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Epigenetic information encoded in covalent modifications of DNA and histone proteins regulates fundamental

biological processes through the action of chromatin regulators, transcription factors, and noncoding RNA species.

Epigenetic plasticity enables an organism to respond to developmental and environmental signals without genetic

changes. However, aberrant epigenetic control plays a key role in pathogenesis of disease. Normal epigenetic

states could be disrupted by detrimental mutations and expression alteration of chromatin regulators or by environ-

mental factors. In this primer, we briefly review the epigenetic basis of human disease and discuss how recent dis-

coveries in this field could be translated into clinical diagnosis, prevention, and treatment.We introduce platforms for

mapping genome-wide chromatin accessibility, nucleosome occupancy, DNA-binding proteins, and DNA methyl-

ation, primarily focusing on the integration of DNA methylation and chromatin immunoprecipitation–sequencing

technologies into disease association studies. We highlight practical considerations in applying high-throughput

epigenetic assays and formulating analytical strategies. Finally, we summarize current challenges in sample acqui-

sition, experimental procedures, data analysis, and interpretation and make recommendations on further refine-

ment in these areas. Incorporating epigenomic testing into the clinical research arsenal will greatly facilitate our

understanding of the epigenetic basis of disease and help identify novel therapeutic targets.

cancer; complex diseases; DNA methylation; epigenome; histone modification

Abbreviations: ChIP-seq, chromatin immunoprecipitation–sequencing; CpG, cytosine-guanine dinucleotide; DMR, differentiallymeth-

ylated region; GWAS, genome-wide association studies; 5hmeC, 5-hydroxymethylcytosine; MBD-seq, methyl-CpG-binding domain

protein-based immunoprecipitation and sequencing; 5meC, 5-methylcytosine; MeDIP-seq, methylated DNA immunoprecipitation

and sequencing; PCR, polymerase chain reaction; RRBS, reduced representation bisulfite sequencing; SNP, single-nucleotide

polymorphism; WGBS, whole-genome bisulfite sequencing.

Epigenetics is the study of mitotically or meiotically heri-
table changes in gene expression that occur without changes
in DNA sequence and are mediated by postsynthetic modifi-
cations of DNA and histone proteins, histone variants, non-
coding RNAs, and the proteins that regulate and interpret the
modifications (1, 2). The term “epigenome” refers to the
genome-wide distribution of these marks and regulators (3–5).
Acting “above and beyond” the normally static genome, hun-
dreds of epigenomes define the unique transcriptional pro-
grams of our cells throughout development and aging (3, 6)
under the influence of stochastic and environmental factors
(1, 7, 8). Epigeneticmechanisms have been directly implicated

in disease susceptibility and progression (2, 3). The epige-
nome’s ability to translate environmental exposures into
gene regulation also provides a link to disease.
The development of assays based on microarrays and next-

generation sequencing has allowed the identification of mu-
tations in chromatin regulators and other epigenetic variation
related to human disease. Since epigenetic information varies
not only between individuals but also between cell types and
their functional states, accurate detection of epigenetic changes
in patients requires the generation of a large number of ref-
erence epigenomes. The International Human Epigenome
Consortium (IHEC) aims to generate over 1,000 reference
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epigenomes within a decade (9). As part of the International
Human Epigenome Consortium, the National Institutes of
Health Roadmap Epigenomics Project and the National Human
Genome Research Institute Encyclopedia of DNA Elements
(ENCODE) Consortium have generated genome-wide maps
for DNA methylation, histone modifications, transcription
factor binding, and chromatin accessibility from over 200
cell or tissue types (10–12) (see Appendix). This joint effort
has advanced our understanding of the interindividual varia-
tions and cell-type specificity of key epigenetic marks (13–
15). Rapid development in epigenomic technology and the
increasing body of genomic and epigenomic data offer an
unprecedented opportunity to delineate how the interplay be-
tween genetic, environmental, and epigenetic components
triggers complex diseases (16). In this review, we describe how
high-throughput epigenomic technologies could be applied to
population-based studies of diseases/traits. Focusing on DNA
methylation and chromatin immunoprecipitation–sequencing
(ChIP-seq) assays, we discuss challenges and possible solu-
tions in experimental design, data analysis, and interpretation
of genome-wide epigenomic studies.

EPIGENETIC MARKS AND REGULATORS

Chromatin structure and function

The nucleosome, the fundamental unit of chromatin, is
composed of 147 base pairs of DNA wrapped around a his-
tone octamer composed of 2 copies each of the 4 canonical
histones or their variants (6, 17). DNA and histones are sub-
ject to covalent modifications, and there are at least 18 differ-
ent functional groups (18). These modifications are dynamic
and reversible, mediated by proteins that add (“writers”), in-
terpret (“readers”), or remove (“erasers”) them (19, 20).

Several factors are responsible for shaping chromatin orga-
nization andDNA packaging (5, 21). ATP-dependent chroma-
tin remodeling complexes regulate the spacing, positioning,
deposition and ejection, and histone composition of nucleo-
somes (21–23). Regions occupied by densely packed nucle-
osomes block transcription factors from accessing the DNA,
while nucleosome-free regions like these at the transcrip-
tional start sites of actively transcribed genes are more “open”
to transcription factor binding (24, 25). Several next-
generation sequencing–based methods have been developed
to map nucleosome positions and chromatin accessibility (5,
26) (Table 1). Furthermore, the chromatin fiber is folded into
3-dimensional structures, thus enabling physical interactions
between gene regulatory elements that are often far away
from each other on the linearized DNA but are regulated by
the same mechanisms (27–29).

DNA methylation

DNA methylation refers to the addition of a methyl group
(me) at position 5 of the cytosine base (5meC), occurring
mostly in cytosine-guanine dinucleotides (CpG’s) (30, 31).
5meC also occurs in non-CpG contexts in embryonic stem
cells (32–34), adult neurons (35, 36), and some other types of
cells (35, 36). DNA methylation is mediated by the DNA
methyltransferase family. 5meC can be further modified by

ten-eleven translocation (TET) family dioxygenases, which
sequentially oxidize 5meC to 5-hydroxymethylcytosine
(5hmeC), 5-formylcytosine (5fC), and 5-carboxycytosine
(5caC) (11, 37, 38). Additional reactions can eventually re-
store unmodified cytosine (39). The exact function of these
oxidation derivatives remains unknown. It has been sug-
gested that 5hmeC may represent an intermediate product
in an active demethylation pathway (37, 40, 41). 5hmeC is
highly enriched in neurons and may serve as an epigenetic
mark involved in neural development (41).

In normal human cells, 5meC occurs at approximately
70%–80% of CpGs, mostly in low-density CpG regions (42,
43). The so-called CpG islands, which have a high CpG and
high (>50%) GC content, are infrequently methylated (33, 43,
44). CpG islands represent approximately 2% of the human
genome (45) and occupy approximately 60% of promoter re-
gions (33). While the majority of gene promoters are devoid
of DNA methylation, marked methylation is observed within
actively transcribed gene bodies (9, 46).

DNA methylation, which is highly divergent across differ-
ent organisms and cell types (11, 34), plays essential roles in
mammalian development, X chromosome inactivation, trans-
posable element repression, and genomic imprinting (11, 32,
34, 37). DNA methylation is influenced by genetic, stochas-
tic, and environmental factors and is involved in develop-
mental disorders and cancer (11, 42, 46–49).

Histone modifications

The core histones (H2A, H2B, H3, and H4) each undergo
a variety of modifications, primarily on their N-terminal
“tails” (11, 50). The common modifications include lysine
(K) mono-, di-, and trimethylation (Kme1/2/3), arginine (R)
mono- and dimethylation (Rme1/2), and K acetylation (Kac)
and ubiquitination, as well as serine/threonine/tyrosine phos-
phorylation (17, 18, 38, 51).

Histone modifications play fundamental roles in regulating
gene transcription, DNA replication, and DNA repair by in-
fluencing chromatin states and serving as docking sites for
other proteins like histone modification “readers” and “writ-
ers” (9, 38). Histone acetylation is generally associated with
transcriptional activation, whereas methylation can activate
or repress transcription, depending on the residue modified
and the level of modification (9, 11, 52). Genome-wide pro-
filing of histone modifications has revealed their association
with distinct genomic regions such as enhancers, promoters,
and gene bodies (11, 53) (Figure 1).

EPIGENETIC MECHANISMS OF DISEASE

Abnormal epigenetic profiles in disease

Epigenetic abnormalities have been detected in develop-
mental syndromes, cancer (54), and nonmalignant diseases, in-
cluding inflammatory (55, 56) and psychiatric (57) disorders.
Epigenetic changes can occur locally, affecting individual
genes, or globally, such as genome-wide DNA hypomethy-
lation (33), loss of DNA methylation boundaries at CpG is-
lands (58), and loss of balance between active and repressive
histone modifications (59).
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Dysregulation of DNA methylation is pervasive in disease
(43, 60, 61). Cancer cells display both global DNA hypo-
methylation and focal hypermethylation (33, 37, 62). The
former often happens in low-density CpG regions (43), re-
peats, satellite DNA (33, 62), and regions associated with
nuclear envelope lamina (43, 44). DNA hypomethylation
can spread over large blocks of DNA up to a few megabases
(58, 59). In contrast, locus-specific DNA hypermethylation
occurs in CpG islands and lower-CpG-density CpG island

“shores” (within 2 kilobases of the CpG islands) (33, 43).
Hypermethylation of CpG islands in promoters leads to si-
lencing of genes, including tumor suppressors (37, 63, 64).
Promoter hypomethylation can aberrantly activate oncogenes
(33, 37, 64) and cause loss of imprinting (33, 47).
Global loss of active histone marks and global loss or gain

of repressive marks have been identified across a variety of
cancers. Histone acetylation and methylation are most com-
monly affected in cancer (51). Reduced binding has been

Table 1. High-Throughput Epigenomic Assays

Assay Target(s) Features References

MNase-seq Nucleosome occupancy and positioning Maps both histone and nonhistone proteins 180–182

Localization of DNA-binding proteins Needs high sequencing depth

Bias toward AT-rich regions

DNase-seq Chromatin accessibility Maps cis-regulatory regions 73, 174, 183, 184

Generates base-pair resolution footprints for some
transcription factors

Requires high sequencing depth

DNase I cleavage bias

May miss some distal regulatory regions

FAIRE-seq Chromatin accessibility Maps cis-regulatory regions 185–187

Does not rely on any antibody or enzyme digestion

Relatively lower signal enrichment compared with
DNase-seq

May miss some promoter regions

ATAC-seq Chromatin accessibility Maps nucleosome positioning, chromatin
accessibility, and transcription factor binding
sites simultaneously

188, 189

Localization of DNA-binding proteins

Nucleosome positioning

Requires fewer cells

Fast protocol

Primarily targets nucleosomes around regulatory
regions

ChIP-seq Localization of DNA-binding proteins Maps DNA-binding proteins 10, 12, 14, 77, 142, 144,
190, 191

Often requires large quantities of starting
material

Needs a high-quality antibody

WGBS DNA methylation Covers approximately 95% of CpGs 13, 15, 32, 96

Accurate quantification

Single-base resolution

High proportion of uninformative reads from
non-CpG regions

Does not differentiate between 5meC and 5hmeC

High cost

RRBS DNA methylation Covers approximately 10%–20% of CpGs, largely
in CpG islands

32, 45, 192, 193

Accurate quantification

Single-base resolution

Low cost

Limited coverage

Does not differentiate between 5meC and 5hmeC

Table continues
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reported for the active marks H3K9ac (acetylated lysine 9 of
histone H3), H3K18ac, H3K4me1/2/3, H4K5ac, H4K8ac,
andH4K16ac, aswell as the repressivemarks H4K20me3 and
H4R3me2 (9, 33, 65). The repressive marks H3K27me3
and H3K9me2/3 show either increased or decreased binding
(33, 65, 66).

Mechanisms of epigenetic alterations in disease

Multiple mechanisms are involved in the disruption of the
epigenome in disease (54, 67). Altered cellular signaling can
change the epigenome through the misregulation of epige-
netic writers, readers, and erasers. Chromatin regulators, which
often play roles in cancer as oncogenes or tumor suppressors
(68), are frequently mutated (63, 69), translocated (65), or

aberrantly expressed (33, 59) in various diseases. Mutations
of transcription factors that are often cancer drivers (68) may
also contribute to tumorigenesis (69). This topic has been ex-
tensively reviewed (19, 37, 59, 69–72).

Recent studies have suggested roles for epigenetic mecha-
nisms in linking DNA variants to disease phenotypes (50).
Genome-wide association studies (GWAS) have identified
single-nucleotide polymorphisms (SNPs) associated with
many complex human diseases or traits. Approximately 90%
of the SNPs reside in noncoding regions, particularly in regions
sensitive to DNase I cleavage, suggesting regulatory roles
for SNPs in gene expression (50, 73). Specifically, variants
lying within canonical binding motifs can directly affect tran-
scription factor occupancy by disrupting these binding sites
or creating new ones (52, 74–77). Alteration of transcription

Table 1. Continued

Assay Target(s) Features References

MeDIP-seq DNA methylation Covers approximately 60%–90% of CpGs 32, 123, 124, 139, 193, 194

Can distinguish between 5meC and 5hmeC

Can target a large fraction of repeats regions

Low cost

Quantitative estimation

Low (approximately 150-base-pair) resolution

Difficult to identify small methylation changes

Reduced sensitivity to less methylated regions

MBD-seq DNA methylation Covers approximately 60% of CpGs 32, 60, 126, 127

Can target a large fraction of repeats regions

Low cost

Quantitative estimation

Low (approximately 150-base-pair) resolution

Difficult to identify small methylation changes

Reduced sensitivity to less methylated regions

27K arraya DNA methylation Covers 27,578 CpGs 61, 79, 84, 104, 120, 121, 193

Single-base resolution

Low cost

Limited coverage

Does not differentiate between 5meC and 5hmeC

450K arrayb DNA methylation Covers 482,421 CpGs 48, 91, 105, 122

Single-base resolution

Low cost

Ideal for screening large cohorts

Limited coverage

Does not estimate allele-specific methylation

Does not differentiate between 5meC and 5hmeC

Abbreviations: A, adenine; ATAC-seq, assay for transposase-accessible chromatin using sequencing; C, cytosine; ChIP-seq, chromatin

immunoprecipitation and sequencing; CpG, cytosine-guanine dinucleotide; DNase-seq, DNase I digestion and sequencing; FAIRE-seq,

formaldehyde-assisted isolation of regulatory elements sequencing; G, guanine; 5hmeC, 5-hydroxymethylcytosine; MBD-seq, methyl-CpG-

binding domain protein-based capture and sequencing; 5meC, 5-methylcytosine; MeDIP-seq, methylated DNA immunoprecipitation and

sequencing; MNase-seq, micrococcal nuclease digestion and sequencing; RRBS, reduced representation bisulfite sequencing; T, thymine;

WGBS, whole-genome bisulfite sequencing.
a Illumina Infinium HumanMethylation27 BeadChip array (Illumina, Inc., San Diego, California).
b Illumina Infinium HumanMethylation450 BeadChip array (Illumina, Inc.).
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factor binding affinity may lead to changes in gene expression
(76), possibly through the recruitment of histone-modifying
enzymes (i.e., enzymes which catalyze the addition or removal
of histone modifications) that determine local chromatin states
(50, 52). Genetic variants can influence multiple layers of ep-
igenomic information. For example, in lymphoblastoid cell
lines, a single genetic variant has been shown to alter nucleo-
some position, chromatin accessibility, histone modifications,
and RNA polymerase II occupancy (52). Thus, the interaction
of genetic variation and epigenetic mechanisms increases sus-
ceptibility to disease (69, 72).
Aging is a key risk factor for many diseases (78). Some en-

vironmental and lifestyle factors, such as smoking (7, 55, 79),
alcohol (80), diet (55), and life stress (37), have also been
linked to aging-associated diseases. The epigenome is an
emerging link between aging and disease and between envi-
ronmental factors and disease (37, 47, 81). The plasticity of
the epigenome enables an organism to respond to both exter-
nal and internal stimuli (7, 9). The organism can accumulate
these experiences over time, and such an “epigenetic memory”
may be maintained for life (9, 82) or even transmitted to the
next generation (37, 83).

Both aging (37, 84) and environmental factors (7, 55, 82)
can alter DNA methylation and/or histone modifications.
Aging is accompanied by DNA hypermethylation of gene
promoters and global hypomethylation (16, 62), which may
in part reflect the accumulation of environmental exposures
over time (81). Ethanol affects DNA methylation (85) and/
or histone modifications (80, 85), as do smoking (79, 86,
87) and nutritional factors (55, 88). The contribution of envi-
ronmental exposures and lifestyles to epigenetic variation is
being intensively investigated in large cohorts (2).

GENOME-WIDE DNA METHYLATION ASSAYS

Early studies inferred overall methylation status by digesting
genomic DNA samples in parallel with both methylation-
sensitive restriction enzymes (e.g.,HpaII) and their methylation-
insensitive isoschizomers (e.g., MspI). Later, sodium bisulfite,
which converts unmethylated but not methylated or hydroxy-
methylated cytosines into uracil, was introduced (11). Here,
the introduced sequence differences from bisulfite treatment
allow the assessment of methylation status at individual cyto-
sines (31, 89). Large-scale DNAmethylation profiling is per-
formed by microarray hybridization, affinity-based assays
followed by sequencing, or sequencing of bisulfite-converted
DNA (34, 81, 90–92) (Table 1). These approaches differ in
cost, resolution, accuracy, genomic coverage, and specificity
for 5meC versus 5hmeC (2). 5hmeC and 5-formylcytosine
can be selectively assessed bymeans of affinity- and chemical
modification-based approaches coupled with next-generation
sequencing (93–95). Since these methods have not been uti-
lized in epidemiologic studies, they are not discussed fur-
ther here.

Bisulfite sequencing platforms

Whole-genome bisulfite sequencing (WGBS) aims to quan-
tify the methylation status of each cytosine in both CpG and
non-CpG contexts (13). It is considered the “gold standard”
for methylation profiling. However, the required high cover-
age (approximately 30× coverage) and associated high cost
have limited its application (2, 34). In addition, 70%–80% of
WGBS reads are not informative because they provide little in-
formation about CpGmethylation (96). These reads are mostly
mapped to non-CpG regions, with a small proportion mapped
to “static” regions showing no changes or small changes in
CpG methylation between different tissues or cell types (96).
Reduced representation bisulfite sequencing (RRBS) is much
more cost-effective, because it selectively targets CpG-rich
sites. In RRBS, genomic DNA is digested with a methylation-
insensitive restriction enzyme (e.g., BglII,MspI) to enrich for
genomic regions containing CpGs. The fragments are then
subjected to bisulfite treatment. Thus, RRBS is biased toward
CpG-rich sites such as CpG islands (9). In clinical settings,
RRBS is very useful because it allows rapid screening of many
patient samples in a cost-effective manner (9).
Bioinformatic analysis begins with checking sequence qual-

ity using software packages like FastQC (Babraham Institute,
Cambridge, United Kingdom; http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/). Adaptor sequences attached
during library preparation for sequencing can be removed

Enhancer Promoter Exon Exon

Enhancer Promoter Exon Exon

X

Active

Repressed

H3K4me1 H3K4me3

5meC

H3K36me3 H3K79me2

H3K9acH3K9me3

H3K27acH3K27me3

H3K9me2

Figure 1. Epigenetic features that mark active and repressed
genes. Active enhancers, promoters, and gene bodies are marked
by H3K4me1+H3K27ac, H3K4me3+H3K9ac, and H3K79me2+
H3K36me3, respectively; 5-methylcytosine (5meC) is often detected
in the gene bodies. Inactive enhancers, promoters, and gene bodies
are marked by H3K9me2/3 and H3K27me3; 5meC also occurs in
the promoters. H3K4me1, histone H3 lysine 4 monomethylation;
H3K4me3, histone H3 lysine 4 trimethylation; H3K9ac, histone H3
lysine 9 acetylation; H3K9me2, histone H3 lysine 9 dimethylation;
H3K9me3, histone H3 lysine 9 trimethylation; H3K27ac, histone H3
lysine 27 acetylation; H3K27me3, histone H3 lysine 27 trimethylation;
H3K36me3, histone H3 lysine 36 trimethylation; H3K79me2, histone
H3 lysine 79 dimethylation.
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using the cutadapt program (Department of Computer Science,
TU Dortmund University, Dortmund, Germany; http://code.
google.com/p/cutadapt/). Two alignment strategies, “wild-
card” and “3-letter,” are available for mapping reads to the ref-
erence genome. The wild-card approach, such as BSMAP (97,
98), which uses the Short Oligonucleotide Alignment Program,
replaces cytosines in the reference sequence with the wild-
card letter Y, which is defined to match both cytosines (i.e.,
originally (hydroxy)methylated and, therefore, unconverted
cytosines) and thymines (i.e., originally unmethylated cyto-
sines, converted to uracils by bisulfite treatment and then to
thymines during polymerase chain reaction (PCR) amplif-
ication in library preparation) in the reads (42). In the 3-letter
approach, all cytosines are first converted into thymines and
guanines to adenines in both the reads and the reference se-
quence; mapping is then performed using a standard aligner
likeBowtie (99) (implemented inBismark (100)). These align-
ment methods achieve a similar coverage of CpG sites (101).

To quantify the methylation level of individual CpGs and
non-CpGs at a given base C on the plus strand, the total num-
ber of C-carrying and T-carrying reads is counted and the
methylation ratio is estimated as C/(C+T). Similarly, for a
given base G on the minus strand, the methylation ratio is es-
timated as G/(G+A) (102). The methylation level can also be
calculated by summing up reads mapping to both strands
(32). Several pipelines have been developed for streamlined
analysis of WGBS and/or RRBS data (102, 103).

Hybridization-based platforms

The Illumina Infinium HumanMethylation27 (27K) (104)
andHumanMethylation450 (450K)BeadChip arrays (Illumina,
Inc., San Diego, California) (105) have been most widely used
in epigenome-wide association studies, largely because of
their relatively low cost and high reproducibility (11, 89, 91,
106). The methylation module of GenomeStudio software (Il-
lumina, Inc.) provides options for signal normalization and
background subtraction using control probes (42). DNAmeth-
ylation is assessed by calculating the fraction of methylated
cytosines (β values) at individual CpGs (89, 107). Several soft-
ware packages have been developed for analysis of the array
data (108), including lumi for both the 27K and 450K arrays
(109) and minfi for the 450K array (110).

Affinity-based platforms

Methylated DNA immunoprecipitation and sequencing
(MeDIP-seq) and methyl-CpG-binding domain protein-based
capture and sequencing (MBD-seq) are cost-effective assays
for genome-wide DNAmethylation profiling, particularly for
repetitive DNA regions (32, 111). In MeDIP-seq, genomic
DNA is fragmented by sonication and an adaptor is ligated.
The sample is denatured and immunoprecipitated with an
anti-5meC antibody. The immunoprecipitated products are
PCR-amplified, size-selected, and sequenced to a depth of
about 30–50 million mapped reads (34, 45). DNA hydroxy-
methylation can be similarly assessed with an anti-5hmeC
antibody (112).

MBD-seq is performed similarly but without denaturing
(32). It uses recombinant methyl-CpG-binding domain from

methyl-CpG-binding domain protein 2 (MBD2 or MeCP2)
as the primary affinity reagent (60). In both methods, the
local enrichment level is highly correlated with CpG den-
sity (113). MBD-seq is more effective in identifying meth-
ylated regions containing multiple methylated cytosines;
in contrast, MeDIP-seq often recovers regions with spora-
dically methylated CpGs of presumably less biological rel-
evance (60). Affinity enrichment methods only provide
qualitative estimation of DNA methylation (9) and have
low resolution (11, 34, 92). They are also less sensitive to
methylated regions with low CpG density than bisulfite se-
quencing (11, 34) and are less powerful in detecting small
changes (11).

Publicly available software packages for analyzing MeDIP-
seq andMBD-seq data include Batman (114),MEDIPS (115),
and BayMeth (part of the Repitools package) (113). For ex-
ample, MEDIPS takes mapping output and assigns reads to
predefined regions of interest or fixed-sizewindows. It checks
overall enrichment and saturation, estimates relative methyl-
ation score after CpG density normalization using linear
modeling, identifiesdifferentiallymethylatedregions (DMRs)
using edgeR, and annotates methylated regions relative to ge-
nomic features (115).

Differential methylation analysis

Differential methylation analysis seeks to determine sig-
nificant differences in methylation levels between groups of
samples (107). It can be performed on individual CpGs or,
for increased statistical power, on predefined regions (e.g.,
CpG islands, CpG island shores) or sliding windows (42).
Software packages for identifying differentially methylated
cytosines or DMRs from the above 3 platforms have been re-
viewed (42, 107, 108, 116).

For WGBS and RRBS data analysis, the methylKit pack-
age uses Fisher’s exact test in the absence of biological rep-
licates and logistic regression (β binomial model) when
biological replicates are available (117). The BSmooth pipe-
line is tailored to the analysis of low-coverage WGBS data,
including the function for identifying DMRs (118). Several
packages provide functions to identify differentially methyl-
ated cytosines, differentially methylated positions, or DMRs
frommethylation arrays (107, 108, 116). TheWilcoxon rank-
sum test (119), moderated t test (116), and F test (110, 116)
are commonly applied to normalized log ratios of intensities.
The IMA (119) andminfi (110) packages allow both site- and
region-level analysis of differential methylation. For MeDIP-
seq and MBD-seq data, DMRs can be identified using edgeR
implemented in the MEDIPS pipeline (115).

Tissue-specific or disease-related DMRs are largely lo-
cated at distal regulatory regions, CpG island shores, or low-
CpG-density promoters rather than at promoter CpG islands
(11, 59). It is important to verify and validate the identified
DMRs (92). A simple way is to check some of the DMRs
in a genome browser and look for signs of artifacts. A variety
of quality control plots provide global views about the mag-
nitude of the changes and genomic distribution of DMRs
(42). In addition, it is indispensable to experimentally verify
the reproducibility of the DMRs using a different assay and
validate the findings in a different cohort (2, 42).
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DNA methylation case studies

The Illumina Infinium BeadArrays have been the method
of choice in epidemiologic studies (48, 84, 120–122). More
recently, MeDIP-seq (123–125) and MBD-seq (126, 127)
have begun to gain popularity, owing to their much wider ge-
nomic coverage and relatively lower cost.
Traditional epidemiologic study designs, like case-control

and cohort studies, have been applied to epigenetic studies
(2, 47). These designs need to include unrelated, age- and
sex-matched normal controls (88) or case-control individuals
(124). Monozygotic twins are genetically identical and thus
provide a powerful approach for assessing the role of the epi-
genome in mediating environmental and lifestyle risk factors
involved in complex diseases (7, 24, 37, 47, 92). Several on-
going large-scale cohort studies, such as Accessible Resource
for Integrated Epigenomics Studies (ARIES), which uses
a birth cohort (http://www.ariesepigenomics.org.uk/), and
EpiTwin, which uses a twin cohort (http://www.epitwin.eu/
index.html), aim to correlate methylation changes with envi-
ronmental exposures and disease development (2, 125, 128).
These studies have identified DMRs or differentially meth-

ylated positions associated with complex diseases, including
autoimmune diseases (88, 121), diabetes (123, 125, 129), heat
pain (123), major depressive disorder (124), autism spectrum
disorder (130), schizophrenia (126), and rheumatoid arthritis
(122). Significant changes in DNA methylation also occur in
response to environmental factors (2, 55, 131, 132) and during
aging (48, 84, 120, 127, 133).

Challenges in DNA methylation studies

Despite their widespread use in epidemiology, DNAmethyl-
ation studies face several challenges, from sample collection to
data analysis and interpretation. Firstly, DNAmethylation anal-
ysis often uses whole tissue containing several different cell
types, each with its own unique DNA methylome (56, 134).
Thus, some of the DMRs may simply reflect the differences in
cell composition (42, 47). Indeed, much of the variability in
DNA methylation previously thought to be associated with
aging is actually caused by aging-dependent changes in cell
content (49). In addition, true methylation differences may be
averaged out if they exist only in a particular type of cell.
Algorithms have been developed for in silico deconvolu-

tion of array-based methylation signals in whole blood (49,
135), taking advantage of prior knowledge of the dominant
cell types’ methylation profiles (116). Briefly, cell-type-
specific differentially methylated cytosines were first iden-
tified using 5–6 dominant cell populations generated by cell
sorting (49, 135). The top differentially methylated cytosines
were then used to build a regression model, which was finally
used to estimate the relative proportions of thesemajor cell types
in new blood samples based on existing methylation profiles.
This method, available in the minfi package (110), was used
to adjust for cell mixture in epigenome-wide association stud-
ies (122). Recently, 2 packages were developed to correct for
difference in cell composition without relying on DNA meth-
ylation profiles from the major cell types (136, 137). In addi-
tion, several experimental methods are available for reducing
cellular heterogeneity in a tissue, such as microdissection,

laser-capture microdissection, and fluorescence-activated cell
sorting (2, 138). The applicability of these methods, however,
is tissue-dependent.
Secondly, there are extensive variations in DNA methyla-

tion between different tissues—in fact, DNA methylation
varies more between brain and blood from the same individ-
ual than between individuals in the same tissue (139). There-
fore, in most cases it is critical to use the tissue most relevant
to the disease under investigation (7, 30). Nevertheless, DNA
methylation studies frequently use easily accessible surrogate
tissues like whole blood (49, 56, 83, 91, 106). Although this
practice remains controversial (55, 92, 140), it may well be
justified if systemic involvement or immune/inflammatory
etiology is suspected (141).
Thirdly, despite the development of platform-specific soft-

ware packages, analyzing genome-wide DNA methylation
data from large cohorts remains a challenge (2, 42, 116). In
order to reduce artifacts and increase sensitivity, further ef-
forts are needed to systematically benchmark existing tools
and to develop more powerful analytical systems. Finally,
since DNA methylation differences between cases and con-
trols are usually quite small, especially in surrogate tissues
(2), the findings need to be interpreted with caution.

CHROMATIN IMMUNOPRECIPITATION-SEQUENCING

ChIP-seq is a powerful method for identifying global protein-
DNA interactions (142, 143), including transcription factor
binding (5), histone modifications (144), chromatin remodel-
ing complex subunits (145), and RNA polymerase occupancy
(146). In this assay, chromatin is cross-linked by formalde-
hyde and sheared into approximately 150- to 300-base-pair
fragments by sonication and/or micrococcal nuclease diges-
tion. The size distribution of chromatin fragments should be
verified by an appropriate method. Genomic regions of interest
are enriched using a factor-specific antibody. Purified ChIP
DNA is then subjected to adaptor ligation, PCR amplification,
and sequencing (11, 143, 147). A control library—for exam-
ple, input or ChIP obtained with a nonspecific antibody—
needs to be generated and sequenced in parallel (148).

ChIP-seq experimental design

The outcome of a ChIP-seq experiment strongly depends
on the optimization of a few key factors, such as antibody,
amount of input material, tissue source and quality, and se-
quencing depth. Antibody quality is a key factor responsible
for the reliability of the binding profile. Over 200 commercial
antibodies against transcription factors, histone modifica-
tions, and chromatin regulators have been evaluated (148–
151). While these public resources contain information about
previously validated antibodies, assessing antibody quality
before a ChIP experiment is highly recommended, since lot-
to-lot variability is quite common.
If possible, a ChIP-seq experiment should include 2 bio-

logical replicates in order to assess reproducibility (26, 148).
Most ChIP and control libraries are single-end sequenced to a
length of approximately 50 base pairs. Aminimum of 20 mil-
lion uniquely mapped reads (10 million per replicate) is re-
quired for transcription factors and highly localized chromatin
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marks (148), whereas 40 million reads are needed for assess-
ing marks with diffuse binding profiles (148, 152). Depend-
ing on mark abundance, conventional ChIP-seq experiments
typically require 1–10 million cells (143, 153). A few new
protocols have used approximately 10,000 cells in ChIP-seq
targeting histone modifications (147, 154) and transcription
factors (154). Notable examples are the indexing-first chro-
matin immunoprecipitation (iChIP) approach (154) and the
high-throughput chromatin immunoprecipitation (HT-ChIP)
method (147); the latter allows automatic and sensitive ChIP-
seq in a 96-well format.

ChIP-seq data analysis

To identify binding sites, reads are first mapped back to the
reference genome using a short-read aligner like BWA (155).
Very often only uniquely mapped reads are kept and dupli-
cates are filtered out. A peak caller is then used to identify
binding sites and generate files for data visualization. Many
packages have been developed for identifying peaks from
discrete binding profiles, including the widely used model-
based algorithmMACS (156). However, it remains challenging
to define the boundary of broad peaks due to the discontinuity
in signal distribution. SICER, which employs spatial cluster-
ing to address this issue, models read counts using the Poisson
distribution (157). It scans for individual enriched windows,
links nearby enriched windows (often allowing a gap of 3–5
windows) into a single domain, and then calculates statistics
for domain enrichment over the control library. RSEG, which
uses negative binomial distribution and corrects for map-
pability bias, shows performance comparable to that of SICER
(158). Overall ChIP-seq quality can be assessed based on the
quality metrics proposed by the Encyclopedia of DNA Ele-
ments Consortium (148, 159).

The resolution of ChIP-seq is limited by the size of se-
quenced fragments, often a few hundred base pairs. Generat-
ing high-resolution maps is important for defining DNA
motifs preferred by sequence-specific transcription factors
and other regulatory elements (5). Protein-DNA interactions
can be mapped at base-pair resolution using ChIP-exo, which
employs lambda exonuclease to digest immunoprecipitated
chromatin not protected by protein–DNA crosslinks (160).

Differential binding analysis

A number of approaches have been developed to identify
differential binding sites between groups of samples (161–
164). The DiffBind (162) and DBChIP packages (161) start
with peaks, while diffReps (163) uses 1-kilobase sliding win-
dows. For the former, peaks from all libraries need to be con-
solidated into a single peak list (161, 162). The number of
reads overlapping each window or merged peak is then tab-
ulated for individual ChIP and input libraries and normalized.
Several methods have been proposed for ChIP-seq data nor-
malization, including global scaling based on total mapped
reads or number of reads within peaks (26), linear modeling
based on M (log ratio) and A (mean on a log scale) values
of shared peaks (165), quantile normalization (166), and
trimmed mean ofM values (167). To choose an appropriate
normalization method, it is better to first check whether global

enrichment levels are comparable among different libraries.
Recently, “spike-in” chromatin from a different organism
was used as an internal control to facilitate data normalization
across different samples (168, 169).

DiffBind can only be applied to data sets with biological
replicates (162). It uses edgeR or DESeq to identify differen-
tial binding sites. DBChIP uses edgeR to estimate the disper-
sion parameter under the negative binomial distribution (161)
and can also handle cases without biological replicates. In
contrast, the sliding window-based diffReps selects signifi-
cant windows that meet a predefined P-value cutoff, and
then repeats the test of significance after merging neighboring
significant windows into regions (163). An exact negative bi-
nomial test is used if there are biological replicates; other-
wise, a G test or χ2 test is used.

ChIP-seq applications

ChIP-seq has been applied to a few case-control studies with
a limited number of subjects (20 or less). These studies aimed
to identifymarks in regulatory regions that were associatedwith
aging (134) or cancer development (162, 170). H3K4me1 and
H3K27ac togethermark active enhancers, andH3K4me1 alone
marks poised enhancers. Compared with normal colon crypts,
colorectal cancer is characterized by both gain of H3H4me1
sites in the open chromatin regions and loss of H3H4me1 sites
from condensed chromatin regions, suggesting distinct chroma-
tin changes in enhancer regions (170). Estrogen receptor α is a
key transcription factor in the majority of breast cancers. ChIP-
seq revealed distinct estrogen receptor α binding signatures that
can separate patients with good clinical outcomes from those
with poor outcomes, and the latter showed a global increase
in estrogen receptor α binding (162).

ChIP-seq is heavily used in post-GWAS functional studies by
mapping transcription factor binding and histone modifications
to regulatory regions, thereby allowing the inference of causality
for noncoding SNPs (171). This area of research is rapidly ex-
panding, due in part to the massive amounts of epigenomic data
generated by the International Human Epigenome Consortium
(14, 29, 144) and the recognition that noncoding SNPs play reg-
ulatory roles (52, 75, 77). In fact, a significant portion of causal
SNP candidates overlap enhancers marked by H3K4me1 and
H3K27ac (73, 77).

There are frequent cross-talks between different marks (33,
44, 52, 63). For example, in one study, DNAmethylation and
H3K27me3 together contributed to the gene silencing in
hindbrain ependymomas (172). Whole-genome or exome se-
quencing failed to identify significant recurrent mutations
across a cohort of 47 hindbrain ependymoma patients; how-
ever, array hybridization- andWGBS-based DNAmethylation
assays identified DNA methylation target genes that showed
significant overlap with H3K27me3 targets in the group A
subtype (with poor prognosis), a pattern that was much less
obvious in the group B subtype (with good prognosis) (172).

Therefore, the epigenetic basis of disease can be more
readily revealed through integrative analysis of genomic and
epigenomic data sets (29, 173). Public data generated from
the same or relevant cell/tissue types represent good resources
(12, 73, 144, 174). Correlating expression data with epige-
nomic data like transcription factor or histone modification
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ChIP-seq or DNA methylation will help identify the genes
potentially targeted by an epigenetic mark (172). Further-
more, chromatin interaction maps generated by the chromo-
some conformation capture (3C)-based assays can be utilized
to link gene promoters to the distal regulatory regions like en-
hancers (27–29). The combined analysis of variant calls with
expression data, WGBS/RRBS data, DNase I hypersensitive
sites, or ChIP-seq data can identify allele-specific events, thus
pinpointing the disease-associated noncoding functional var-
iants in linkage disequilibrium (14, 52, 77).

Challenges in ChIP-seq experiments

Unlike DNAmethylation experiments, which use genomic
DNA and generally work well in archived samples (2, 175,
176), ChIP-seq experiments require fresh or frozen samples
containing high-quality chromatin. In addition, the conven-
tional ChIP protocol often needs large amounts of starting
material (106 cells or more) for a single mark, which limits its
applicability to scarce clinical samples. In these cases, the
indexing-first chromatin immunoprecipitation approach,
which has high sensitivity and reproducibility, may become
the method of choice (154).
Similarly to DNAmethylation studies, the interpretation of

ChIP-seq experiments performed on unfractionated tissues is
complicated by the presence of multiple cell types. The ideal
solution would be to use sorted cell populations (77, 154).
Nevertheless, it is often difficult to obtain large numbers of
homogeneous cells from cell sorting (140), and cell sorting
itself might alter epigenetic states (3). Cell culturing also pro-
motes epigenetic changes (3, 10), limiting its usefulness in
enriching target cells (50, 81, 138). Lastly, given the variation
in ChIP efficiency in different experiments (26, 159), it is dif-
ficult to directly compare data sets that were generated with
antibodies from different sources, in different laboratories,
or at different times. Further automation of the ChIP protocol
is expected to reduce variability.

CONCLUSIONS AND OUTLOOK

Epigenetic changes very likely contribute to the pathogen-
esis of complex diseases by mediating gene-environment
interactions. Epigenome-wide association studies and post-
GWAS functional analyses support this notion by revealing
disease-associated changes in DNA methylation, histone
modifications, transcription factor binding, and noncoding
RNA expression. However, development of epigenomics-
based therapeutic strategies requires establishment of causal-
ity (55). Several hurdles need to be cleared to achieve this
goal.
Firstly, given the strong tissue specificity and highly dy-

namic nature of the epigenome (2, 9, 37, 177), it is essential
to generate reference epigenomes for additional tissue types
and developmental stages (9, 12, 16). Cataloging epigenome
variations across normal individuals will enhance the identi-
fication of site-specific variations associated with disease (2,
12, 57) (Appendix). Establishment of concordance between
easily accessible tissues and inaccessible ones of greater dis-
ease relevance (2) would facilitate not only biomarker dis-
covery (124) but also longitudinal evaluation of epigenetic

changes in prospective cohort studies, which, in turn, should
help differentiate cause from simple association (7, 56, 106,
175). These efforts should be accompanied by the develop-
ment of more sensitive assay protocols (3), because current
methods often require large quantities of tissues (38).
Analysis of large data sets represents another challenge. The

Encyclopedia of DNAElements Consortium has developed an-
alytical guidelines for multiple types of epigenetic data (178).
However, bioinformatic methods must also take into account
the fact that technologies are frequently updated or replaced,
and must offer solutions to improve compatibility across data
generated over time or on different platforms (5, 16, 81). Addi-
tional tools for the integrative analysis of “multi-omic” data
sets must be developed to enhance the dissection of disease
mechanisms.
It is anticipated that progress in our understanding of disease

epigenetics will lead to new disease diagnosis, prevention, and
treatment (9, 61, 179).While the current exponential growth in
this area of biomedical research supports this view, the path to-
ward achieving this ambitious goal remains challenging.
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APPENDIX

Suggested Resources

National Institutes of Health Common Fund Epigenomics
Program:
• http://commonfund.nih.gov/epigenomics/grants

International Human Epigenome Consortium (the goal is to
generate 1,000 reference epigenomes):
• http://ihec-epigenomes.org/

Encyclopedia of DNA Elements (ENCODE) Consortium
(extensive epigenome data from cultured cell lines):
• http://www.genome.gov/ENCODE/

National Institutes of Health Roadmap Epigenomics Map-
ping Consortium (epigenomic maps for stem cells and pri-
mary ex vivo tissues):
• http://www.roadmapepigenomics.org/
• http://egg2.wustl.edu/roadmap/web_portal/

European BLUEPRINT project (the goal is to generate ap-
proximately 100 reference epigenomes):
• http://www.blueprint-epigenome.eu/

International Cancer Genome Consortium (include epige-
nomic maps in 50 different tumor types or subtypes):
• https://icgc.org/

The Cancer Genome Atlas:
• https://tcga-data.nci.nih.gov/tcga/

Epigenomics mirror of the University of California, Santa
Cruz, genome browser:
• http://www.epigenomebrowser.org/

National Center for Biotechnology Information epigenomics
portal:
• http://www.ncbi.nlm.nih.gov/epigenomics

Galaxy (for data-intensive biomedical research):
• http://galaxyproject.org/
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