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Abstract

A quantitative approach to virtual-lesion physiology is presented which integrates event-related 

fMRI, image-guided, repetitive, transcranial magnetic stimulation (irTMS), and simultaneous 

recording of 3-D movement kinematics. By linking motor neuroscience with clinical disorders of 
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motor function, our method allows development of a healthy, human system model of disorders of 

skilled action.

Keywords

Apraxia; brain imaging; kinematics; motor control

I. Introduction

Investigations of neural disorders of skilled movement traditionally have studied the effects 

of naturally occurring lesions, which tend to be widespread [1]. The present paper provides a 

complementary approach by creating a healthy human system model of such disorders. We 

present a proof-of-principle demonstration, taking as a test case limb apraxia, an inability to 

imitate or perform skilled object-related actions appropriately despite the absence of gross 

weakness, sensory loss or incoordination [2]. We first use functional magnetic resonance 

imaging (fMRI) to examine those neural systems that are activated in normal subjects when 

producing a key gesture previously studied in apraxic patients, that of slicing of an object, 

such as a loaf of bread.

We expect brain networks to be activated that support such skilled object-related action. 

After identifying regions involved in the slicing gesture, we use the fMRI maps to guide 

subject-specific neuronavigation with robotically positioned, repetitive transcanial magnetic 

stimulation (irTMS) [3]. Finally, we deliver irTMS during movement (peri-movement) to 

directly test the causal involvement of these regions in gestural production. Peri-movement 

irTMS provides an ideal platform for testing the causal role of brain regions identified with 

fMRI, because, utilizing 3-D motion capture, we can quantify kinematic performance in 

stimulation-on and off (control) conditions and, by temporarily disrupting activity in a given 

region, bring to bear the only tool that can by used to attribute anatomic-functional causality 

in healthy humans. In what follows, we describe this new integration of fMRI, irTMS and 3-

D motion capture, providing a quantitative approach to virtual-lesion physiology.

II. Methods

Subjects

Seven healthy, right-handed volunteers participated (Experiment 1, n = 7, 5 males mean age 

±1 standard deviation [SD]: 45.6 ± 12.4 years; Experiment 2, n = 3, 2 males, 51.3 ± 14.6 

years). The subjects in Experiment 2 also participated in Experiment 1. Handedness was 

self-reported. Seven faculty members and postdoctoral fellows (four co-authors, three 

nonauthors) served as subjects for this pilot study. No participant had any metal or 

medication contraindication for participating in fMRI and TMS studies. The study was done 

in advance of getting IRB approval, but included only investigators. At the University of 

Texas Health Science Center, San Antonio, investigator self-study is accepted as not 

requiring signed informed consent, as investigators are well informed about potential study 

risks.
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A. General Experimental Setup

Imaging—MRI scanning was carried out on a 3T Siemens Trio system in the Research 

Imaging Center, UTHSCSA. Procedures for BOLD fMRI data acquisition, anatomical 

image preprocessing, and functional image preprocessing have been previously described 

[4]–[8]. Combined irTMS and 3-D motion capture. Fig. 1 illustrates the experimental setup. 

A five degree-of-freedom neurosurgical robotic system (NeuroMate, ISS, Paris, France) was 

adapted to precisely aim and hold the TMS coil over the brain area to be stimulated. The 

system’s overall accuracy in positioning the planned site of the TMS coil is exceptional, ~2 

mm [3], [9]. TMS was applied using a water-cooled Cadwell Fig. 8 coil (Cadwell, Inc., 

Kennewick, WA; see [10] for a description of the Cadwell coil’s E-field). 3-D motion 

capture was performed using a two-beam Optotrak Certus 3-D tracking system (Northern 

Digital, Inc., Waterloo, ON, Canada). Infrared emitting diodes were taped to the right cheek, 

the major joints of the arm, the dorsal surface of the palm, and the right hip. 3-D marker 

positions were recorded at 200 Hz.

B. General Experimental Procedure

Behavioral Tasks—Subjects were asked to perform two tasks: 1) right index finger 

tapping and 2) pantomime the slicing of bread, without shoulder movement, using the right 

arm. The slicing gesture was similar to the one we have previously used [11]–[13]. The 

finger tapping and the slicing gesture were self-paced at 1 Hz to minimize rate-related 

confounds on the fMRI blood oxygen level-dependent (BOLD) signal or cortical 

stimulation. Subjects practiced the tasks before the fMRI session to ensure that they could 

reproduce the gesture at 1 Hz, and then practiced again inside the fMRI scanner 

(immediately before data collection) to ensure that the correct rate was kept constant while 

head movement was kept to a minimum. Additionally, the participants practiced the slicing 

task prior to the irTMS session. A camera recording in the MRI suite allowed for viewing 

subjects to ensure that movements were produced at 1 Hz.

Experiment 1—Experiment 1 was a blocked-design fMRI experiment to identify neural 

substrates recruited during repetitive slicing gestures and tapping movements. These data 

were used for neuronavigation of TMS loci in Experiment 2. Subjects performed the slicing 

emulation for 30 s epochs followed by 30 s of rest, for a total of four runs of task and rest, 

collected during 4 min of scan. In separate scan, subjects performed the finger tapping task 

at 1 Hz, also in block design (30 s task and 30 s of rest for a total of 4 min). Thus, we could 

compare brain activation involved in slicing with that of another type of repeated movement 

within the limb motor system.

Experiment 2—Experiment 2 was a within subjects, irTMS-on and irTMS-off, design. A 

virtual lesion model induced by peri-movement irTMS was used to test the causal anatomic-

functional relationship between three regions identified in Experiment 1. We predicted that 

temporary disruption of activity in regions which are causally involved in slicing gestures 

(identified in Experiment 1) should reflect as impoverished spatiotemporal kinematic 

profiles.
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Imaging Analysis—Within-subject statistical images were created by contrasting each 

movement condition (slicing and tapping) with rest. For group analysis, individual images 

were aligned to the respective anatomical images that were previously normalized into a 

standard stereotactic space [6]. These activation maps were thresholded based on magnitude 

and extent of activation [7], [8], and controlled for multiple comparisons using Bonferroni 

correction. In addition, regions of interest (ROI) were used in subsequent data analysis. The 

group contrasts of slicing > rest and tapping > rest were submitted to ANOVA. Subtracting a 

common rest baseline from each discrete task condition assures that activation reflects 

differences in task rather than baseline state. Activation volumes with p < 0.05 (after 

correction for multiple comparisons) are reported.

Neuro-Navigation—The individual conditional contrasts of the finger tapping and slicing 

tasks were registered to their respective anatomical MRI (aMRI). Prior to study day, target 

sites such as left primary motor cortex arm area (M1), supplementary motor area (SMA), 

and posterior parietal cortex (PPC) were identified from the slicing task contrasted with rest. 

The average location for M1 in Talairach coordinates (x, y, z) was −33, −28, 54; for SMA 

was −8, −29, 54; and PPC was −43, −50, 43. Positioning the coil was planned for each site 

individually for each participant, from the individual 3-D images. On the day of the study, 

the insitu head position was registered to its anatomical MRI image; the robot’s coordinate 

system was registered to the insitu head; and the TMS coil was robotically positioned to the 

planned pose. Motor threshold was determined as the lowest intensity of TMS that resulted 

in motor evoked potentials of 100µV amplitude in 5 out of 10 trials when TMS was applied 

to M1. Each epoch of irTMS consisted of 5 s of 4 Hz TMS applied at 125%–130% of motor 

threshold followed by 5 s of no irTMS. Six such epochs were delivered at each location (1 

min). During no irTMS conditions, the TMS coil was still positioned at the location, but the 

TMS unit was not discharged. The order of stimulation sites was counterbalanced across 

subjects. The irTMS on and off blocks were run consecutively with subjects continually 

making the movement throughout the interval (60 s). TMS parameters (rate, intensity, and 

duration) were within the safety guidelines [14], [15].

Kinematic Outcome Measures—Spatiotemporal patterns inherent in the digital records 

of the limb trajectories were quantified using the following measures: Linearity and 

planarity of the hand trajectories (higher scores reflect more linear and planar movements, 

respectively) [6]–[8], and normalized integrated jerk (NIJ; [16] (lower scores reflect 

smoother hand velocity profiles). Detailed descriptions of these measures can be found at 

[11], [12], and [17].

Statistical Analysis—Due to the small sample size, statistical comparisons were 

performed at the single-subject level (within subjects) using nonparametric statistics (Mann–

Whitney U Test). The following pair-wise comparisons were performed: To examine the 

role of specific cortical regions on performance, we compared the irTMS-on and irTMS-off 

conditions, when irTMS was delivered to PPC, SMA, and M1 arm regions on performance. 

The analyses were carried out separately for each dependent measure of linearity, planarity, 

and NIJ for each subject. To reduce chances of Type I error due to multiple comparisons, 

alpha was set to 0.008 (0.05/6).
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III. Results

Experiment 1

Contrastive fMRI results (TASK-REST) of areas active during slicing and finger tapping are 

shown in Tables I and II. Only regions that reached statistical significance are shown in the 

Tables. Fig. 2(A) shows regions significantly activated in the slicing-rest contrast. The areas 

of peak activations for slicing were localized to the hand and shoulder representations of the 

left M1 (BA4), the left superior and inferior parietal lobe (BA 2, 3; including the hand–

shoulder areas of the somatosensory cortex, (S1), and the left SMA. Conversely, finger 

tapping activated a broader network of bilateral cortical regions and subcortical structures 

than did slicing [see Table II and Fig. 2(B)]. Regions involved in finger tapping included the 

hand representation of left M1 (BA4), right cingulate (BA32), left pre-motor cortex (BA6), 

left and right insula (BA 13), left pulvinar, left temporal lobe (BA22, 41, 42), and 

cerebellum. Finger tapping did not elicit parietal activations.

Experiment 2

Fig. 3(A) displays the 3-D hand path of a typical subject (J) who performed cycles of slicing 

gesture during the irTMS-on (left panels) and irTMS-off (right panels) conditions. When 

irTMS was off, the hand travelled consistently in the sagittal plane in a highly linear path 

(Fig. 3(A), right panels). Sharp reversals were observed between the forward and backward 

strokes. In addition, tangential velocities showed sinusoidal variations (Fig. 3(A), inset). 

Conversely, Fig. 3(A) (left panels) illustrates that when irTMS was applied to the parietal 

and M1 sites, the spatiotemporal profiles of the hand trajectory considerably deteriorated. 

Specifically, subjects exhibited larger excursions in the lateral direction, nonlinear and 

nonplanar trajectories, and blunted stroke reversals. Moreover, the tangential velocity profile 

was less sinusoidal and more variable than that of the irTMS-off condition. Importantly, 

irTMS to SMA did not produce such performance decrements Fig. 3(A), middle panel), 

suggesting that the effects were localized to the parietal and M1 sites.

Fig. 3(B) shows the mean (±1 SD) linearity, planarity, and NIJ indices for each subject’s 

hand path in the irTMS-on and irTMS-off conditions, for each stimulation site. No 

significant differences were found between the irTMS-on and irTMS-off conditions for 

linearity, planarity, and NIJ for the SMA site. However, there were significant decreases in 

linearity and planarity, and increases in NIJ while irTMS was applied to the other two sites. 

Specifically, statistical analysis revealed a consistent main effect of irTMS for linearity [top 

panel of the Fig. 3(B)] when the irTMS was applied to parietal cortex (p < 0.002 for all 

subjects). Fig. 3(B) (middle) also shows that there was a main effect of irTMS for planarity 

across for the parietal site (p < 0.0005 for all subjects). Finally, Fig. 3(B) (bottom) shows a 

main effect of irTMS for NIJ for the parietal (p < 0.005 for all subject) and M1 sites (p < 

0.0001 for subjects J and B).

IV. Discussion

We combined event-related fMRI, lesion modeling using irTMS, and analysis of 3-D 

movement kinematics to show that the relatively well-learned gesture emulating slicing 
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recruits a motor-SMA-parietal network and that transient peri-movement disruption of the 

M1 and parietal sites leads to immediate and notable decrements in trajectory control 

characteristic of the impairments observed in apraxic patients [12], [18]. It is noteworthy 

that irTMS of a nonmotor area of the cortex (PPC) as well as of M1, but not of an adjacent 

premotor area (SMA) elicited the uncoordinated movement patterns, suggesting that the 

effects were highly region-specific.

Our findings confirm previous reports showing that disruption of M1 produces deficits in 

accuracy and timing of sequential motor tasks [19]. We did observe an ~4 Hz oscillation 

(“twitching”) in the hand trajectory during M1 stimulation, and to some extent during 

parietal stimulation. This could have explained some of the disruption observed at M1. 

However, as shown in Fig. 3(A), disruptions following M1 stimulation differed markedly 

from those following parietal stimulation, consistent with subjects’ reports of “I know what I 

want to do but I can’t control my hand,” following parietal stimulation. It has been recently 

demonstrated that transient (using single or triple) TMS pulses delivered to adjacent regions 

of the parietal lobe either during a memory interval preceding a reaching and saccadic 

movement [20] or during adaptation to novel reaching/grasping demands [21], [22] also 

leads to decrements in accuracy. That work has highlighted the potential causal role of the 

parietal cortex in online adaptation to reconcile movement errors. Our findings, that peri-

movement irTMS disrupts spatiotemporal aspects of movement trajectories for the duration 

of the stimulation epoch, irrespective of the need to adapt, are a strong indicator that PPC 

may not only be performing critical online computations during visually-guided tasks, but 

may also be critically involved in the read-out of memory traces of learned, skilled gestures.

In recent years it has become clear that sensory systems and motor systems are inseparably 

intertwined. For example, patients with loss of proprioception, but with motor fibers intact, 

show marked impairments in the control of multi-joint movements [11], [23]. Indeed, 

patients with this sensory loss, as well as patients with apraxia, exhibit distortions in 

trajectory linearity, planarity, and velocity smoothness when producing the slice gesture 

[11]. Given the close proximity of somatosensory cortex and the PPC, and given that both of 

these regions were activated during fMRI in Experiment 1, we cannot rule out the possibility 

that our irTMS stimulation disrupted proprioceptive processing, which in turn may have 

contributed to the observed movement abnormalities. Clearly larger studies will be needed 

to confirm and extend these findings. However, the present report provides a proof-of-

principle that integrating fMRI, irTMS, and 3-D motion capture is a promising avenue for 

linking motor neuroscience with clinical disorders of motor function, and that it may allow 

development of a healthy system model for studying apraxia and other neural disorders of 

movement.
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Fig. 1. 
Experimental setup for combined irTMS and 3-D motion capture. A customized 

neurosurgical robotic system (NeuroMate, ISS, Paris, France) was used to precisely position 

the TMS coil. A 2-beam Optotrak Certus (Northern Digital, Inc.) 3-D motion tracking 

system was used to monitor all movements.
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Fig. 2. 
(A). Regions significantly activated in the slicing condition at the group level. The numbers 

denote functional or anatomical localizers for the hand area of primary motor (1) and 

somatosensory (2) cortex, superior (3) and inferior (4) parietal lobule, and supplementary 

motor area (5). (B). Significant activation related exclusively to the slicing only (red) and 

finger tapping only (green) conditions. A conjunction analysis (yellow) shows regions 

significantly activated in both conditions. The numbers denote functional or anatomical 

localizers for the hand area of primary motor (1) and somatosensory (2) cortex, 

supplementary motor area (3), basal ganglia and thalamus (4), and cerebellum (5).
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Fig. 3. 
(A) Hand paths for one typical subject, plotted in 3-D space, for the TMS-on (left panels) 

and TMS-off (right panels) epochs. The tangential velocities, plotted as a function of time, 

are shown for each respective condition in the middle panels. Data for stimulation over 

parietal, supplementary motor area, and motor cortex regions are shown in the top, middle, 

and lower panels, respectively. Note the marked disruption in the spatiotemporal profiles 

elicited by parietal and motor stimulation, but not by supplementary motor area stimulation. 

(B) Kinematic indices of task performance shown at the single subject level (±1 SD) for the 

trajectory linearity, planarity, and movement smoothness (NIJ) during irTMS ON and OFF 

epochs over left parietal, SMA, and M1 cortical regions. Asterisks denote significant 

differences between the TMS-on and TMS-off conditions.
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