variability on
QDECT estimates, we varied the elemental compositions
of the unknown soft tissues by varying the mass fractions
of the following major components: water, lipid, protein,
carbohydrate, and ash (Table I), each of which has a fixed
elemental composition according to the Table A1 in ICRU
report 46.23 Using adipose tissue as an example, assuming
that the main component is lipid with a range of mass fraction
of 30%–80%,23,32 protein mass fraction range of 1%–7.5%,
and constant mineral mass fraction, the water content can
be computed based on the normalization of all components
to 100%. Note that since the range of each component was
chosen in a way that can accommodate large variability
reported by ICRU report 44,24 the values of mass fraction
reported here may not be realistic. For trabecular bone tissues,
the cortical bone and marrow tissues as major components
were varied. The mass densities of tissues were estimated from
the mass fractions and mass densities of the components.33
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T I. Variations in the components of soft tissues and trabecular tissues (percentage by mass or volume) considered in this study.

Body tissues (mass fraction) Water Lipid Protein Carbohydrate Ash (mineral)

Adipose-like tissue 62.2–4.7 30–88 1.0–7.5 — 0.3
Muscle-like tissue 83–73 1–5 10–20 1 0.9

Cortical bone (volume fraction) Red marrow (mass fraction)
Trabecular bone (spongiosa) 5–70 30–100

2.D. Accuracy analysis

The reference stopping power of representative human tis-
sues was computed using the electron density and composition
data from ICRU report 44 (Ref. 24) based on the Bethe–Bloch
equation.22 To quantify the accuracy of the stopping power
prediction by different QDECT models, including the BVM,
Yang tPFM, and VCU tPFM, the relative error and RMSE,
defined below, were evaluated at a single proton energy where
Eproton= 175 MeV,

Relative error (%)i′ = 100× *
,

������
1−

SPi′,DECT
�
Eproton

�

SPi′,true
�
Eproton

�
������
+
-
, (15)

RMSE (%)= 100×

 N
i′=1

(
1− SPi′,DECT(Eproton)

SPi′, true(Eproton)
)2

N
, (16)

where SPi′ refers to the stopping power of the i′th tissue. The
distribution of the relative error of the proton stopping power
and range for all human tissues are also presented.

2.E. Sensitivity to CT image uncertainty

As mentioned above, our study ignores the uncertainties
inherent in commercial CT scanners, including image noise,
beam hardening, nonuniformity, and other nonlinear artifacts.
These uncertainties can undermine the one-to-one corre-
spondence between underlying tissue characteristics and CT
image intensity. Williamson et al.16 pointed out that QDECT
estimates of photon cross sections are particularly vulnerable
to measurement uncertainties. In this study, the impact of
uncertainties in CT image intensities on proton stopping power
estimation was evaluated for both of the BVM and VCU
tPFM.

We defined image density as D j,k = (µk/µwat)E j
, where

j = 1 and 2 denote E1 and E2 and k = 1,2, and 3 denote
basis material 1, basis material 2, and unknown material,
respectively. c1 and c2 are functions of six independent image
intensities, which are assumed to have uncertainties of σ j,k.
The uncertainties of electron density prediction by the law of
error propagation for a coverage factor of 1.0 can be written
as

uunknown, ρe(E) =


2
j=1

3
k=1

(
∂ρe
∂D jk

σ jk

)2

1/2

=



2
j=1

3
k=1

(
∂ρe
∂c1, jk

∂c1, jk

∂D jk
σ jk+

∂ρe
∂c2, jk

∂c2, jk

∂D jk
σ jk

)2

1/2

=



(
∂ρe
∂c1, jk

)2 2
j=1

3
k=1

(
∂c1, jk

∂D jk
σ jk

)2

+

(
∂ρe
∂c2, jk

)2 2
j=1

3
k=1

(
∂c2, jk

∂D jk
σ jk

)2

+2
(
∂ρe
∂c1, jk

) (
∂ρe
∂c2, jk

) 2
j=1

3
k=1

(
∂c1, jk

∂D jk

∂c2, jk

∂D jk
σ2

jk

)


1/2

. (17)

The uncertainty of the product of electron density and the
logarithmic of I-value can be obtained in a similar fashion.

Thus, the uncertainty of the stopping power estimation via
the BVM was given by
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S

�
Eproton

�
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,
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(
uρe
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)2
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(
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β2

)2(uρe ln I

ρe lnI

)2

+ 2K
(

k1

β2

)
cov(ρe,ρe lnI)

)
, (18)

where the constants K and k1 were defined by Eq. (2), and
Cov(ρe, ρe lnI) was the covariance of ρe and ρe lnI. For

the parameterized QDECT models, the uncertainty of the
stopping power can be obtained similarly. All uncertainties
described above were evaluated numerically (ratio of change
in numerator to 1% change in denominator), at three different
image uncertainty levels for standard human tissues.

Following Williamson et al.,16 three different levels of
CT image intensity uncertainty were investigated. Following
the NIST technical note34 on uncertainty analysis guidelines,
the image intensity uncertainties were the quadrature sum of
random (type A) and systematic errors (type B), e.g., streak
and cupping, in terms of coefficients of variation (COV). The
lowest uncertainty levels, with COV of 0.2% and 0.1% for
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low- and high-energy scans, respectively, supported recovery
for a low-energy photon cross section with 3% accuracy
and acceptable spatial resolution but are not achievable on
current commercial scanners with clinically acceptable patient
doses. The intermediate levels (0.6%, 0.3%) are minimum
uncertainties achievable by fourth-generation CT scanners,
while the highest uncertainties (1.5%, 1.0%) are characteristic
of clinical pelvic CT imaging. The readers are referred to
Ref. 16 for the choice of uncertainties level. The uncertainties
in the calibration scan of the basis material were not taken into
account due to averaging of many voxels in the calibration
scan.16

3. RESULTS
3.A. Prediction of the mean excitation energy
and electron density of human tissues

The mean excitation energy and electron density of the
three basis materials used in this study are summarized in
Table II.

Figure 4(a) shows that the Yang tPFM and BVM both pre-
dict the electron density within 0.5% for most tissues, while the
VCU tPFM has a slightly larger prediction error of nearly 1%.

The mean relative errors in estimated electron density
averaged over 34 standard tissues were 0.09%±0.10% for the
BVM, 0.07%±0.08% for the Yang tPFM, and 0.57%±0.29%
for the VCU tPFM. Within the different DECT models, the
BVM showed comparable accuracy to the Yang tPFM, while
the VCU tPFM was slightly less accurate. Due to large errors
incurred by including the thyroid tissue in estimation of I-
value of soft tissues, Yang et al. omitted the thyroid tissue
from their empirical fit of I-values versus Zstd, whereas it
was included in the BVM and VCU tPFM fits. Figure 4(b)
shows that the BVM, Yang tPFM, and VCU tPFM models
predict the I-values with comparable accuracy with mean
errors of 1.14%±1.15%, 1.16%±1.06%, and 0.94%±1.03%,
respectively. For the thyroid tissue, I-value prediction errors
were 5.9%, 7.0%, and 2.1% for the BVM, Yang tPFM, and
VCU tPFM models, respectively. The BVM had slightly
reduced I-values prediction errors compared to the Yang
tPFM. The RMSE for electron density and I-values are
summarized in Table III.

3.B. Prediction of the proton stopping power
at 175 MeV

Figure 5(a) shows the errors in estimating the stopping
power of 34 human tissues by the three different DECT

T II. Electron densities and I -values of basis materials.

Basis materials ρe (×1023/cm3) I -value (eV)

Water 3.34 75a

Polystyrene 3.43 68.7b

CaCl2 solution (23%) 3.97 91.2b

aFrom the ICRU report (Ref. 25).
bFrom the ICRU report (Ref. 25) and the Bragg additivity rule.

F. 4. The ratio of electron density and I -values estimation by three dif-
ferent models: the Yang tPFM, BVM, and VCU tPFM, respectively, to the
reference value of stopping power. (a) Electron density and (b) I -values. The
reference electron density of tissues is shown in the form of electron density
relative to water. The reference I -values were computed based on the Bragg
additivity rule.

models. The mean relative errors of the BVM, Yang tPFM,
and VCU tPFM were 0.16%± 0.12%, 0.14%± 0.12%, and
0.62%±0.29%, respectively.

The RMSEs of the stopping power estimation for the
BVM, Yang tPFM, and VCU tPFM were 0.20%, 0.23%, and
0.68%, respectively. Figure 5(b) shows the error distribution
of the predicted stopping power using three different models
for 34 human tissues. These data indicate that BVM had
similar prediction accuracy to the Yang tPFM model but better
accuracy than the VCU tPFM.

3.C. Dependence of the proton stopping power
prediction accuracy on proton energy and tissue type

Figure 6 shows that the BVM proton stopping power
estimation accuracy for a typical set of tissues (adipose,
muscle, and cortical bone)26 for proton energies ranging from
5 to 300 MeV. Figure 6 shows that estimation errors are
constant at ±0.3% above 40 MeV. Only below 10–20 MeV
did these errors begin to exceed 1% but remained within 2%
at the lowest energy 5 MeV evaluated. Although larger errors
would be expected below 5 MeV, the residual range of such
low energy protons is less than 0.5 mm and hence is of limited
clinical significance.

T III. RMSE of electron density and I -values for standard tissues, in-
cluding the thyroid tissue by different models.

DECT Models ρe (%) I -value (%)

BVM 0.13 1.56
Yang tPFM 0.11 1.84
VCU tPFM 0.63 1.38
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F. 5. (a) A comparison of errors in the stopping power predictions from
different DECT models with reference values. The maximum relative error
of prediction using the BVM was well below 0.5%. (b) The distribution of
relative errors of the stopping power of 34 standard human tissues estimated
by the BVM, Yang tPFM, and VCU tPFM is shown.

3.D. Range analysis of different DECT models

The distribution of the range prediction errors, defined by
the difference between Eq. (4) and the ICRU report35 for the
34 standard tissues, is shown in Fig. 7.

Figure 7 shows that along the proton path, the BVM
predictions on the range of most tissues were well below 1 mm.
The RMSEs for the proton range prediction of the BVM,
Yang tPFM, and VCU tPFM were 0.26%, 0.25%, and 0.65%,
respectively. The root-mean-square of CSDA range errors of
the BVM, Yang tPFM, and VCU tPFM for 34 standard human
tissues were 0.55, 0.52, and 1.40 mm.

3.E. DECT sensitivity to measurement uncertainties

Figure 8 shows the impact of image intensity uncertainties
on electron densities, I-values, and stopping power estimated

F. 6. The ratio of stopping power estimation by the BVM and VCU tPFM,
respectively, to the reference value of in the energy range from 5 to 300 MeV.

F. 7. The distribution of the relative proton range error with respect to
reference values at 1 MeV for 34 standard human tissues with an initial proton
energy at 175 MeV. Computation of the proton range was based on a CSDA
approximation.

by the BVM and VCU tPFM. Since the BVM and VCU
tPFM models use the same monoenergetic approximation of
CT spectra, the Yang tPFM is excluded from the sensitivity
study.

The electron density and stopping power in Fig. 8 show that
the BVM is slightly more sensitive to image uncertainty than
the VCU tPFM, especially for low level of image uncertainties.
The BVM showed less susceptibility to image uncertainties
in estimating I-value than the VCU tPFM did possibly due to
the implementation of the empirical correction function f I .

In contrast to low-energy photon cross section imaging,16

stopping power images are much less sensitive to image
uncertainty. Uncertainties less than 1% (coverage factor of 1)
can be achieved using acquisition protocols at the limit of
commercial capability, around 0.3% and 0.6% for the high-
and low-energy scans, respectively.

3.F. Dependence of QDECT accuracy
on tissue composition

Figures 9(a) and 9(b) show the relative error estimated for
175 MeV of stopping power by the BVM and VCU tPFM
models for hypothetical adipose-like tissues over the range
of lipid and water concentrations in table. The relative errors
for adipose-like tissues were below 0.8% for the BVM, while
the VCU tPFM had a slightly larger maximum error of 1%,
primarily because of its larger errors in predicting electron
densities.

Figures 9(c) and 9(d) show that the BVM and tPFM
models’ prediction errors for muscle-like tissues were insensi-
tive to variations in lipid and water mass fractions for constant
protein and mineral ash mass fractions, with a maximum error
of 0.8%. The BVM performs better than the tPFM model. In
the case of bony tissues, Figs. 9(e) and 9(f) show that in
BVM stopping power predictions, trabecular bone was not
sensitive to the variation in composition. The errors were all
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F. 8. The distribution of the uncertainties of 34 standard human tissues in electron density (a), I -values (b), and stopping power (c) from three different CT
image uncertainty levels (low-, medium-, and high-level): top row: low level 0.2% and 0.1%; middle row: medium level 0.6% and 0.3%; and bottom row: high
level 1.5% and 1.0%.

well below 0.8%, which was better than the performance of
the tPFM model.

The results of this study demonstrate that both the
BVM and nonseparable parametric models maintain good
accuracy over a wide range of assumed bony and soft tissue
compositions that were not included in the original ICRU
training dataset from ICRU reports.

4. DISCUSSION

Overall, our results demonstrate that our simple linear,
separable BVM model achieved stopping power estimation
accuracy that is comparable to the more complex Yang
tPFM at 175 MeV. Preliminary results also show that the
achieved accuracy is independent of energy for adipose,
muscle, and cortical bone down to low proton energies of
30 MeV. Compared to our implementation of the parametric
fit model, the BVM can achieve improved accuracy in stopping
power estimation: 0.20% compared to 0.68%. The mean
absolute error of electron density 0.08% (excluding the thyroid
tissue) was obtained by using the BVM model. This is also
comparable to the DECT stoichiometric algorithm proposed
by Bourque et al.,11 which showed that the mean absolute

error of electron density is 0.08% for standard human tissues
excluding the thyroid tissue. It should be noted that in this
study, the accuracy of the proton stopping power estimation
was evaluated in an idealized scenario. Thus, the accuracy
claimed in this paper may not be achieved at clinically
acceptable patient doses using currently available CT systems.

The errors reported here are smaller than those reported by
investigators who have experimentally implemented DECT-
based postprocessing imaging of stopping power ratio.11–13

For example, Hünemohr et al.13 reported that water equivalent
path length (WEPL) residuals of tissue surrogates were
greatly decreased from−1.0%±1.8% by SECT stoichiometric
calibration to −0.1%±0.7% by DECT calibration. Bourque
et al.11 showed that the mean absolute error of the proton
stopping power was about 0.5%±0.4% for the Gammex 467
phantom by DECT stoichiometric calibration. These errors are
influenced by uncertainties in image intensity uniformity and
noise; composition of the phantom substitute; and the I-value
as well as two-parameter model prediction error, which is the
sole focus of this paper.

As noted in our Introduction, iterative image reconstruction
algorithms with integrated beam hardening corrections based
on known scanning beam photon spectra require accurate
estimation of the linear attenuation coefficient as a function
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F. 9. The relative error distribution of adipose-like [(a) and (b)] and muscle-like [(c) and (d)] stopping power at 175 MeV as a function of lipid and water
mass fractions for constant mass fractions of 0.3% and 0.9% ash was predicted by BVM [(a) and (c)] and the VCU tPFM [(b) and (d)], respectively. The relative
errors distribution of trabecular bone [(e) and (f)] stopping power are predicted by BVM (e) and VCU tPFM (f) by varying cortical volume (5%–70%), and red
marrow mass fraction over the range of 30%–100%. Note the difference in the color bar scale in (e) and (f). The black cross corresponds to ICRU report 44
(Ref. 24) published values of adipose, muscle, and spongiosa composition.

of energy. Previously, our group has demonstrated that 1%
modeling accuracy can be achieved with the BVM in the
20–1000 keV energy range.16 In contrast, the PFM model,
which is utilized by the stoichiometric method9 and its DECT
extensions,11 predicted the NIST XCOM (Ref. 29) cross
sections in the Z = 2–20 range much less accurately, mainly
due to the energy dependence of the atomic number exponent
in the PFM photoelectric absorption term. The experimentally
implemented postprocessing DECT SPR mapping processes
recognize the limitation of the PFM,11 using it only to
predict the dependence of HUSk,x intensities on Z∗ by
performing spectrum-averaged PFM fits to scans of substance
of known composition. Hence, this class of experimentally
implemented, postprocessing cross section models is not
relevant to the implementation of iterative polyenergetic
DECT reconstruction algorithms since the former are limited
to predicted spectrally averaged cross sections.

Our study was based on ICRU recommended I-value and
electron densities. The error propagation analysis in this study

did not include I-value measurement uncertainty. The BVM
model predictions were not expected to be sensitive to these
assumed values, provided that basis and training set materials
used consistent parameter values. Also both the BVM and
tPFM include correction terms that explicitly accounted for
I-value prediction errors. On the other hand, if I-values of
actual patient tissues and physical phantom substitute deviate
from their assumed ICRU values, the DECT stopping power
images predicted by any two-parameter model will deviate
from physical reality. Besemer et al.36 noted that liquid
water I-value measurements span a range of approximately
±12% which corresponds to stopping power uncertainties of
approximately ±0.8%.37

The accuracies achieved by the two-parameter models in
this study were evaluated at the energy pair 90 and 140 kVp.
It should also be noted that by adding additional tin filtration
for more separation between low and high effective energies,
the prediction accuracy can be increased. For example, by
using the approximating effective energy of 140 kVp with
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0.5 mm thick tin filter as 90 and 90 kVp spectra as 45 keV,
the RMSEs of the stopping power estimation for 34 standard
human tissues by the VCU tPFM were 0.28%.

The BVM has several advantages over other tPFM models.
First is economic computation cost; there is no need to solve
nonlinear equations for Z∗ and electron density iteratively.
As mentioned by Williamson et al.,16 the tPFM and other
nonlinear DECT models cannot be factorized into atomic
number- and energy-independent terms. To test the efficiencies
of the BVM and tPFM DECT models, the single CPU
processing time was assessed by  (version 12.0, The
Math Works, Inc., Natick, MA) on a Windows 7® 64-bit
machine with Intel Core i5 3.2 GHz and 16 GB RAM. For 34
standard human tissues, it took the BVM 0.77 s to complete
the analysis, while for the VCU tPFM, the computing time was
approximately 73.7 s. These results indicated that this simple
linear BVM model increases the computational efficiency
about 100-fold in this software environment. It is worth
noting that the efficiency analysis and comparison were from
the BVM and tPFM models that were not optimized. The
additional computational burden could be an issue in the
context of iterative, model-based reconstruction algorithm.
Second, the computational advantage of the BVM is obtained
without compromising accuracy, even a small margin of
accuracy, relative to the tPFM models.

To our knowledge, this study is the first to estimate proton
stopping power using a linear BVM model in the context of
idealized DECT stopping power imaging. In order to fairly
compare the BVM stopping power estimation to the tPFM
model, we implemented our own VCU tPFM model using
similar materials and cross sections as Yang et al. did. Yang
et al. pointed out that the mean errors of the calculated
EDR (electron density ratio to water) and Z∗ were 0.16%
and 0.79%, excluding the thyroid tissue. However, in our
implementation of the tPFM, the corresponding mean relative
errors were 0.57% and 0.70%. Landry et al.38 presented a
DECT parameterization model that related a ratio of linear
attenuation at energies of 80 and 140 kVp, yielding accuracies
of less than 0.3 units of Zstd for the Gammex phantom. Saito39

proposed a model that the electron density can be expressed
by the weighted of the low and high kVp CT numbers.
The achieved theoretical absolute error for electron density
estimation is less than 0.7% for calibration phantoms.

Our work also suggests that c1/(c1+c2) is a useful surrogate
for Z∗ on charged particle-beam dosimetry. Figure 10 indicates
that, without knowledge of the effective atomic number, I-
values closely adhere to a linear function of c1/(c1+c2). The
RMSE of using the relationship in Fig. 10 to estimate I-
values for the proton stopping power for the same standard
human tissues at 175 MeV is 0.19%, which is close to
the results of 0.20% achieved using linear combination and
correction method for I-values estimation for proton stopping
power.

Our proposed method of robustness analysis considered
the large possible ranges of variation of tissue elemental
composition data, which are believed to vary significantly for
the same individuals at different ages, or in different health
states, as well as between different individuals. For example,

F. 10. The relationship between c1/(c1+c2) and the I -values of 34 stan-
dard human tissue is shown. There are two separate linear fits, one for soft
tissues and one for bony tissues. This relationship provides an alternative
method to estimate I -value without knowing the Z∗ of the substances.

red marrow (consisting primarily of hematopoietic cells) in the
skeletal tissues can convert into yellow marrow (consisting
mainly of adipocytes) with advancing age. ICRU report 44
(Ref. 24) recommends modeling spongiosa as 33% cortical
bone and 67% bone marrow tissues, dividing equally between
red and yellow marrow by mass fraction as an approximation
for humans of all ages. However, in the newborn, marrow
tissue is nearly 100% red marrow, whereas in adult patients,
the fraction of red vs fatty yellow marrow gradually decreases,
falling to near zero in the medullary cavities of the long
bones, and approaching the range of 25%–70% (Ref. 40)
for elderly male patients. Another example is adipose-like
tissue which is composed of an extracellular matrix supporting
adipocytes. The components can have widely varying mass
fractions of lipid (60%–90%)31 and water (31%–9%),31

leading to large variations in the relative number of carbon
and oxygen atoms. Our robustness analysis showed that the
BVM model predictions were not sensitive to the variation in
compositions.

Our preliminary study of error propagation is the first
investigation of the sensitivity of the proton stopping power
calculation in DECT models. Although the experimental
image intensity uncertainties characteristic of a clinical
scanner are not available, our results indicated that DECT
models’ estimation of proton stopping power are susceptible
to image uncertainties and that the acceptable accuracy may
not be achievable in current clinical settings. The one-to-one
correspondence between the linear attenuation coefficient and
proton stopping power may be affected by the uncertainties of
CT measurements, including scattering and beam hardening,
which may add another 1% to the measurement of uncertainty.
This indicates that a more advanced algorithm may be needed
to account for reduction of uncertainties in the CT image
reconstruction.

It is also worth mentioning that as photon counting detector
techniques develop,20,41,42 our proposed method can still find
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merit in energy discrimination spectral CT, in which a single
scan for material decomposition is allowed.

5. CONCLUSION

We have developed a simple, linear, separable two-
parameter DECT model that can estimate electron density
and I-value and derive proton stopping power accurately. It
supported electron density and I-value estimates with a RMSE
of 0.13% and 1.56%, respectively, which yielded stopping
power estimates for ICRU recommended tissue compositions
with an accuracy of 0.20%. The root-mean-square error of
the CSDA range prediction error of the BVM was 0.55 mm
for protons with an initial energy of 175 MeV. The reported
accuracy in this study may not be achievable on current
clinical CT scanners. It is also worth noting that the estimated
accuracy of the proton stopping power by DECT models was
independent of the choice of reference values. The BVM
and tPFM were found to be insensitive to variations in
tissue compositions recommended by ICRU reports in proton
stopping power estimation. The tPFM model showed less
sensitivity to CT image uncertainties in proton stopping power
estimation. Our BVM model achieved comparable accuracy
with less computational cost than competing nonlinear DECT
models. To our knowledge, our BVM model is the first
separable, two-parameter model with a closed form numerical
solution that is able to model proton stopping powers with high
accuracy.
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