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Abstract

We introduce a method for learning pairwise interactions in a linear regression or logistic 

regression model in a manner that satisfies strong hierarchy: whenever an interaction is estimated 

to be nonzero, both its associated main effects are also included in the model. We motivate our 

approach by modeling pairwise interactions for categorical variables with arbitrary numbers of 

levels, and then show how we can accommodate continuous variables as well. Our approach 

allows us to dispense with explicitly applying constraints on the main effects and interactions for 

identifiability, which results in interpretable interaction models. We compare our method with 

existing approaches on both simulated and real data, including a genome-wide association study, 

all using our R package glinternet.
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1 Introduction

Given an observed response and explanatory variables, we expect interactions to be present 

if the response cannot be explained by additive functions of the variables. The following 

definition makes this more precise.

Definition 1—When a function f(x, y) cannot be expressed as g(x) + h(y) for some 

functions g and h, we say that there is an interaction in f between x and y.

Interactions of single nucleotide polymorphisms (SNPs) are thought to play a role in cancer 

[Schwender and Ickstadt, 2008] and other diseases. Modeling interactions has also served 

the recommender systems community well: latent factor models (matrix factorization) aim 

to capture user-item interactions that measure a user’s affinity for a particular item, and are 

the state of the art in predictive power [Koren, 2009]. In look-alike-selection, a problem that 

is of interest in computational advertising, one looks for features that most separates a group 

of observations from its complement, and it is conceivable that interactions among the 

features can play an important role.

Linear models scale gracefully as datasets grow wider — i.e. as the number of variables 

increase. Problems with 10,000 or more variables are routinely handled by standard 
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software. Scalability is a challenge when we model interactions. Even with 10,000 variables, 

we are already looking at a 50 × 106-dimensional space of possible interaction pairs. 

Complicating the matter are spurious correlations amongst the variables, which makes 

learning even harder.

Finding interactions often falls into the “p ≫ n” regime where there are more variables than 

observations. A popular approach in supervised learning problems of this type is to use 

regularization, such as imposing an ℓ2 bound of the form  (ridge) or an ℓ1 bound ||

β||1 ≤ s (lasso) on the coefficients. The latter type of penalty has been the focus of much 

research since its introduction in [Tibshirani, 1996], and is called the lasso. One of the 

reasons for the lasso’s popularity is that it does variable selection: it sets some coefficients 

exactly to zero. There is a group analogue to the lasso, called the group-lasso [Yuan and Lin, 

2006], that sets groups of variables to zero. The idea behind our method is to set up main 

effects and interactions (to be defined later) via groups of variables, and then we perform 

parameter selection via the group-lasso.

Discovering interactions is an area of active research; [Bien et al., 2013] give a good and 

recent review. Other recent approaches include [Chen et al., 2011], [Bach, 2008], [Rosasco 

et al., 2010] and [Radchenko and James, 2010]. In this paper, we introduce glinternet 

(group-lasso interaction network), a method for learning first-order interactions that can be 

applied to categorical variables with arbitrary numbers of levels, continuous variables, and 

combinations of the two. Our approach uses a version of the group lasso to select 

interactions and enforce hierarchy.

For very large problems, we precede this with a screening step that gives a candidate set of 

main effects and interactions. Our preferred screening rule is an adaptive procedure that is 

based on the strong rules [Tibshirani et al, 2012] for discarding predictors in lasso-type 

problems. Strong rules also lead to efficient algorithms for solving our group-lasso 

problems, with our without screening.

While screening potentially misses some candidate interactions, we note that our approach 

can handle very large problems without any screening. In Section 7.3 we fit our model with 

27K Snps (three-level factors), 3,500 observations, and 360M candidate interactions, 

without any screening.

1.1 A simulated example

As a first example and a forward peek at the results, we perform 100 simulations with 500 3-

level categorical variables and 800 observations (squared error loss with quantitative 

response). There are 10 main effects and 10 interactions in the ground truth, and the noise 

level is chosen to give a signal to noise ratio of one. We run glinternet without any 

screening, and stop after ten interactions have been found. The average false discovery rate 

and standard errors are plotted as a function of the number of interactions found in Figure 1. 

As we can see in the figure, the first 10 interactions found (among a candidate set of 

125,000) include 7 of the 10 real interactions, on average.
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1.2 Organization of the paper

The rest of the paper is organized as follows. Section 2 introduces the problem and notation. 

In Section 3, we introduce the group-lasso and how it fits into our framework for finding 

interactions. We also show how glinternet is equivalent to an overlapped group lasso. We 

discuss screening in Section 4, and give several examples with both synthetic and real 

datasets in Section 7. We relegate the specific details of our algorithmic implementation of 

the group lasso to Appendix A.3. We conclude with a discussion in Section 8.

2 Background and notation

We use the random variables Y to denote the response, F to denote a categorical feature, and 

Z to denote a continuous feature. We use L to denote the number of levels that F can take. 

For simplicity of notation we will use the first L positive integers to represent these L levels, 

so that F takes values in the set {i ∈ ℤ : 1 ≤ i ≤ L}. Each categorical F has an associated 

random dummy vector variable X ∈ ℝL with a 1 that indicates which level F takes, and 0 

everywhere else.

When there are p categorical (or continuous) features, we will use subscripts to index them, 

i.e. F1, …, Fp. Boldface font will always be reserved for vectors or matrices that comprise of 

realizations of these random variables. For example, Y is the n-vector of observations of the 

random variable Y, likewise for F and Z. Similarly, X is a n × L indicator matrix whose i-th 

row consists of a 1 in the Fi-th column and 0 everywhere else. We use a n × (Li · Lj) 

indicator matrix Xi:j to represent the interaction Fi : Fj. We will write

for the matrix consisting of all pairwise products of columns of Xi and Xj. For example,

2.1 Definition of interaction for categorical variables

To see how Definition 1 applies to this setting, let Y|F1 = i, F2 = j) = μij, the conditional 

mean of Y given that F1 takes level i, and F2 takes level j. There are 4 possible cases:

1. μij = μ (no main effects, no interactions)

2.  (one main effect F1)

3.  (two main effects)

4.  (main effects and interaction)

Note that all but the first case is overparametrized, and a common remedy is to impose sum 

constraints on the main effects and interactions:
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(1)

and

(2)

In what follows, θi, i = 1, ···, p, will represent the main effect coefficients, and θi:j will 

denote the interaction coefficients. We will use the terms “main effect coefficients” and 

“main effects” interchangeably, and likewise for interactions.

2.2 Weak and strong hierarchy

An interaction model is said to obey strong hierarchy if an interaction can be present only if 

both of its main effects are present. Weak hierarchy is obeyed as long as either of its main 

effects are present. Since main effects as defined above can be viewed as deviations from 

the global mean, and interactions are deviations from the main effects, it rarely make sense 

to have interactions without main effects. This leads us to prefer interaction models that are 

hierarchical. We see in Section 3 that glinternet produces estimates that obey strong 

hierarchy.

2.3 First order interaction model

Our model for a quantitative response Y is given by

(3)

and for a binary response, we have

(4)

We fit these models by minimizing an appropriate loss function ℒ, subject to many 

constraints. Even if p is not too large, we will need to impose the identifiability constraints 

(1) and (2) for the coefficients θ. But we will also want to limit ourselves to the important 

interactions and main effects, while maintaining the hierarchy mentioned above. We achieve 

all these constraints by adding an appropriate penalty to the loss function. We give the loss 

functions here, and then develop the group-lasso penalties that achieve the desired 

constraints.

For a quantitative response, we typically use squared-error loss:
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(5)

and for a binary response the “logistic loss” (negative Bernoulli log-likelihood):

(6)

where the log and exp are taken component-wise.

2.4 Group-lasso and overlapped group-lasso

Since glinternet’s workhorse is the group-lasso, we briey introduce it here. We refer the 

reader to [Yuan and Lin, 2006] for more technical details.

The group-lasso can be thought of as a more general version of the well-known lasso. 

Suppose there are p groups of variables (possibly of different sizes), and let the feature 

matrix for group j be denoted by Xj. Let Y denote the vector of responses. For squared-error 

loss, the group-lasso estimates  by solving

(7)

Note that if each group consists of only one variable, this reduces to the lasso criterion. In 

our application, each indicator matrix Xj will represent a group. Like the lasso, the penalty 

will force some β̂
j to be zero, and if an estimate β̂

j is nonzero, then all its components are 

typically nonzero. Hence the group-lasso applied to the Xj’s intuitively selects those 

variables that have a strong overall contribution from all their levels toward explaining the 

response.

The parameter λ controls the amount of regularization, with larger values implying more 

regularization. The γ’s allow each group to be penalized to different extents, and should 

depend on the scale of the matrices Xj. The nature of our matrices allows us to set them all 

equal to 1 (see online Appendix A.2 for details). To solve (7), we start with λ just large 

enough that all estimates are zero. Decreasing λ along a grid of values results in a path of 

solutions, from which an optimal λ can be chosen by cross validation or some other model 

selection procedure.

The Karush-Kuhn-Tucker (KKT) optimality conditions for the group-lasso are simple to 

compute and check. For group j, they are

(8)
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(9)

The group-lasso is commonly fit by iterative methods — either block coordinate descent, or 

some form of gradient descent, and convergence can be confirmed by checking the KKT 

conditions. Details of the algorithm we use can be found in Appendix A.3.

The overlap group-lasso [Jacob et al., 2009] is a variant of the group-lasso where the groups 

of variables are allowed to have overlaps, i.e. some variables can show up in more than one 

group. However, each time a variable shows up in a group, it gets a new coefficient. For 

example, if a variable is included in three groups, then it has three coefficients that need to 

be estimated, and its ultimate coefficient is the sum of the three. This turns out to be critical 

for enforcing hierarchy.

3 Methodology and results

We want to fit the first order interaction model in a way that obeys strong hierarchy. We 

show in Section 3.1 how this can be achieved by adding an overlapped group-lasso penalty 

to the loss ℒ(Y; μ, θ), in addition to the sum-to-zero constraints on the θs. We then show 

how this optimization problem can be conveniently and efficiently solved via a group-lasso 

without overlaps, and without the sum-to-zero constraints.

3.1 Strong hierarchy through overlapped group-lasso

Adding an overlapped group-lasso penalty to ℒ(Y; μ, θ) is one way of obtaining solutions 

that satisfy the strong hierarchy property. The results that follow hold for both squared error 

and logistic loss, but we focus on the former for clarity.

Consider the case where there are two categorical variables F1 and F2 with L1 and L2 levels 

respectively. Their indicator matrices are given by X1 and X2. (These results generalize 

trivially to the case of pairwise interactions among more than 2 variables). We solve

(10)

subject to

(11)

and
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(12)

Notice that the main effect matrices Xj, j = 1, 2, each have two different coefficient vectors 

αj and α̃
j, creating an overlap in the penalties, and their ultimate coefficient is the sum θj = 

αj + α̃j. The  term results in estimates that satisfy strong 

hierarchy, because either  or all are nonzero, i.e. interactions are always 

present with both main effects.

The constants L1 and L2 are chosen to put α̃
1, α̃2, and α1:2 on the same scale. To motivate 

this, note that we can write

and similarly for X2α̃
2. We now have a representation for α̃1 and α̃

2 with respect to the 

space defined by X1:2, so that they are “comparable” to α1:2. We then have

and likewise for α̃
2. More details are given in Section 3.2 below.

The estimates for the actual main effects and interactions as in (3) are

Because of the strong hierarchy property mentioned above, we also have

In standard ANOVA, there are a number of ways of dealing with the overparametrization for 

factors, other than the sum-to-zero constraints we use here; for example, setting the 

coefficient for the first or last level to zero, or other chosen contrasts. These also lead to a 

reduced parametrization. While this choice does not alter the fit in the standard case, with 

parameter regularization it does. Our choice (all levels in with sum-to-zero constraint) is 

symmetric and appears to be natural with penalization, in that it treats all the levels as 

equals. It also turns out to be very convenient, as we show in the next section.
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3.2 Equivalence with unconstrained group-lasso

We now show how to solve the constrained overlapped group-lasso problem by solving an 

equivalent unconstrained group-lasso problem — a simplification with considerable 

computational advantages.

We need two lemmas. The first shows that because we fit an intercept in the model, the 

estimated coefficients β̂ for any categorical variables in the model will have mean zero.

Lemma 1—Let X be an indicator matrix with L columns, corresponding to an L-level 

factor. Then the solution β̂ to

satisfies

The same is true for logistic loss.

Proof: Because X is an indicator matrix, each row consists of exactly a single 1 (all other 

entries 0), so that

for any constant c. It follows that if μ̂ and β̂ are solutions, then so are μ̂ + c and β̂ − c1. But 

the norm ||β̂ − c1||2 is minimized for .

Note that this would be true for each of any number of Xj and βj in the model, as long as 

there is an unpenalized intercept.

The next lemma states that if we include two intercepts in the model, one penalized and the 

other unpenalized, then the penalized intercept will be estimated to be zero.

Lemma 2—The optimization problem

has solution μ̃ = 0 for all λ > 0. The same result holds for logistic loss.
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The proof is straightforward: we can achieve the same fit with a lower penalty by taking μ 

← μ + μ̃.

The next theorem shows how the overlapped group-lasso in Section 3.1 reduces to a group-

lasso. The main idea boils down to the fact that quadratic penalties on coefficient vectors are 

rotation invariant. This allows us to rotate from the “main-effects + interactions” 

representation to the equivalent “cell-means” representation without changing the penalty.

Theorem 1—Solving the constrained optimization problem (10) – (12) in Section 3.1 is 

equivalent to solving the unconstrained problem

(13)

Proof: We need to show that the group-lasso objective can be equivalently written as an 

overlapped group-lasso with the appropriate constraints on the parameters. We begin by 

rewriting (10) as

(14)

By Lemma 2, we will estimate μ̃ = 0. Therefore we have not changed the solutions in any 

way.

Lemma 1 shows that the first two constraints in (11) are satisfied by the estimated main 

effects β̂
1 and β̂

2. We now show that

where the α̃
1, α̃2, and α1:2 satisfy the constraints in (11) and (12), and along with μ̃ represent 

an equivalent reparametrization of β1:2.

For fixed levels i and j, we can decompose β1:2 (see [Scheffe, 1959]) as

It follows that the whole (L1L2)-vector β1:2 can be written as
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(15)

where Z1 is a L1L2 × L1 indicator matrix of the form

and Z2 is a L1L2 × L2 indicator matrix of the form

It follows that

and

Note that α̃
1, α̃2, and α1:2, by definition, satisfy the constraints (11) and (12). This can be 

used to show, by direct calculation, that the four additive components in (15) are mutually 

orthogonal, so that we can write

We have shown that the penalty in the group-lasso problem is equivalent to the penalty in 

the constrained overlapped group-lasso. It remains to show that the loss functions in both 

problems are also the same. Since X1:2Z1 = X1 and X1:2Z2 = X2, this can be seen by a direct 

computation:
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Theorem 1 shows that we can use the group-lasso to obtain estimates that satisfy strong 

hierarchy, without solving the overlapped group-lasso with constraints. The theorem also 

shows that the main effects and interactions can be extracted with

Although this theorem is stated and proved with just two categorical variables F1 and F2, the 

same results extends in a trivial way to all pairs of interactions with p variables. The only 

small modification is that a main effect will potentially get contributions from more than one 

interaction pair.

This equivalence has considerable impact on the computations. A primary operation in 

computing a group-lasso solution is a matrix multiply as in (8), which is also used in the 

strong rules screening (Section 4). For these operations we do not need to compute all the 

matrices in advance, but compute the multiplies on the fly using the stored factor variables. 

Furthermore, these operations can be run in parallel on many processors.

We discuss the properties of the glinternet estimates in the next section.

3.3 Properties of the glinternet penalty

While glinternet treats the problem as a group-lasso, examining the equivalent overlapped 

group-lasso version makes it easier to draw insights about the behaviour of the method 

under various scenarios. Recall that the overlapped penalty for two variables is given by

We consider a noiseless scenario. If the ground truth is additive, i.e. α1:2 = 0, then α̃1 and α̃
2 

will be estimated to be zero. This is because for L1, L2 ≥ 2 and a, b ≥ 0, we have
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Thus it is advantageous to place all the main effects in α1 and α2, because doing so results in 

a smaller penalty. Therefore, if the truth has no interactions, then glinternet picks out only 

main effects.

If an interaction was present (α1:2 > 0), the derivative of the penalty term with respect to 

α1:2 is

The presence of main effects allows this derivative to be smaller, thus allowing the 

algorithm to pay a smaller penalty (as compared to no main effects present) for making α̂
1:2 

nonzero. This shows interactions whose main effects are also present are discovered before 

pure interactions.

3.4 Interaction between a categorical variable and a continuous variable

We describe how to extend Theorem 1 to interaction between a continuous variable and a 

categorical variable.

Consider the case where we have a categorical variable F with L levels, and a continuous 

variable Z. Let μi = Y|F = i, Z = z]. There are four cases:

• μi = μ (no main effects, no interactions)

•  (main effect F)

•  (two main effects)

•  (main effects and interaction)

As before, we impose the constraints  and . We will also assume 

that the observed values zi are standardized to have mean zero and variance one; see also 

Appendix A.2. An overlapped group-lasso of the form

(16)

subject to
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allows us to obtain estimates of the interaction term that satisfy strong hierarchy. This is 

again due to the nature of the square root term in the penalty. The actual main effects and 

interactions can be recovered as

We have the following extension of Theorem 1:

Theorem 2—Solving the constrained overlapped group-lasso above is equivalent to 

solving

(17)

Proof: We proceed as in the proof of Theorem 1 and introduce an additional parameter μ̃ 

into the overlapped objective:

(18)

As before, this does not change the solutions because we will have  (see Lemma 2).

Decompose the 2L-vector β1:2 into

where η1 and η2 both have dimension L × 1. Apply the ANOVA decomposition to both to 

obtain

and
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Note that α̃
1 is a (L × 1)-vector that satisfies , and likewise for α1:2. This allows 

us to write

It follows that

which shows that the penalties in both problems are equivalent. A direct computation shows 

that the loss functions are also equivalent:

Theorem 2 allows us to accommodate interactions between continuous and categorical 

variables by simply parametrizing the interaction term as X * [1 Z], where X is the indicator 

matrix representation for categorical variables that we have been using all along. We then 

proceed as before with a group-lasso.

3.5 Interaction between two continuous variables

We have seen that the appropriate representations for the interaction terms are

• X1 * X2 = X1:2 for categorical variables

• X * [1 Z] = [X (X * Z)] for one categorical variable and one continuous variable.

How should we represent the interaction between two continuous variables? We follow the 

traditional approach, and use the bilinear interaction term Z1 · Z2. We can use exactly the 

same framework as before:

This is indeed the case. A linear interaction model for Z1 and Z2 is given by
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Unlike the previous cases where there were categorical variables, there are no constraints on 

any of the coefficients, and so no simplifications arise. It follows that the overlapped group-

lasso

(19)

is trivially equivalent to

(20)

with the β’s taking the place of the α’s. Note that we will have , as will be the first 

element of . Since its coefficient is zero, we can omit the column of 1s in the interaction 

matrix.

4 Strong rules and variable screening

glinternet works by solving a group-lasso with  groups of variables. Our 

algorithms scale well; we give an example in Section 7.3 where p = 27, 000, leading to a 

search space of 360 million possible interactions. This is partly attributable to our use of 

strong rules [Tibshirani et al, 2012], a computational hedge that we describe below.

However, for larger p (e.g. ~ 105), we require some form of screening to reduce the 

dimension of the interaction search space. We have argued that models satisfying hierarchy 

make sense, so it is natural to consider screening devices that hedge on the presence of main 

effects. Again we use the strong rules, but this time in adaptive fashion. In our simulation 

experiments we compare this to an approach based on gradient boosting, which in the 

interest of space we describe in the online Appendix A.1.

4.1 Strong rules

The strong rules [Tibshirani et al, 2012] for lasso-type problems are effective heuristics for 

(temporarily) discarding large numbers of variables that are likely to be redundant. As a 

result, the strong rules can dramatically speed up the convergence of algorithms because 

they can concentrate on a smaller strong set of variables that are more likely to be nonzero. 

After our algorithm has converged on the strong set, we have to check the KKT conditions 

on the discarded set. Any violators are then added to the active set, and the model is refit. 
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This is repeated till no violators are found. In our experience, violations rarely occur, which 

means we rarely have to do multiple rounds of fitting for any given value of the 

regularization parameter λ.

In detail, suppose we have a solution Ŷℓ at λℓ, and wish to compute the solution at λℓ+1 < λℓ. 

The strong rule for the group-lasso involves computing  for every group 

of variables Xi. We know from the KKT optimality conditions (see Section 2.4) that

(21)

(assuming the γi in (8) are all 1; if not, γi multiplies λℓ in (21)). When we decrease λ to λℓ+1, 

we expect to enlarge the active set. The strong rule discards a group i if si < λℓ+1 − (λℓ − 

λℓ+1).

We do not store all the matrices Xi in advance, particularly for those based on factor 

variables, but rather compute the inner-products directly using the underlying variables. 

Note also that these operations are easily run in parallel when p is large.

4.2 Adaptive screening

If  is too large, then we cannot accommodate all possible interactions, and instead 

use a hedge (also based on the strong rules). The idea is use the strong rules to screen main-

effect variables only, and then consider all possible interactions with the chosen variables.

An example will illustrate. Suppose we have 10,000 variables (~ 50×106 possible 

interactions), but we are computationally limited to a group-lasso with 106 groups. Assume 

we have the fit for λ = λℓ, and want to move on to λℓ+1. Let rλℓ = Y − Ŷλℓ denote the current 

residual. At this point, the variable scores  have already been computed from 

checking the KKT conditions at the solutions for λℓ. We restrict ourselves to the 10,000 

(main-effect) variables, and take the 100 with the highest scores. Denote this set by . 

The candidate set of variables for the group-lasso is then given by  together with the 

pairwise interactions between all 10,000 variables and . Because this gives a candidate 

set with about 100 × 10, 000 = 106 terms, the computation is now feasible. We then compute 

the group-lasso on this candidate set, and repeat the procedure with the new residual rλℓ+1.

5 Related work and approaches

Here we describe two related approaches to discovering interactions. An earlier third 

approach, logic regression [Ruczinski I, 2003] is based on Boolean combinations of 

variables. Since it is restricted to binary variables, we did not include it in our comparisons.
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5.1 hierNet [Bien et al., 2013]

This is a method for finding interactions, and like glinternet, imposes hierarchy via 

regularization. HierNet solves the optimization problem

(22)

subject to

where Θj is the jth row of Θ. The main effects are represented by β, and interactions are 

given by the matrix Θ. The first constraint enforces symmetry in the interaction coefficients. 

 and  are the positive and negative parts of βj, and are given by  and 

 respectively. The constraint  implies that if some 

components of the j-th row of Θ are estimated to be nonzero, then the main effect βj will also 

be estimated to be nonzero. Since nonzero Θij corresponds to an interaction between 

variables i and j, by symmetry we will have both ||Θi·||1 > 0 and ||Θj·||1 > 0. This implies that 

the solutions to the hierNet objective satisfy strong hierarchy. One can think of 

 as a budget for the amount of interactions that are allowed to be 

nonzero. Alternatively, a strong interaction will force the main effects to be large, a 

somewhat surprising side effect.

The hierNet objective can be modified to obtain solutions that satisfy weak hierarchy (by 

removing the symmetry constraint); we use both in our simulations, giving hierNet a 

potential advantage. Currently, hierNet is only able to accommodate binary and continuous 

variables, and is practically limited to fitting models with fewer than 1000 variables.

5.2 Composite absolute penalties [Zhao et al., 2009]

Like glinternet, this is also a penalty-based approach. CAP employs penalties of the form

where γ1 > 1. Such a penalty ensures that β̂
i ≠ 0 whenever β̂

j ≠ 0. It is possible that β̂
i ≠ 0 but 

β̂
j = 0. In other words, the penalty makes β̂

j hierarchically dependent on β̂
i: it can only be 

nonzero after β̂
i becomes nonzero. It is thus possible to use CAP penalties to build 

interaction models that satisfy hierarchy. For example, a penalty of the form ||(θ1, θ2, 

θ1:2)||2+||θ1:2||2 will result in estimates that satisfy θ1̂:2 ≠ 0 ⇒ θ̂
1 ≠ 0 and θ̂2 ≠ 0. We can thus 

build a linear interaction model for two categorical variables by solving
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(23)

subject to (1) and (2). We see that the CAP approach differs from glinternet in that we have 

to solve a constrained optimization problem which is considerably more complicated, thus 

making it unclear if CAP will be computationally feasible for larger problems. The form of 

the penalties are also different: the interaction coefficient in CAP is penalized twice, 

whereas glinternet penalizes it once. It is not obvious what the relationship between the two 

algorithms’ solutions would be.

6 Simulation study

We perform simulations to see if glinternet is competitive with existing methods. hierNet is 

a natural benchmark because it also tries to find interactions subject to hierarchical 

constraints. Because hierNet only works with continuous variables and 2-level categorical 

variables, we include gradient boosting (see Appendix A.1) as a competitor for the scenarios 

where hierNet cannot be used.

6.1 False discovery rates

We simulate 4 different setups:

1. Truth obeys strong hierarchy. The interactions are only among pairs of nonzero 

main effects.

2. Truth obeys weak hierarchy. Each interaction has only one of its main effects 

present.

3. Truth is anti-hierarchical. The interactions are only among pairs of main effects that 

are not present.

4. Truth is pure interaction. There are no main effects present, only interactions.

Each case is generated with n = 500 observations and p = 30 continuous variables, with a 

signal to noise ratio of 1. Where applicable, there are 10 main effects and/or 10 interactions 

in the ground truth. The interaction and main effect coefficients are sampled from N(0, 1), so 

that the variance in the observations should be split equally between main effects and 

interactions.

Boosting is done with 5000 depth-2 trees and a learning rate of 0.001. Each tree represents a 

candidate interaction, and we can compute the improvement to fit due to this candidate pair. 

Summing up the improvement over the 5000 trees gives a score for each interaction pair, 

which can then be used to order the pairs. We then compute the false discovery rate as a 

function of the number of ordered interactions included. For glinternet and hierNet, we 

obtain a path of solutions and compute the false discovery rate as a function of the number 

of interactions discovered. The default setting for hierNet is to impose weak hierarchy, and 

we use this except in the cases where the ground truth has strong hierarchy. In these cases, 

we set hierNet to impose strong hierarchy. We also set “diagonal=FALSE” to disable 

quadratic terms.
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We plot the average false discovery rate with standard error bars as a function of the number 

of predicted interactions in Figure 2. The results are from 100 simulation runs. We see that 

glinternet is competitive with hierNet when the truth obeys strong or weak hierarchy, and 

does better when the truth is anti-hierarchical. This is expected because hierNet requires the 

presence of main effects as a budget for interactions, whereas glinternet can still esimate an 

interaction to be nonzero even though none of its main effects are present. Boosting is not 

competitive, especially in the anti-hierarchical case. This is because the first split in a tree is 

effectively looking for a main effect.

Both glinternet and hierNet perform comparably in these simulations. If all the variables are 

continuous, there do not seem to be compelling reasons to choose one over the other, apart 

from the computational advantages of glinternet discussed in the next section.

6.2 Feasibility

To the best of our knowledge, hierNet is the only readily available package for learning 

interactions among continuous variables in a hierarchical manner. Therefore it is natural to 

use hierNet as a speed benchmark. We generate data in which the ground truth has strong 

hierarchy as in Section 6.1, but with n = 1000 quantitative responses and p = 20, 40, 80, 160, 

320, 640 continuous predictor variables. We set each method to find 10 interactions. While 

hierNet does not allow the user to specify the number of interactions to discover, we get 

around this by fitting a path of values, then selecting the regularization parameter that 

corresponds to 10 nonzero estimated interactions. We then refit hierNet along a path that 

terminates with this choice of parameter, and time this run. Both software packages are 

compiled with the same options. Figure 3 shows the best time recorded for each method 

over 10 runs. These simulations were timed on a Intel Core-i7 3930K processor. We see that 

glinternet is faster than hierNet by a factor of about 100 on these smaller problems, and is 

not feasible for problems larger than about 1000.

7 Real data examples

We compare the performance of glinternet on several prediction problems. The competitor 

methods used are gradient boosting, lasso, ridge regression, and hierNet where feasible. In 

all situations, we determine the number of trees in boosting by first building a model with a 

large number of trees, typically 5000 or 10000, and then selecting the number that gives the 

lowest cross-validated error. We use a learning rate of 0.001, and we do not sub-sample the 

data since the sample sizes are small in all the cases.

The methods are evaluated on three measures:

1. misclassification error, or 0–1 loss

2. area under the receiver operating characteristic (ROC) curve, or AUC

3.
cross entropy, given by .
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7.1 Spambase

This is the Spambase data taken from the UCI Machine Learning Repository. There are 

4601 binary observations indicating whether an email is spam or non-spam, and 57 integer-

valued variables. All the features are log-transformed by log(1 + x) before applying the 

methods, since they all tend to be very skew, with point masses at zero. We split the data 

into a training set consisting of 3065 observations and a test set consisting of 1536 

observations. The methods are tuned on the training set using 10-fold cross validation before 

predicting on the test set. The results are shown in the left panel in Figure 4.

7.2 Dorothea

Dorothea is one of the 5 datasets from the NIPS 2003 Feature Learning Challenge, where 

the goal is to predict if a chemical molecule will bind to a receptor target. There are 100000 

binary features that describe three-dimensional properties of the molecules, half of which are 

probes that have nothing to do with the response. The training, validation, and test sets 

consist of 800, 350, and 800 observations respectively. More details about how the data 

were prepared can be found at http://archive.ics.uci.edu/ml/datasets/Dorothea.

We ran glinternet with screening on 1000 main effects, which resulted in about 100 million 

candidate interaction pairs. The validation set was used to tune all the methods. We then 

predict on the test set with the chosen models and submitted the results online for scoring. 

The best model chosen by glinternet made use of 93 features, compared with the 9 features 

chosen by ℓ1-penalized logistic regression (lasso). The right panel of Figure 4 summarizes 

the performance for each method. (Balanced error is the simple average of the fractions of 

false positives and false negatives, and is produced automatically by the challenge website.) 

We see that glinternet has a slight advantage over the lasso, indicating that interactions 

might be important for this problem. However, the differences are small, and boosting, 

glinternet and lasso all show similar performance.

7.3 Genome-wide association study

We use the simulated rheumatoid arthritis data (replicate 1) from Problem 3 in Genetic 

Analysis Workshop 15. Affliction status was determined by a genetic/environmental model 

to mimic the familial pattern of arthritis; full details can be found in [Miller et al., 2007]. 

These authors simulated a large population of nuclear families consisting of two parents and 

two offspring. We are then provided with 1500 randomly chosen families with an affected 

sibling pair (ASP), and 2,000 unaffected families as a control group. For the control 

families, we only have data from one randomly chosen sibling. Therefore we also sample 

one sibling from each of the 1,500 ASPs to obtain 1,500 cases.

There are 9,187 single nucleotide polymorphism (SNP) markers on chromosomes 1 through 

22 that are designed to mimic a 10K SNP chip set, and a dense set of 17,820 SNPs on 

chromosome 6 that approximate the density of a 300K SNP set. Since 210 of the SNPs on 

chromosome 6 are found in both the dense and non-dense sets, we made sure to include 

them only once in our analysis. This gives us a total of 9187 − 210 + 17820 = 26797 SNPs, 

all of which are 3-level categorical variables.
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We are also provided with phenotype data, and we include sex, age, smoking history, and 

the DR alleles from father and mother in our analysis.1 Sex and smoking history are 2-level 

categorical variables, while age is continuous. Each DR allele is a 3-level categorical 

variable, and we combine the father and mother alleles in an unordered way to obtain a 6-

level DR variable. In total, we have 26,801 variables and 3,500 training examples.

We run glinternet (without screening) on a grid of values for λ that starts with the empty 

model. The first two variables found are main effects:

• SNP6_305

• denseSNP6_6873

Following that, an interaction denseSNP6_6881:denseSNP6_6882 gets picked up. We now 

proceed to analyze this result.

Two of the interactions listed in the answer sheet provided with the data are: locus A with 

DR, and locus C with DR. There is also a main effect from DR. The closest SNP to the 

given position of locus A is SNP16_31 on chromosome 16, so we take this SNP to represent 

locus A. The given position for locus C corresponds to denseSNP6_3437, and we use this 

SNP for locus C. While it looks like none of the true variables are to be found in the list 

above, these discovered variables have very strong association with the true variables.

If we fit a linear logistic regression model with our first discovered pair 

denseSNP6_6881:denseSNP6_6882, the main effect denseSNP6_6882 and the interaction 

terms are both significant:

A χ2 test for independence between denseSNP6_6882 and DR gives a p-value of less than 

1e-15, so that glinternet has effectively selected an interaction with DR. However, 

denseSNP6_6881 has little association with loci A and C. The question then arises as to why 

we did not find the true interactions with DR. To investigate, we fit a linear logistic 

regression model separately to each of the two true interaction pairs. In both cases, the main 

effect DR is significant (p-value < 1e – 15), but the interaction term is not:

Therefore it is somewhat unsurprising that glinternet did not pick these interactions.

This example also illustrates how the the group-lasso penalty in glinternet helps in 

discovering interactions (see Section 3.3). We mentioned above that 

denseSNP6_6881:denseSNP6_6882 is significant if fit by itself in a linear logistic model 

(Table 1). But if we now fit this interaction in the presence of the two main effects 

SNP6_305 and denseSNP6_6873, it is not significant:

Df Dev Resid. Dev ℙ(> χ2)

NULL 4780.4

1A collection of alleles named DRx are known to be associated with rheumatoid arthritis
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Df Dev Resid. Dev ℙ(> χ2)

SNP6_305 2 2140.18 2640.2 <2e-16

denseSNP6_6873 2 382.61 2257.6 <2e-16

denseSNP6_6881:denseSNP6_6882 4 3.06 2254.5 0.5473

This suggests that fitting the two main effects fully has explained away most of the effect 

from the interaction. But because glinternet regularizes the coefficients of these main 

effects, they are not fully fit, and this allows glinternet to discover the interaction.

The ANOVA analyses above suggest that the true interactions are difficult to find in this 

GWAS dataset. Despite having to search through a space of about 360 million interaction 

pairs, glinternet was able to find variables that are strongly associated with the truth. This 

illustrates the difficulty of the interaction-learning problem: even if the computational 

challenges are met, the statistical issues are perhaps the dominant factor.

8 Discussion

In this paper we introduce glinternet, a method for learning linear interaction models that 

satisfy strong hierarchy. We demonstrate that the performance of our method is comparable 

with past approaches, but has the added advantage of being able to accommodate both 

categorical and continuous variables, and on a much larger scale. We illustrate the method 

with several examples using real and simulated data, and also show that glinternet can be 

applied to genome-wide association studies.

There are many approaches for fitting a group lasso. We describe the specific algorithm used 

in our implementation in Appendix A.3. glinternet is available on CRAN as a package for 

the statistical software R. The functions in this package interface to our efficient C code for 

solving the group lasso.

Our paper is mostly about computations, and how to finesse the big search space when 

dealing with interactions. But there is an equally big statistical bottleneck: when the space of 

searched interactions is very large, it is much easier to find false positives. This is not 

addressed in this paper, and is an important area for further research.
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A Appendix

A.1 Screening with boosted trees

AdaBoost [Freund and Schapire, 1995] and gradient boosting [Friedman, 2001] are effective 

approaches for building ensembles of weak learners such as decision trees. One of the 

advantages of trees is that they are able to model nonlinear effects and high-order 

interactions. For example, a depth-2 tree essentially represents an interaction between the 

variables involved in the two splits, which suggests that boosting with depth-2 trees is a way 

of building a first-order interaction model. Note that the interactions are hierarchical, 

because in finding the optimal first split, the boosting algorithm is looking for the best main 

effect. The subsequent split is then made, conditioned on the first split.

If we boost with T trees, then we end up with a model that has at most T interaction pairs. 

The following diagram gives a schematic of the boosting iterations with categorical 

variables.

(24)

In the first tree, levels 2 and 3 of F1 are not involved in the interaction with F2. Therefore 

each tree in the boosted model does not represent an interaction among all the levels of the 

two variables, but only among a subset of the levels. To enforce the full interaction 

structure, one could use fully-split trees, but we do not develop this approach for two 

reasons. First, boosting is a sequential procedure and is quite slow even for moderately sized 

problems. Using fully split trees will further degrade its runtime. Second, in variables with 

many levels, it is reasonable to expect that the interactions only occur among a few of the 

levels. If this were true, then a complete interaction that is weak for every combination of 

levels might be selected over a strong partial interaction. But it is the strong partial 

interaction that we are interested in.

Boosting is feasible because it is a greedy algorithm. If p is the number of variables, an 

exhaustive search involves (p2) variables, whereas boosting operates with (p). To use the 

boosted model as a screening device for interaction candidates, we take the set of all unique 

interactions from the collection of trees. For example, in our schematic above, we would add 

F1:2 and F5:7 to our candidate set of interactions.

In our experiments, using boosting as a screen did not perform as well as we hoped. There is 

the issue of selecting tuning parameters such as the amount of shrinkage and the number of 

trees to use. Lowering the shrinkage and increasing the number of trees improves false 

discovery rates, but at a significant cost to speed.
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A.2 Defining the group penalties γ
Recall that the group-lasso solves the optimization problem

where ℒ(Y, X; β) is the negative log-likelihood function. This is given by

for squared error loss, and

for logistic loss (log and exp are taken component-wise). Each βi is a vector of coefficients 

for group i. When each group consists of only one variable, this reduces to the lasso.

The γi allow us to penalize some groups more (or less) than others. We want to choose the γi 

so that if the signal were pure noise, then all the groups are equally likely to be nonzero. 

Because the quantity  determines whether the group Xi is zero or not (see the 

KKT conditions (8)), we define γi via a null model as follows. Let ε ~ (0, I). Then we have

Therefore we take γi = ||Xi||F, the Frobenius norm of the matrix Xi. In the case where the Xi 

are orthonormal matrices with pi columns, we recover , which is the value proposed 

in [Yuan and Lin, 2006]. In our case, the indicator matrices for categorical variables all have 

Frobenius norm equal to , so we can simply take γi = 1 for all i. The case where 

continuous variables are present is not as straightforward, but we can normalize all the 

groups to have Frobenius norm one, which then allows us to take γi = 1 for i = 1, …, p.

A.3 Algorithmic details

We describe the algorithm used in glinternet for solving the group-lasso optimization 

problem. Since the algorithm applies to the group-lasso in general and not specifically for 

learning interactions, we will use Y as before to denote the n-vector of observed responses, 
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but X = [X1 X2 … Xp] will now denote a generic feature matrix whose columns fall into p 

groups.

Fast iterative soft thresholding (FISTA) [Beck and Teboulle, 2009] is a popular approach for 

computing the lasso estimates. This is essentially a first order method with Nesterov style 

acceleration through the use of a momentum factor. Because the group-lasso can be viewed 

as a more general version of the lasso, it is unsurprising that FISTA can be adapted for the 

group-lasso with minimal changes. This gives us important advantages:

1. FISTA is a generalized gradient method, so that there is no Hessian involved

2. virtually no change to the algorithm when going from squared error loss to logistic 

loss

3. gradient computation and parameter updates can be parallelized

4. can take advantage of adaptive momentum-restart heuristics.

Adaptive momentum restart was introduced in [O’Donoghue and Candes, 2012] as a scheme 

to counter the “rippling” behaviour often observed with accelerated gradient methods. They 

demonstrated that adaptively restarting the momentum factor based on a gradient condition 

can dramatically speed up the convergence rate of FISTA. The intuition is that we should 

reset the momentum to zero whenever the gradient at the current step and the momentum 

point in different directions. Because the restart condition only requires a vector 

multiplication with the gradient (which has already been computed), the added 

computational cost is negligible. The FISTA algorithm with adaptive restart is given below.

At each iteration, we take a step in the direction of the gradient with step size s. We can get 

an idea of what s should be by looking at the majorized objective function about a fixed 

point β0:

(25)

Here, g(β0) is the gradient of the negative log-likelihood ℒ(Y, X; β) evaluated at β0. 

Majorization-minimization schemes for convex optimization choose s sufficiently small so 

that the LHS of (25) is upper bounded by the RHS. One strategy is to start with a large step 

size, then backtrack until this condition is satisfied. We use an approach that is mentioned in 

[Becker et al., 2011] that adaptively initializes the step size with

(26)

We then backtrack from this initialized value if necessary by multiplying s with some 0 < α 

< 1. The interested reader may refer to [Simon et al., 2013] for more details about 

majorization-minimization schemes for the group-lasso.
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Algorithm 1

FISTA with adaptive restart

glinternet is available on CRAN as a package for the statistical software R. The functions in 

this package interface to our efficient C code for solving the group lasso. The user has the 

option of using multiple cores/CPUs, but this requires that the package be compiled with 

OpenMP enabled. The user may also benefit from compiling with a higher level of 

optimization (such as O3 for gcc). For example, all our results were obtained by compiling 

with the following command (same command used for hierNet):

icc -std=gnu99 -xhost -fp-model fast=2 -no-prec-div -no-prec-sqrt -ip -O3 -

restrict
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Figure 1. 
False discovery rate vs number of discovered interactions, averaged over 100 simulations 

with 500 3-level factors. The ground truth has 10 main effects and 10 interactions.
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Figure 2. 
Simulation results for continuous variables: Average false discovery rate and standard errors 

from 100 simulation runs.
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Figure 3. 
Left: Best wall-clock time over 10 runs for discovering 10 interactions. Right: Same as left, 

but on the log scale. Both packages consist of R interfaces to C code, compiled with the 

same options.
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Figure 4. 
Left panel: Performance on Spambase. Right panel: Performance on Dorothea.
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Table 1

Analysis of deviance table for linear logistic model fitted to first interaction term that was discovered. The Df 

for interaction is 1 (and not 2) because of one empty cell in the interaction table.

Df Dev Resid. Dev ℙ(> χ2)

NULL 4780.4

denseSNP6_6881 1 1.61 4778.7 0.20386

denseSNP6_6882 2 1255.68 3523.1 <2e-16

denseSNP6_6881:denseSNP6_6882 1 5.02 3518.0 0.02508
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Table 2

Analysis of deviance table for linear logistic regression done separately on each of the two true interaction 

terms. In the second table, the Df for interaction is 8 (and not 10) because of empty cells in the interaction 

table.

Df Dev Resid. Dev ℙ(>χ2)

NULL 4780.4

SNP16_31 2 3.08 4777.3 0.2147

DR 5 2383.39 2393.9 <2e-16

SNP16_31:DR 10 9.56 2384.3 0.4797

NULL 4780.4

denseSNP6_3437 2 1.30 4779.1 0.5223

DR 5 2384.18 2394.9 <2e-16

denseSNP6_3437:DR 8 5.88 2389.0 0.6604
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