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Abstract

It has been established that current cochlear implants do not supply adequate spectral information 

for perception of tonal languages. Comprehension of a tonal language, such as Mandarin Chinese, 

requires recognition of lexical tones. New strategies of cochlear stimulation such as variable 

stimulation rate and current steering may provide the means of delivering more spectral 

information and thus may provide the auditory fine structure required for tone recognition. Several 

cochlear implant signal processing strategies are examined in this study, the continuous 

interleaved sampling (CIS) algorithm, the frequency amplitude modulation encoding (FAME) 

algorithm, and the multiple carrier frequency algorithm (MCFA). These strategies provide 

different types and amounts of spectral information. Pattern recognition techniques can be applied 

to data from Mandarin Chinese tone recognition tasks using acoustic models as a means of testing 

the abilities of these algorithms to transmit the changes in fundamental frequency indicative of the 

four lexical tones. The ability of processed Mandarin Chinese tones to be correctly classified may 

predict trends in the effectiveness of different signal processing algorithms in cochlear implants. 

The proposed techniques can predict trends in performance of the signal processing techniques in 

quiet conditions but fail to do so in noise.
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1 Introduction

Since their development in the early 1970s, auditory prostheses, most notably cochlear 

implants, have enabled an estimated 100,000 profoundly deaf individuals to experience 

sound (Zeng 2004). Cochlear implants restore a sense of hearing through electrical 

stimulation of the auditory nerve, the primary organ of the inner ear. Most cochlear implant 

recipients are speakers of western languages. Western languages, such as English, German, 
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and French, require less spectral resolution properties for speech recognition than eastern or 

tonal languages, such as Mandarin Chinese, Cantonese and Vietnamese.

In tonal languages the pitch or range of pitches of a vowel sound defines the meaning of the 

word in which it occurs. In Mandarin Chinese the fundamental frequency (F0) contour of a 

vowel sound can have four different variations, called tones, all of which reflect different 

lexical meanings. The four tones are flat, rising, falling-rising, and falling. This naming 

convention refers to the changes in F0 over time. A single consonant-vowel combination can 

take on four lexical meanings depending on the tone with which it was spoken. The different 

tones must be classified by listeners for accurate speech perception.

The signal processing strategies used in current cochlear implants are relatively effective at 

restoring speech perception to speakers of western languages. However, the limited spectral 

information presented by modern cochlear implant speech processing strategies is 

insufficient for reliable tone recognition (Zeng et al. 2005; Fu et al. 1998; Luo and Fu 

2004a,b; Wei et al. 2004; Lan et al. 2004). Delivering more spectral information to cochlear 

implant recipients may offer more accurate tonal language speech perception and improve 

the quality of life of a large population of deaf people around the world.

It has been found that the rate of pulsatile stimulation can change the perceived pitch (e.g. 

(Tong and Clark 1985; Zeng 2002)). These so called “variable stimulation rates” can be used 

with pulsatile stimulation to include more spectral information (Fearn 2001; Lan et al. 2004; 

Throckmorton et al. 2006; Zeng et al. 2005). It has also been shown that through 

simultaneous stimulation of neighboring electrodes intermediary locations of the cochlea 

can be stimulated. This can cause pitch perceptions which are not possible through single 

electrode stimulation (Townshend et al. 1987; Koch et al. 2005). Varying the amount of 

current delivered by the two electrodes can vary the location of maximum stimulation along 

the cochlea and thus vary the perceived pitch. These techniques may enable cochlear 

implants to transmit the additional spectral information required for accurate perception of 

tonal languages.

Several signal processing strategies which make use of the possible additional spectral 

information have been proposed to improve the perception derived from cochlear implants 

in noisy conditions and aid in Mandarin Chinese tone recognition. The frequency amplitude 

modulation encoding (FAME) algorithm (Nie et al. 2005), and the multiple carrier 

frequency algorithm (MCFA) (Throckmorton et al. 2006) are considered in this study. As a 

baseline, the continuous interleaved sampling (CIS) strategy (Wilson et al. 1991), which 

does not include varying frequency information, will also be studied for comparison 

purposes. These strategies, save CIS, have not been implemented in cochlear implant 

recipients but rather have been studied using acoustic models and normal hearing subjects.

Cochlear implant acoustic models have been used for more than 20 years to gauge the 

possible performance of cochlear implants through the use of normal hearing individuals. 

Remus and Collins (2003) showed that English vowel and consonant confusions can be 

predicted by analyzing the acoustic model outputs of different cochlear implant strategies. 
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These predictions can then be used to evaluate the effectiveness of different strategies for 

transmitting the necessary information for the specific task.

This research analyzes the output of cochlear implant acoustic models to predict trends in 

Mandarin Chinese tone perception performance provided by several different speech 

processing strategies. Automated evaluation of different cochlear implant strategies using 

acoustic models could potentially provide a relative performance measure without the use of 

human subjects, which drastically reduces experimentation times. In order to determine the 

validity of predictions, predictions are compared to data obtained in a listening experiment 

using normal hearing subjects and acoustic models. Accurate performance predictions can 

help to focus future studies on the more promising signal processing strategies.

The remainder of this paper is structured as follows. Section 2 provides a description of the 

speech processing strategies compared in this study. Section 3 outlines the listening 

experiment that was used to assess the performance of the different speech processing 

strategies using acoustic models. The methodology used to automatically classify the 

processed Mandarin Chinese tones is described in section 4. The results and accuracy of the 

predictions are given in section 4.5 with a discussion and conclusion following in sections 5 

and 6.

2 Speech Processing Algorithms

Through the use of cochlear implant acoustic models, normal hearing people can be used to 

evaluate trends in performance that may be possible through the use of new signal 

processing strategies. The goal of an acoustic model is to create an acoustic signal that 

contains the maximum amount of information provided by the speech processor. Since their 

introduction in 1984, (Blamey et al. 1984a,b) acoustic models have been used and are now 

accepted for the study of possible cochlear implant performance (Dorman et al. 1997; 

Shannon et al. 1995). Acoustic models significantly reduce the time required to test new 

signal processing algorithms through the use of normal hearing subjects. They also serve as 

a means of testing a signal processing algorithm without the psychophysical and perceptual 

effects inherent in cochlear implant recipients. The block diagram of a typical cochlear 

implant acoustic model is shown in Fig. 1. The model works in much the same way that a 

cochlear implant works. A window of data is captured from the microphone and is bandpass 

filtered for each electrode. From each bandpass filtered signal, amplitude and frequency 

information (if utilized) are extracted. In currently used signal processing strategies only 

amplitude information is extracted and used with a fixed frequency carrier. The acoustic 

model uses the amplitude and frequency information for each electrode to drive a bank of 

sources, si (t), ∀ i = 1, …, n, which are then summed to generate the output signal. Acoustic 

models use either sinusoids or band limited noise as the sources. The frequency of each 

sinusoidal source is obtained using the Greenwood map (Greenwood 1990, 1961) and the 

nominal location of the electrode. The spectral bands assigned to each channel in this 

research are: 150-240, 240-384, 384-615, 615-984, 984-1574, 1574-2519, 2519-4031, and 

4031-6450 Hz. The window length was set to 32 ms with 50% overlap when applicable. 

Therefore, amplitude and frequency information is updated every 16 ms.
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The method used to extract the amplitude information from each bandpass filtered signal is 

consistent across the speech processing techniques examined in this paper and is consistent 

with that performed by the CIS strategy. Amplitude information is extracted in each case 

through full wave rectification and low pass filtering (250 Hz). The strategies other than CIS 

also extract frequency information from the signals. The CIS strategy uses a single 

frequency for each source to represent each electrode. The other strategies considered here 

use different methods to extract frequency information. The differences in the frequency 

extraction methods are described below.

The FAME strategy extracts band-limited instantaneous frequency from each bandpass 

filtered signal for use as the carrier frequency for each signal source (Nie et al. 2005). The 

instantaneous frequency is estimated through use of the Flanagan phase vocoder (Flanagan 

and Golden 1966). The Flanagan phase vocoder extracts instantaneous frequency 

information for each sample by estimation of the derivative of the phase of the Fourier 

transform of the speech waveform. The estimates of instantaneous frequency provided by 

the Flanagan phase vocoder are continuous in nature. This makes the FAME strategy 

independent of window length as the amplitude and frequency information for each signal 

source can be updated every sample.

The MCFA finds an estimate of instantaneous frequency and maps this frequency to one of 

several predetermined frequencies. The use of a discrete number of predetermined 

frequencies instead of a continuum was based on the hypothesis that a continuum of rates 

would not necessarily be discriminable as suggested by the pulse rate discrimination 

literature (Fearn and Wolfe 2001; Zeng 2002; Townshend et al. 1987; McDermott and 

McKay 1997). Throckmorton et al. (2006) hypothesize that using known psychophysical 

parameters to tune the algorithm may improve speech recognition performance in cochlear 

implant recipients. In acoustic model studies, however, FAME performance is always an 

upper bound of MCFA performance. The frequency in each spectral band with greatest 

energy (mean square value) for each window is determined through use of the fast Fourier 

transform (FFT). Each of these frequencies is then mapped to one of the N predetermined 

frequencies for its given band. N is a chosen design parameter. Results of the MCFA 

strategy will be examined for values of N equal to 2 and 8. The predetermined frequencies 

for the acoustic model were selected by evenly dividing each spectral band using the 

Greenwood map.

3 Listening Experiment

3.1 Experiment

The performance of each of the algorithms discussed in section 2 was evaluated using a 

listening experiment. This experiment was performed under the approval of the Duke 

University institutional review board. The tests were administered in a sound proof booth 

and stimuli were presented to the subjects using headphones at a comfortable volume. Each 

subject was administered an audiogram to ensure normal hearing prior to beginning the 

experiment. A four alternative forced choice test was administered to ten native Mandarin 

Chinese speakers from the Duke University graduate student population. For each presented 

stimulus the subjects were to select the perceived tone, from the set of four possible tones, 
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using a graphical user interface on a computer. All code was developed in MATLAB. Each 

strategy (CIS, MCFA 2, MCFA 8, FAME) was tested at four signal to noise ratios (SNRs): 

Quiet, 5 dB, 0 dB, and −5 dB. The level of the signal with additive noise was constant at a 

fixed comfortable level for each subject. The additive noise was speech shaped noise from 

the HINT (Nilsson et al. 1994). A sequence of 20 tones from both a male and female speaker 

were presented to each subject in a random order for each SNR. The strategies were 

presented in a different order for each subject to remove bias and the SNRs were presented 

in decreasing order for each model. Prior to the testing portion of the experiment a training 

session, in which feedback was provided, was administered to establish familiarity with the 

task.

The speech corpus was previously used to test Mandarin Chinese tone perception in cochlear 

implants, (Wei et al. 2004), and was obtained from The Hearing Speech Lab at the 

University of California, Irvine. The data set contains 25 consonant vowel combinations 

spoken by both a male and a female. Each of these consonant vowel combinations is spoken 

using each of the four lexical tones. This yields 100 samples for each speaker, male and 

female. For each experimental condition the set of 20 tones were selected randomly from the 

speech corpus such that 10 were from a male speaker and 10 were from a female speaker. 

They were also selected, such that 5 samples of each of the four tones were selected and that 

each consonant vowel combination was selected only once. All of the samples are in .wav 

PCM 16 bit format with a sampling frequency of 16 kHz. Duration can be the primary cue 

for single syllable tone recognition but is not useful for tone recognition in natural human 

interaction (Whalen and Xu 1992; Xu et al. 2002). To remove duration as a possible cue, the 

samples were modified so that each had the same duration (the duration of the longest 

sample). This was accomplished through interpolation of the outputs of a vocoder with a 

high number of channels (Laroche and Dolson 1999).

3.2 Results

The proportion of Mandarin Chinese tones correctly identified in the listening experiment 

for each of the speech processing strategies is shown in Fig. 2. The horizontal axis indicates 

the signal processing strategy and the SNR is indicated through shading. These results have 

been pooled across all subjects as no outliers were observed. They have also been pooled 

across all tones and both speakers as no biases were found in either of these parameters. The 

pooled results are thus composed of 200 total samples for each speech processing strategy 

and SNR. The 95% confidence intervals are also shown. The confidence intervals were 

calculated using the Clopper-Pearson method of binomial confidence interval estimation 

(Clopper and Pearson 1934).

3.3 Discussion

In general, the results of the listening experiment are consistent with expectations. Those 

models which present more spectral information yield better tone classification performance. 

An important observation associated with these results is that tone recognition performance 

associated with those strategies that provide greater amounts of spectral information does 

not degrade as significantly in noise. This phenomenon has been observed in the past with 

regards to English vowels and consonants (Nie et al. 2005; Throckmorton et al. 2006). With 
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strategies containing less spectral information (CIS and MCFA 2), performance degrades 

rapidly as a function of SNR. Those strategies that provide greater spectral information 

(MCFA 8 and FAME), on the other hand, yield robust performance in noisy scenarios. 

Although differences between, for example, the MCFA 8 and FAME strategies at some 

SNRs may become more statistically significant if more test samples were collected, the 

overall trend of their resilience in noisy conditions compared to the CIS and MCFA2 

strategies would remain. This broader trend is of greater interest to this research.

Previous studies have conducted similar listening experiments using some of the signal 

processing strategies examined in this study in quiet conditions. These studies may differ in 

their individual implementations of the models being tested. Parameters such as the window 

length and the cut-off frequency of the envelope extraction filter are often different across 

studies. The window length changes the lowest frequency which can be estimated in the 

signal as well as the rate at which frequency information is updated. The cut-off frequency 

of the envelope extraction filter has been shown to affect tone classification (Kong and Zeng 

2006; Fu et al. 1998; Xu et al. 2002). For these reasons, the comparisons between the 

listening experiments conducted in this research and those in other studies should be taken 

with caution.

Several studies have examined the CIS strategy in quiet conditions using acoustic models to 

process Mandarin Chinese tones (Kong and Zeng 2006; Zeng et al. 2005; Fu et al. 1998; Xu 

et al. 2002). Although these studies observed performances ranging from 70-80% correct 

using an 8 channel acoustic model, Lan et al. (2004) observed approximately 40% correct 

using a similar 8 channel CIS model. This is a much lower estimate than the other studies. 

The results of this study are in between these two ranges (60%). The performance of an 

eight channel model using the FAME strategy was examined by Zeng et al. (2005) and 

100% classification was observed. This is consistent with the results of this study.

Kong and Zeng (2006) analyzed both the CIS and FAME strategies in noisy conditions. 

Similar to the trends shown in the listening experiment conducted in the present research, 

the FAME strategy provided more robust performance in noisy conditions. While the 

performance provided by the CIS is drastically affected by the presence of noise. These 

comparisons show that the results found here are similar to previously conducted listening 

experiments.

4 Prediction Techniques

Automated analysis of the performance of each of the speech processing strategies is 

performed through analysis of the output of the acoustic models. The goal of this analysis is 

to predict the relative performance seen in the results of the listening experiment. These 

predictions are done using automated techniques akin to those used for Mandarin Chinese 

automated speech recognition (ASR). Tone recognition for Mandarin Chinese ASR is 

usually accomplished through extraction of the F0 contour followed by pattern classification 

techniques applied to features extracted from the F0 contour (eg. (Tian et al. 2004; Li et al. 

1999)). Extraction of the F0 contour from speech passed through cochlear implant acoustic 

models is not clearly defined and, as a result, different techniques are utilized to mimic this 
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task. Two different techniques were used to derive features from Mandarin Chinese speech 

passed through cochlear implant acoustic models which are indicative of the tone of the 

speech.

4.1 F0 Contour Approximation

The first method for characterization of the spectral changes over time is based on the 

transmission of the F0 contour through the cochlear implant acoustic models. The F0 

contour is extracted from the original speech by using the simple inverse filtering technique 

(SIFT) (Markel 1972). The SIFT estimates the F0 in each window of data by applying an 

inverse filter followed by autocorrelation analysis. The first step of the SIFT is to perform 

linear prediction analysis to derive the inverse filter. This implementation uses 12th order 

linear prediction. The signal is then filtered through the inverse filter and the autocorrelation 

of the resultant signal is found. The first peak in the autocorrelation in a specified range of 

time is selected as the estimate of the period of F0. A maximum and minimum value for this 

period is selected to limit the estimated F0 to the range of human F0 as well as limit changes 

in F0 from the previous window. Since F0 is undefined for unvoiced speech, such as most 

consonants, the SIFT must differentiate voiced and unvoiced speech. This is accomplished 

by comparing the normalized value of the chosen peak to a threshold. This threshold was set 

to 0.2 as specified by Luo and Fu (2004a) for normalized ([−1, 1]) data. The voice/unvoiced 

decision is also altered based on the voicing of the previous two windows as specified by 

Markel (1972). A spectral range of 35 Hz above and below the previous F0 is observed if 

the previous window was found to be voiced. If the previous window was not voiced, all of 

the values in the human F0 range are possible. The length of the observed window limits the 

lowest possible F0 which can be estimated. Using the specified 32 ms analysis window 

yields a lowest possible frequency estimate of 31.25 Hz. This is below the range of human 

F0 and is thus suitable.

Due to the nature of acoustic models, the frequency content of the output of an acoustic 

model is already known. This information is obtained by retaining the frequencies used on 

each channel as a function of time. This information is shown in Fig. 3 in what is termed a 

freqtrodogram. Finding appropriate values for the threshold parameters associated with the 

SIFT to reliably extract the F0 contours from processed speech proved difficult; therefore, 

the approximate F0 contour is found by comparing the F0 contour found from the 

unprocessed signal to the freqtrodogram resulting from the modeled speech. For each 

analysis window, the entry in the freqtrodogram which most closely matches the F0 

extracted from the unprocessed signal is chosen as the F0 extracted from the processed 

signal.

Fig. 4 shows an example of the F0 curves attained for the word “xi” spoken by a female. 

The subplots show how the differing frequency resolutions of each of the models affects the 

preservation of the F0 contour. In the background of each subplot a portion of the 

spectrogram of the original signal is shown. The F0 contour extracted from the original 

signal is shown as a solid line. The CIS algorithm has only one frequency possible for each 

electrode and therefore a broad range of frequencies are mapped to each possible frequency. 

The resulting approximate F0 contour is a poor representation of the original. The MCFA 
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strategy using 2 frequencies shows slight visual improvement over the CIS strategy but 

shows much better preservation when using 8 frequencies in each spectral band. Each results 

in a quantized version of the F0 contour. The FAME algorithm yields an F0 contour which 

is very similar to the original, differing only slightly due to a small amount of error in the 

instantaneous frequency calculation.

4.2 Spectral Intensity Contour Tracking

The parameters which were used for the acoustic model limit the lowest frequency to 150 

Hz. As stated previously the range of human F0 is 50-450 Hz. This implies that the F0 of 

certain words, particularly for male speech, is not transmitted to cochlear implants. Despite 

this fact, Mandarin Chinese tone classification in cochlear implants is above chance, which 

implies that there are other cues beside the F0 contour which are used by the human 

perceptual system for Mandarin Chinese tone classification. To investigate this, it was 

hypothesized that classification could occur if other spectral intensity contours which change 

over time, such as other formants (F1-F4) and harmonics of F0, were tracked, modeled and 

parameterized.

The estimation of the formants of speech has been explored using a variety of techniques. 

These techniques are primarily concerned with estimation of only formants and not their 

harmonics. Of interest in this work is the tracking of all spectral intensity contours, 

including the harmonics of formants. Particle filters for formant tracking have been 

successfully employed in previous studies (Shi and Chang 2003; Zheng and Hasegawa-

Johnson 2003, 2004), however, each of these previous studies only tracked formants, not all 

spectral intensity contours, and only in quiet conditions. This study extends the use of 

particle filters to the tracking of all spectral intensity contours in quiet as well as in noise.

Particle filters provide a means of estimating and tracking the probability density function of 

a non-stationary state vector, x (Arulampalam et al. 2002). The state vector contains all 

relevant information regarding the system. For example, the implementation of the particle 

filter used for spectral intensity contour tracking has a state vector which models the 

frequency and shape of the spectral intensity peak at a fixed point in time. The probability 

density function of this state vector is tracked over the duration of the speech token and the 

spectral intensity contour can be estimated through a maximum a posteriori estimate at each 

point in time.

Each iteration of the particle filter uses 32 ms of data (512 samples at 16 kHz with 50% 

overlap). This is the same observation window as in the cochlear implant acoustic models. 

The three lowest spectral bands of the acoustic models are used to initialize each of the three 

spectral intensity tracking particle filters. One hundred particles are initialized uniformly in 

each spectral band and then recursively updated.

The observations in each window are the magnitude of the discrete Fourier transform. The 

implementation of the particle filter requires a parameterized function which models a 

spectral intensity contour in a particular window. A spectral intensity contour as observed in 

the magnitude of the discrete Fourier transform in a particular window is positive and 

unimodal, therefore it can be appropriately modeled by a parametric function of similar 
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form, such as a radial basis function or the Kaiser window function. The chosen form for 

this implementation is the Kaiser window function parameterized by β.

(1)

In Eq. 1, I0 (·) is the zeroth-order modified Bessel function of the first kind, and β is a free 

parameter which determines shape. A value of β = 0 corresponds to a rectangular window 

and as β increases the window becomes narrower.

The joint probability density function of the frequency of the spectral intensity contour and 

the β parameter of a Kaiser window is tracked by the two dimensional particle filter. The 

particles are initialized uniformly in the β space from 0 to 32. This range for β provides an 

adequate range of spectral shapes ranging from a rectangular template to a template with a 

sharp peak.

The mapping of a state, xk, to an observation, zk, is known as the observation function. In 

this implementation the observation function is assumed to be an additive function of a 

template, tk, and white Gaussian noise, nk. The template, tk, is an adaptive Kaiser window 

where the β parameter is tracked as part of the state vector and is thus a function of the 

current state, xk.

(2)

The likelihood of a particle, , is then given by the following equation.

(3)

In Eq. 3, δ (·) is the Dirac delta function. The assumption that the observation noise is white 

and Gaussian with zero mean and variance, , leads to the formulation that the likelihood is 

given by the following equation.

(4)

If we assume that the template, , consists of m samples, the likelihood of the particle 

over these samples assuming independence is given by the following equation.

(5)

The observation for each particle is normalized before it is subtracted from the template 

since the shape of the intensity contour is of primary interest rather than the particle nominal 
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amplitude value. In theory a third dimension could be added to the particle filter to also track 

amplitude, however tracking amplitude would provide little advantage and would greatly 

increase the complexity as the number of particles that would need to be used would 

increase.

The observation noise variance, , was set to 0.01 while the template length was set to a 

length of 11 samples. These values were found to suit the data well through empirical 

analysis. With the observation window set to 512 samples at 16 kHz, the template covers a 

spectral range of 343 Hz centered around the particles proposed location of the intensity 

contour. To guard against the propagation of degenerate particles the sequential importance 

resampling algorithm was utilized (Gordon et al. 1993). The threshold for degeneracy, NT, 

was set to 300. An example of the spectral intensity tracking performed by the particle filter 

is shown in Fig. 5.

4.3 Features

To classify the Mandarin Chinese tones from F0 contours or spectral intensity tracks it is 

necessary to parameterize the curves so as to limit the number of features used for pattern 

classification. The features extracted from the F0 contours used in this research are based on 

a set of features proposed in (Tian et al. 2004) for tone recognition for the speech-to-text 

application. To find the features, the F0 contour is partitioned into four equal length 

segments. In each segment the mean and mean of the approximate derivative of each 

segment are used as the features. These features were found to yield better classification 

results than linear regression coefficients and quadratic regression coefficients. The number 

of segments used for subdivision (4) was also suggested in (Tian et al. 2004) as providing 

the best classification results.

The same segmented mean and mean derivative features are extracted from the 

approximated F0 contour as well as each of the extracted spectral intensity contours. 

Therefore, the feature set for the spectral intensity contours contains 3 times as many 

features as the feature set derived from the approximated F0 contour.

4.4 Pattern Classification Techniques

The procedure utilized here for automated tone classification in cochlear implants is similar 

to that of automated tone classification for other applications such as automated speech 

recognition (ASR) of Mandarin Chinese (eg. (Tian et al. 2004; Li et al. 1999)). ASR of 

Mandarin Chinese requires not only recognition of consonants and vowels but also tone 

recognition. Automated tone classification is typically accomplished by finding the F0 

contour and extracting features from this contour. The features extracted from the F0 

contour are chosen such that the curve is well parameterized. Following this, pattern 

classification techniques are applied to classify the data relative to a set of training data. In 

this study two types of pattern classification techniques were utilized. A generalized 

likelihood ratio test (GLRT) (Duda et al. 2004) serves as a parametric classifier whereas the 

K nearest neighbor (KNN) technique (Cover and Hart 1967) serves as a non-parametric 

classifier.
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The GLRT derives from the framework of Bayesian decision making (Whalen 1971). Any 

Bayesian method for pattern classification requires that the probability density functions of 

the data under each of the hypotheses are known or can be accurately estimated. The GLRT 

used in this study assumes that each dimension of the feature vector is normally distributed, 

i.e. that the feature vector is a multidimensional Gaussian random variable. The probability 

density function for each class can then be found by estimating the mean vector and the 

covariance matrix, which are estimated from the training data. To ensure reasonable 

estimates of the parameters given the limited amount of training data, it is necessary to 

assume that the features are independent. This eliminates estimation of the covariance 

between features and makes the covariance matrix of the multi-dimensional Gaussian 

random variable diagonal. While this assumption is a simplification since the features are in 

general not independent, the negative effects that result from making the assumption of 

feature independence are far less severe than the negative effects associated with poor 

parameter estimation resulting from limited training data (Duda et al. 2004). Once the mean 

vector and covariance matrix for each class have been estimated using the training data, the 

GLRT can be used to discriminate between the classes. The Mandarin Chinese tone 

identification task is a four-hypothesis classification problem and, as such, the GLRT must 

be slightly adapted. The assumption is that each null hypothesis, H0, is uniformly distributed 

and that the likelihood ratio will reduce to the likelihood function for each class. If it is 

assumed that each class is equally probable, the discriminant function for class i can be 

written as

(6)

Here  is the mean vector for class i and  is the inverse of the covariance matrix for 

class i. Each test vector, , is used to calculate the discriminant function for each of the 

classes. The class which yields the largest discriminant function is assigned to the test 

vector. Eq. 6 is derived by taking the natural log of the likelihood of each Gaussian random 

variable. This yields identical classification because the natural log is a monotonically 

increasing function.

The KNN approach to pattern classification is different from the GLRT in that it does not 

require that the probability density functions be explicitly estimated, although the technique 

does stem from density estimation. The training samples are viewed in D dimensional space 

where D is the number of dimensions in the feature vector. Each test vector is also viewed in 

this D dimensional space, and the closest k samples are found. The class to which the 

majority of these k samples belong is the assigned class for the test vector. In this work the 

distance measure used to find the “closest” samples is the L2 norm or the Euclidean distance. 

Several values of k were used for this procedure but the best results were found when k was 

chosen to be one. That is, only the nearest neighbor is used.

The same data set as was used in the listening experiment is employed for the automated 

classification. Given the small amount of data, the testing and training strategies must be 

such that testing and training are not performed on the same data but an accurate measure of 

performance is nevertheless achieved. Leave-one-out cross-validation is therefore utilized. 

In leave-one-out cross-validation the entire data set, save one sample, is used for training 
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data and the final sample is used for testing (Duda et al. 2004). This process is repeated so 

that each sample is used as a testing sample. The aggregate results of each of these trials are 

used to calculate the performance metric, in this case percent correct.

4.5 Results

Using each of the feature sets derived from the spectral contour estimation methods with 

each of the pattern classification methods, automated predictions of Mandarin Chinese tone 

classification in cochlear implant acoustic models can be made. Fig. 6 shows the results of 

the automated classification using the F0 contour approximation method along with the 

results of the listening experiment for each SNR. Similar to the listening experiment results 

the plots are once again shown as percent correct but they are now divided into four 

subplots; one for each SNR. The results of the listening experiment are shown in the 

background in black bars while the automated classification results using both classifiers are 

shown in the foreground. Fig. 7 shows the results of automated classification using data 

acquired by parameterizing the spectral intensity contours extracted using particle filters. 

Fig. 7 is an analogous plot to Fig. 6. These figures also show error bars indicating the 95% 

confidence interval of each percent correct estimate (Clopper and Pearson 1934).

The predictions provided by the two methods vary in accuracy as they are based on different 

assumptions and use different amounts of a priori knowledge. It is important to note that 

listening experiment results from acoustic models and normal hearing listeners are meant to 

represent trends in performance rather than exact predictions. It follows, therefore, that the 

differences in percent correct between the listening experiment and the automated 

classification are not of primary interest. What is of importance is the relative performance 

predicted by each method. It is for this reason the error of the predictions is difficult to 

quantify.

The proposed metric for the evaluation of the prediction methods is based on the Kullback-

Leibler divergence (KLD) between a normalized form of the listening experiment results 

and the predicted results. The KLD is a measure of difference between two probability 

density functions. For discrete random variables P and Q over n events with probabilities, 

p1, p2, …, pn, and q1, q2, …, qn, respectively the KLD from P to Q is given by

(7)

The KLD is in units of bits when the logarithm is taken with base 2. If two probability 

density functions are identical the KLD between them is zero. Larger values indicate that the 

probability density functions are more different.

For a given SNR and a given prediction method, the KLD can be used to measure the 

accuracy of a prediction of the listening experiment. First however, both quantities must be 

expressed as probability density functions. This can be done by normalizing the collection of 

percent correct values for the signal processing techniques to sum to one. Following this, Eq.

7 can be applied. The KLD metric for each of the prediction methods is shown in Fig. 8.
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4.6 Prediction Discussion

The predicted results in quiet using both of the prediction methods with each of the pattern 

classification techniques are similar to those seen in quiet for the listening experiment. The 

models are rank ordered in their classification performance as they would be if they were 

ranked by the amount of spectral information they present. Therefore, the results of the 

automated classification show the relative performance of the models.

The other SNRs (5 dB, 0 dB, and −5 dB) yield prediction results which are inconsistent with 

those found from the listening experiment when using the automated techniques. The 

primary theory behind the strategies, FAME and MCFA, is that they will aid in speech 

recognition in noise. As mentioned previously, this has been shown to be true for both 

strategies with English vowels and consonants (Throckmorton et al. 2006). The listening 

experiment shows that performance of these strategies does not degrade in noise, however, 

the prediction techniques fail to predict this result.

The KLD metric shown in Fig. 8 provides a method of quantifying the quality of each of the 

prediction methods. Recalling that lower values correspond to a better prediction, it can be 

seen that the best overall predictors are the KNN classifier applied to the spectral intensity 

contour features and the GLRT classifier applied to the F0 approximation features. These 

two prediction methods have similar total performance but have different strengths. The 

KNN classifier applied to the spectral intensity contour features provides the best prediction 

at higher SNRs (quiet, 5 dB and 0 dB) but the worst performance at −5 dB SNR. The GLRT 

classifier applied to the F0 approximation features has below average performance at the 

higher SNRs (quiet and 5 dB) but provides the best predictions at −5 dB SNR. This plot also 

shows that the predictions at higher SNRs (quiet and 5 dB) are both more accurate and more 

consistent across prediction methods.

Both of the sets of features used for prediction fail to quantify the necessary information 

required to predict the results of the listening experiment in noisy conditions. The 

approximate F0 contour method does not predict the results of the listening experiment well 

due to the differing effect that noise has on each of the processing strategies. For example, 

the approximate F0 contour determined for the CIS strategies will remain the same 

independent of the level of noise. Although the presence of the noise will negatively affect 

temporal amplitude information, the frequency information remains constant and thus the 

approximate F0 contour does not change. In a similar manner the MCFA 2 strategy is 

effected by the noise differently than the MCFA8 or FAME strategies. The presence of the 

noise will negatively impact the estimation of the frequency with maximum energy within 

window. When fewer frequencies are able to be selected, such as in the MFCA2 strategy, 

the changes in the approximate F0 contour are not as drastic. The differing effect of noise on 

the extraction of the F0 contour across the different strategies limits the ability of the 

approximate F0 contour features to correctly predict the results of the listening experiment.

The presence of noise also negatively impacts the estimation of the spectral intensity 

contours, however, the same effects are observed in each of the strategies. The STFT based 

algorithm for estimating the spectral intensity contours is not robust under noisy conditions. 

Thus, the accuracy of the estimated spectral intensity contours is not sufficient enough to 
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correctly model the underlying spectral intensity contours. This limits the ability of the 

spectral intensity contour features to correctly predict the results of the listening experiment.

5 Discussion

The listening experiment conducted in this research suggests that cochlear implant signal 

processing strategies that present more spectral information enable more accurate Mandarin 

Chinese tone classification. This result is congruent with the results of the experiments 

presented by Kong and Zeng (2006). The listening experiment conducted in this research 

provides a comparison of the continuous range of frequency information provided by the 

FAME strategy to that of the discrete frequency information provided by the MCFA strategy 

within the task of Mandarin Chinese tone classification in noisy conditions. Similar to 

results seen in English vowel and consonant recognition (Nie et al. 2005; Throckmorton et 

al. 2006), both the MCFA and FAME strategies show a greater robustness to performance 

degredation in noisy conditions.

Although cochlear implant acoustic models do not provide a direct measurement of the 

performance of speech processing algorithms in cochlear implant subjects, they provide a 

means of predicting trends likely to be seen (Dorman et al. 1997; Shannon et al. 1995). 

Although cochlear implant acoustic models do not adequately model all of the factors which 

affect performance, they do provide a basis for investigation of expected trends. Similar to 

the work done by Remus and Collins (2003) for predicting English vowel and consonant 

confusions, this research analyzes the output of cochlear implant acoustic models as an 

alternative means for predicting trends likely to be seen in cochlear implant subjects. The 

listening experiment that was conducted serves as a baseline and by predicting trends in the 

results of the listening experiment using acoustic models, information regarding the trends 

likely to be seen in cochlear implant subjects is gained.

This research has shown that trends in performance of Mandarin Chinese tone classification 

in cochlear implant acoustic models can be adequately predicted in quiet by using a priori 

knowledge of the underlying F0 contour or without a priori knowledge by tracking spectral 

intensity contours. The predicted trends verify the appropriateness of automated 

classification in quiet conditions by comparison to the theoretical spectral content of each 

algorithm but also by comparison to the results with experimental data. Direct comparisons 

with cochlear implant Mandarin Chinese tone recognition scores are not possible since 

MCFA, and FAME have not yet been implemented in speech processors. However, if it is 

assumed that trends in studies of normal hearing individuals and cochlear implant acoustic 

models can be used to predict trends in cochlear implant subjects, the prediction techniques 

presented here could be used to predict trends in cochlear implants in quiet conditions. 

However, the results of the listening experiment in noisy conditions are not accurately 

predicted using the proposed techniques. Although the features used in this research were 

derived from understanding of the spectral characteristics of Mandarin Chinese tones, the 

effects of noise on feature extraction were too detrimental to enable accurate prediction. 

Further understanding of the cues used by the human perceptual system may aid in the 

development of new features.
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The necessary cues for Mandarin Chinese tone classification has been analyzed in previous 

studies. Through the use of auditory chimeras (Smith et al. 2002), Xu and Pfingst (2003) 

were able to analyze the effects of envelope and fine-structure (defined using the Hilbert 

transform) on Mandarin Chinese tone classification performance in quiet conditions. Xu and 

Pfingst determined that when only limited frequency information is presented fine-structure 

information is more important for Mandarin Chinese tone classification than envelope 

information. The effects of noise on Mandarin Chinese tone classification with varying 

amounts of amplitude and spectral information were first analyzed by Kong and Zeng 

(2006). Kong and Zeng further distinguished the types of temporal and spectral information 

into four categories, temporal envelope, temporal fine-structure, spectral envelope, and 

spectral fine-structure. The results of the listening experiments conducted by Kong and Zeng 

suggest that either temporal or spectral fine-structure information is necessary for reliable 

Mandarin Chinese tone recognition in noisy conditions. They also suggest that the varying 

frequency information provided by the FAME algorithm, and thus the MCFA, is temporal 

fine-structure information which can be used as a cue for Mandarin Chinese tone 

classification in noisy conditions. This conclusion is consistent with the results of the 

listening experiments presented by Kong and Zeng and this research.

Despite the fact that both the approximate F0 and spectral intensity contour features used in 

this research quantify fine-structure information, neither feature set was capable of 

predicting the results of the listening experiment in noisy conditions. The calculation of both 

sets of features was highly susceptible to the presence of noise. To enable the prediction of 

Mandarin Chinese tone classification results in noisy conditions, a set of features capable of 

quantifying the necessary fine-structure information in the presence of noise must be found.

One possible source of features that may be able to quantify fine-structure information in the 

presence of noise may be neural models of the auditory system. Neural models of the 

auditory system, such as the one presented by Sene (1988) have been used as a means for 

speech recognition (e.g. (Strope and Alwan 1997; Tchorz and Kollmeier 1999; Nogueira et 

al. 2007)) and may help to mitigate the effects of noise. Features which quantize the 

necessary cues for Mandarin Chinese tone recognition may be able to be extracted from the 

output of neural models even in the presence of noise. Another possibility for noise resilient 

features could lie in more robust F0 estimation techniques such as the one proposed by Zakis 

et al. (2007). Noise robust F0 estimation techniques may not only enable better prediction 

methods but also may aid in the development of new cochlear implant signal processing 

strategies which can choose to present more beneficial frequency information on a given 

electrode in the presence of noise.

Pitch perception, and thus Mandarin Chinese tone recognition, in cochlear implant recipients 

may be improved by the inclusion of additional fine-structure information. A number of 

algorithms have been proposed to include additional fine-structure information through 

various stimulation paradigms (van Hoesel and Tyler 2003; Vandali et al. 2005; Nogueira et 

al. 2005; Grayden et al. 2006; Arnoldner et al. 2007) but most have had only limited testing 

and have not been evaluated on the task of Mandarin Chinese tone recognition. Evaluation 

of these processing strategies as well as the FAME and MCFA strategies in cochlear implant 

recipients on the task of Mandarin Chinese tone recognition would allow for the validation 
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of the predicted trends using the automated techniques presented in this research. An 

automated algorithm capable of accurately predicting trends in algorithm performance could 

then be used to evaluate newly derived signal processing algorithms without the need for 

testing in human subjects.

6 Conclusion

This paper has shown that automated Mandarin Chinese tone classification may provide a 

means of predicting trends in performance of cochlear implant speech processing strategies 

on the task of Mandarin Chinese tone identification in quiet conditions. Accurate prediction 

of Mandarin Chinese tone classification in noisy conditions requires a feature extraction 

technique that is not only capable of distinguishing between Mandarin Chinese tones but is 

also robust to the presence of noise. Creating a new set of features may allow accurate 

prediction of Mandarin tone identification in noisy conditions without the use of human 

subjects.
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Fig. 1. 
The block diagram for a cochlear implant acoustic model. The method of frequency 

extraction is different for each of the speech processing strategies considered. The CIS 

strategy does not perform frequency extraction.
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Fig. 2. 
The proportion of Mandarin Chinese tones correctly identified in the listening experiment 

using each of the speech processing strategies. The strategies are listed along the horizontal 

axis. Shading indicates SNR, and error bars indicate 95% confidence intervals.
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Fig. 3. 
Freqtrodogram of the falling-rising tone of “ke” said by a female speaker. The presented 

frequencies for each spectral band are plotted as functions of time. Each spectral band is 

represented with shading. Note that the vertical axis is logarithmically spaced.
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Fig. 4. 
Approximation of F0 contours for the falling-rising tone of “xi” spoken by a female. The F0 

contour extracted from the unprocessed speech token is shown in solid while the 

approximated F0 contour is shown in dashed. A portion of the spectrogram of the 

unprocessed speech token is shown in the background of each plot.
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Fig. 5. 
The narrowband spectrogram of the falling-rising tone of “ke” spoken by a female and 

processed through the MCF8 acoustic model with the spectral intensity contour tracking 

overlaid in dark lines.
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Fig. 6. 
Predicted results using the F0 contour approximation method. The results are shown with 

the listening experiment results. The predicted results are shown in the foreground with the 

analogous listening experiment results shown in the background. The error bars indicate the 

95% confidence interval.
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Fig. 7. 
Predicted results using the spectral intensity contour tracking method. The results are shown 

with the listening experiment results. The predicted results are shown in the foreground with 

the analogous listening experiment results shown in the background. The error bars indicate 

the 95% confidence interval.
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Fig. 8. 
The normalized Kullback-Leibler divergence between each of the prediction techniques and 

the results of the listening experiment. Lower values indicate a better prediction.
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