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Abstract

Small-molecule inhibitors of AKT signaling are being evaluated in patients with various cancer 

types, but have so far proven therapeutically disappointing for reasons that remain unclear. Here, 

we treat cancer cells with sub-therapeutic doses of Akti-1/2, an allosteric small molecule AKT 

inhibitor, in order to experimentally model pharmacologic inhibition of AKT signaling in vitro. 

We then apply a combined RNA, protein, and metabolite profiling approach to develop an 

integrated, multi-scale, molecular snapshot of this “AKTlow” cancer cell state. We find that AKT-

inhibited cancer cells suppress thousands of mRNA transcripts, and proteins related to the cell 

cycle, ribosome, and protein translation. Surprisingly, however, these AKT-inhibited cells 

simultaneously up-regulate a host of other proteins and metabolites post-transcriptionally, 

reflecting activation of their endo-vesiculo-membrane system, secretion of inflammatory proteins, 

and elaboration of extracellular microvesicles. Importantly, these microvesicles enable rapidly 

proliferating cancer cells of various types to better withstand different stress conditions, including 

serum deprivation, hypoxia, or cytotoxic chemotherapy in vitro and xenografting in vivo. These 

findings suggest a model whereby cancer cells experiencing a partial inhibition of AKT signaling 

may actually promote the survival of neighbors through non-cell autonomous communication.
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INTRODUCTION

Most human cancers activate the AKT kinase signaling pathway either directly through 

somatic mutation of PTEN, PI3 kinase, or AKT itself, or indirectly through the activation of 

intersecting oncogenic pathways (1–3). In turn, the AKT kinase activates myriad 

downstream targets that promote tumor growth, survival, and progression (1). Therefore, 

most human tumors are thought to depend on AKT signaling to a varying degree for their 

viability. Based on these observations, AKT-selective small molecule inhibitors have been 

developed and are currently being evaluated as cancer therapeutics for patients with many 

different types of malignancy. In pre-clinical xenograft models, however, many AKT 

inhibitors produce tumor stasis instead of regression (4–6). Moreover, rare patients treated 

with these inhibitors will occasionally show a significant clinical response to small-molecule 

AKT inhibition, but most either have partial or minimal responses regardless of PTEN / 

PI3K / AKT tumor mutational status for reasons that remain unclear (7, 8).

We recently discovered that epithelial cancer cells growing in culture occasionally divide 

asymmetrically by suppressing AKT signaling in one emerging “AKTlow” daughter cell (9, 

10). This unusual type of cell division is triggered by an asymmetric decrease in Type I 

collagen-β1-integrin-FAK signaling, resulting in activation of the mTORC2 signaling 

complex, partial phosphorylation of AKT1 kinase, and its activation-induced degradation 

mediated by the E3-ubiquitin ligase TTC3 and the proteasome (9). Asymmetric signaling 

thus produces one normally proliferating daughter cell and another AKT1low daughter 

expressing a MCM2low, H3K9me2low, HES1high marker profile (9, 10). Importantly, 

suppression of AKT signaling is both necessary and sufficient to produce these slow 

proliferators (9). AKT1low cancer cells are not apoptotic, autophagic, or senescent, nor do 

they express cancer stem cell markers or differentiate (10). Rather, they are quiescent but 

able to eventually resume their cell cycle after a prolonged period of dormancy in vitro (i.e., 

~ 7–10 days) (10).

Interestingly, we have also found that human cancer cell lines treated with allosteric small-

molecule AKT inhibitors (e.g., Akti-1/2, MK-2206), at a sub-therapeutic dose (i.e., which 

only partially suppresses AKT signaling by about 80–90%), dramatically increase their 

fraction of AKTlow, MCM2low, H3K9me2low, HES1high cancer cells (6, 9–11). These 

quiescent cancer cells rapidly resume their cell cycle with inhibitor washout, consistent with 

a temporary rather than permanent cell cycle arrest, which is identical to spontaneously 

arising AKTlow slow proliferators (10). In fact, malignant cells of various types can be made 

quiescent this way regardless of their PTEN / PI3K / AKT mutation status or general 

dependency on PI3K / AKT signaling pathway for their growth (9). Based on these 

observations, we sought to understand this AKT-induced quiescent cancer cell state in 

further molecular detail using a combined RNA, protein, and metabolite profiling approach 

to develop an integrated, multi-scale, molecular snapshot of small molecule AKT inhibition.
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MATERIALS AND METHODS

Experimental Methods

Cell lines—HCT116 colon, MCF7 breast, MDA-MB-231 breast, A375 melanoma, and 

PC9 lung were purchased from ATCC, were they were validated. HCT116 AKT1/2−/− was 

purchased from Horizon Discovery (Cambridge, UK), where it was validated. AG11726 

skin fibroblasts were purchased from Coriell Repositories, where they were validated. 

MCF7, MDA-MB-231 and AG11726 were maintained in DMEM, 10% FCS, 40mM 

glutamine, 100 U/mL penicillin, and 100μg/mL streptomycin; HCT116 and HCT116 

AKT1/2−/− in McCoy’s 5α medium supplemented with 10% FCS, 100U/mL penicillin, and 

100μg/mL streptomycin; PC9 in RPMI, 25% glucose, 1% sodium pyruvate, 100U/mL 

penicillin, and 100μg/mL streptomycin; A375 in DMEM supplemented with high glucose 

HEPES buffer, 10% FCS, 100U/mL penicillin, and 100μg/mL streptomycin. All the cells 

were grown at 37°C and 5% CO2.

Induction of AKTlow cancer cells in vitro—Cells were treated for 72h with vehicle 

(DMSO), Akti-1/2 inhibitor (HCT116: 20μM; MCF7: 2μM; MDA-MB-231: 20μM; A375: 

20μM; PC9: 20μM) (Sigma) or MK-2206 (HCT116: 10μM; MCF7: 3μM; MDA-MB-231: 

5μM; A375: 10μM; PC9: 3μM) (Selleckchem).

Induction of AKTlow cancer cells followed by xenografting in vivo—HCT116 and 

MCF7 were treated for 72h with vehicle (DMSO) and Akti-1/2 inhibitor; 500,000 cells were 

injected subcutaneously into the flanks of 5–6 week old, female, immunocompromised 

NU/NU mice (Charles River Laboratories), and then growing tumors were measured weekly 

by caliper.

GRO-sequencing (global run-on)—HCT116 or MCF7 were treated with DMSO and 

Akti-1/2 for 72h and cells were collected. Isolation of nuclei and nuclear run-on was carried 

out as described previously (8). Nascent RNAs were on average approximately 100nt long. 

The immuno-purified RNA was resuspended in 8.5μl water and 5′- or 3′-adapters ligated 

using Tru-Seq Small RNA Kit, Illumina. RNAs were reverse transcribed and amplified. The 

NRO-cDNA libraries were then run on a non-denaturing 1XTBE, 8% acrylamide gel, and 

cDNAs greater than 90 nucleotides were excised from the gel and eluted, precipitated and 

sequenced on the Illumina HiSeq 2000 Sequencing System.

RNA-Sequencing—We created a dUTP strand-specific cDNA library for RNA-Seq. Total 

RNA was purified for all the above experiments using RNeasy Mini Kit (Qiagen), and RNA 

integrity was checked using RNA 6000 Nano Kit on Agilent 2100 Bioanalyzer. Akti-1/2 

treated cells showed only a mild decrease (e.g., ~10%) in total RNA concentration compared 

to DMSO treated cells (i.e., MCF7 DMSO - 38.7μg; MCF7 Akti-1/2 - 35.69μg; HCT116 

DMSO - 45.08μg; HCT116 Akti-1/2 - 40.3μg). We used 4μg of total RNA for library 

construction. The purification, fragmentation and first strand synthesis were performed as 

described in the Illumina TruSeq RNA Library Prep Kit v2. The second strand cDNA 

synthesis was modified using the dUTP second strand method (12). End repair, 3′ 

adenylation and adapter ligation steps were done using TruSeq protocol. The libraries were 
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validated using a High Sensitivity DNA Kit on Agilent 2100 Bioanalyzer, and sequenced 

using 1 lane of 101bp (for batch 1), or 51bp (for batch 2) paired end reads with the Illumina 

HiSeq 2000 Sequencing System.

Quantitative Proteomics—We used tandem mass tag reagents (TMT; Thermo 

Scientific) and a synchronous precursor selection-based MS3 method on an Orbitrap Fusion 

mass spectrometer (Thermo Scientific) as described previously (13).

Antibody array profiling—MCF7 and HCT116 were treated with DMSO and Akti-1/2 

for 6 days and culture supernatant were screened for secreted proteins using the RayBiotech 

L-Series Human Antibody Array 493 and 507 biotin label-based kits (RayBiotech).

Immunofluorescence staining—Cells were grown directly on collagen IV-coated 

coverslips. Cells were fixed in 3.7% formalin, permeabilized using 0.1% Triton X-100, and 

treated with 0.1% SDS. They were blocked in 1% BSA and then incubated with primary 

antibody (MCM2, Cell Signaling, H3K9me2, Abcam, CD63 (H-193), Santa Cruz, FDFT1, 

Abcam), followed by the respective secondary antibody, Alexa Fluor conjugates 

(Invitrogen). Cells were mounted using hard-set mounting media containing DAPI (Vector 

Laboratories). Cells were stained with Filipin (Sigma) for cholesterol and Alexa 594-

conjugated CTXB (Invitrogen) for lipid rafts. Immunofluorescence imaging was performed 

on a Nikon Eclipse Ti A1R-A1 confocal microscope.

Western blots—We used standard protocols for SDS-PAGE electrophoresis and used the 

following primary antibody: CD63 (H-193) and CD81 (H-121), Santa Cruz; Calnexin, 

GM130 and TNFSF10, Abcam. Microvesicle fractions used for the Western Blots were 

isolated from equivalent number of cells (1×106).

Microvesicle extraction from cell media—Extracellular microvesicles (30–120nm) 

were isolated from the media of cells treated with DMSO, Akti-1/2 or MK-2206 for 72h as 

per instructions using the Total Exosome Isolation Reagent (Life Technologies). Cells were 

cultured in exosome-free media (complete media containing Exosome-depleted FCS). 

Microvesicle pellets were re-suspended in 100μl PBS.

RNA isolation from microvesicles—Exosomal RNA was isolated as per 

manufacturer’s instructions using the Total Exosome RNA and Protein Isolation Kit (Life 

Technologies). Recovered RNA was characterized using Agilent’s RNA 6000 Pico Kit on 

an Agilent 2100 Bioanalyzer.

Small RNA sequencing—The libraries of cellular and microvesicular small RNA were 

made using Illumina’s TruSeq Small RNA Kit. The 3′ and 5′ adaptors were ligated, and an 

RT reaction was used to create single stranded cDNA, which was subsequently PCR 

amplified using a common primer and one index sequence before size selection on 6% 

native polyacrylamide gel. Fragment range of 105–150bp, corresponding to the small RNA 

population, were excised, eluted, precipitated, and resuspended in 20μl of nuclease-free 

water. The size, quality and quantity of the DNA in each final small RNA library were 

verified using the High Sensitivity DNA Kit (Agilent).

Salony et al. Page 4

Mol Cancer Ther. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In vitro cell survival assays with microvesicles—Microvesicles were incubated with 

recipient cells for 1h at 37°C. Pre-conditioned cells were analyzed for growth for 120h, 

different stress conditions including growth in 1% fetal calf serum supplemented media, low 

oxygen (4%), and paclitaxel for 72h. The total number of cells was counted in triplicates. 

The standard MTS assays were also done for the growth curves. For colony formation 

assays, cells were treated with microvesicles for 1h and seeded at a density of 400 cells per 

well in six-well plates, allowed to attach overnight. Cells were then incubated under 

different stress conditions for an additional 6 days. Colonies were fixed and stained with 

Coomassie blue and counted in triplicates. In the long-term experiment, these cells were 

passaged for two additional weeks and then challenged with stress conditions. In addition, 

microvesicles from the parent cell lines were also incubated with cell lines of different 

cancer models and skin fibroblasts before exposing them to different stress conditions.

In vivo xenograft tumors with microvesicles—1×105 cells were incubated with 

microvesicles derived from equivalent number of cells (1×106) for 1h at 37°C. Cells were 

then injected subcutaneously into the flanks of 5–6 week old, female immunocompromised 

NU/NU mice (Charles River Laboratories), and the growing tumors were measured weekly 

by caliper.

Tumor immunohistochemistry—For immunohistochemistry, 5μm sections of formalin-

fixed paraffin-embedded (FFPE) tissues were dewaxed with xylene and rehydrated. Antigen 

retrieval was achieved by microwaving in unmasking solution (Vector Laboratories). After 

washing, sections were blocked in 5% FCS and immunoperoxidase analysis was performed 

on tumors for MKI67 (Abcam). The slides were counterstained lightly with hematoxylin for 

viewing negatively stained cells. H&E slides were used to assess the morphological integrity 

and geographical variation in morphology of the tissue samples. The slides were analyzed 

under the LEICA DC500 microscope. Three 40× high-power fields were analyzed for each 

slide.

Computational Methods

GRO-Seq analysis—Single-end reads were 50bp long. Clipping of contaminating adapter 

sequences was done with Cutadapt v1.2.1 (14). Reads with poor overall quality were further 

removed with fastq_quality_filter v0.0.13 (http://hannonlab.cshl.edu/fastx_toolkit/). Reads 

were aligned to the hg19 human genome with Bowtie v0.12.9 (15), allowing no mismatches 

and discarding multiple mapping reads. An average of ~30M of uniquely aligned reads per 

sample was obtained. Stranded read counts were obtained using coverageBed v2.17.0 (16). 

In order to specifically quantify the amount of actively elongated polymerase, the expression 

level of each gene was quantified based on the number of reads mapping to the region 

starting at +500 bp downstream the transcription start site (TSS) up to the transcription end 

site (TES). Genes less than 1 kb long were considered too short to reliably estimate their 

expression levels and thus were removed from further analyses. Reads per kilobase per 

million reads (RPKMs) were estimated based on the number reads sequenced per sample, 

the number of reads mapping to each gene, and the gene mappable length. Each cell line and 

condition was done in duplicate. Log2-RPKM correlation levels between replicates were 

between 0.71 and 0.85.
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RNA-Seq analysis—Paired-end reads were either 101bp long (1st batch of replicates) or 

51bp long (2nd batch of replicates). Clipping of contaminating adapter sequences and 

trimming of low-quality read ends was done with Trimmomatic v0.25 (6). Average fragment 

length and its standard deviation were empirically determined for each sample with Bowtie 

v2.1.0. Hg19/GRCh37 (Feb. 2009) transcriptome was obtained from table “knowGene” in 

the UCSC Table Browser website (http://genome.ucsc.edu/cgi-bin/hgTables). Tophat 

v2.0.8b (5) was used to align the reads to hg19 version of the human genome and 

transcriptome. Multiple mapping reads were excluded from subsequent analyses. Human 

UCSC hg19 genome annotation was downloaded from Illumina’s FTP repository (ftp://

igenome:G3nom3s4u@ussd-ftp.illumina.com/Homo_sapiens/UCSC/hg19/

Homo_sapiens_UCSC_hg19.tar.gz) on Feb 21, 2013, corresponding to the UCSC freeze of 

March 9, 2012. At least 20M uniquely aligned reads were obtained for each sample. 

Fragments per kilobase per million reads (FPKMs) estimations for each annotated genomic 

feature were obtained with Cufflinks v2.1.1 (17). Ribosomal, mitochondrial and transfer 

RNAs were masked in the analysis. Each cell line and condition was done in duplicate. 

Log2-FPKM correlation levels between replicates were above 0.9.

Quantitative proteomic analysis—Data analysis was done on an in-house developed 

software suite. MS2 spectra were assigned using the SEQUEST algorithm to search against 

the human UniProt protein sequence database using a target-decoy database search approach 

allowing to filter peptide and protein assignments to false-discovery rate of less than 1% (2, 

3). MS3 spectra were used for peptide quantification only if the summed signal-to-noise 

ratios of all 8 TMT ions was greater than 310 and the proportion of non-target ions in the 

isolation m/z window applied for isolating the target ion was less than 25%. For protein 

quantification the TMT ion intensities for each TMT channel from each peptide assigned to 

a protein were summed up and the protein TMT intensities were normalized based on the 

median TMT intensities of the TMT channel intensities from the pooled standard peptide 

mixtures (TMT-126 and TMT-131). Each cell line and condition was done in triplicate. 

Correlation of protein abundance in log2 space between replicates was around 0.8.

Metabolomics analysis—Metabolites were identified by automated comparison in the 

experimental samples to a reference library of chemical standard entries developed at 

Metabolon, Inc. Each sample was profiled six times. Most correlation coefficients between 

replicate pairs fell within the 0.8–0.9 range.

Secreted protein analysis—RayBiotech provided background-subtracted, positive-

control normalized intensities for both L-507 and L-493 antibody arrays. For each one of the 

sub-arrays, all samples were mean-centered to a log2 value of 4.5. Data from both sub-arrays 

were combined after normalization.

Cellular and microvesicle small RNA-Seq analysis—Single-end reads were 50bp 

long. Reads with poor overall quality were further removed from downstream analyses with 

fastq_quality_filter tool. Clipping of contaminating adapter sequences was done with 

Cutadapt v1.2.1 (14). Reads were aligned to the hg19 human genome (GRCh37.p13) with 

Bowtie v1.0 (15), allowing no mismatches and discarding multiple mapping reads. More 
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than 20M uniquely aligned reads were obtained for the cellular samples and between 1–3M 

for the microvesicle libraries. For every annotated feature in the GENCODE v19 database 

(http://www.gencodegenes.org/releases/19.html), read counts were obtained using the 

HTSeq Python package (7). Reads normalized per million sequenced reads (RPMs) were 

subsequently estimated based on the number of million reads sequenced per sample and the 

number of reads mapping to each gene in that sample. Each cell line and condition was done 

in duplicate for the cellular samples (biological replicates), while library preparations were 

sequenced in duplicate for the microvesicle samples (technical replicates). Log2-RPM 

correlation range between replicates was 0.85–0.99 for the cells and 0.96 for the 

microvesicles.

Enrichment analyses—All enrichment analyses were computed with GSEA v2.0.14 

(18). Paired T-scores comparing AKTi vs DMSO treated samples were used to pre-rank 

genes. When there were multiple possible pairing combinations, T-scores were computed for 

all of them and the median T-score was selected. Gene sets with a FWER < 5% were 

selected as significant. Only canonical gene sets (i.e., KEGG, REACTOME, BIOCARTA, 

PID, GO) were included in the analyses.

The data discussed in this publication have been deposited in NCBI’s Gene Expression 

Omnibus (19) and are accessible through GEO Series accession number GSE71901 (http://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE71901).

RESULTS

We first treated HCT116 (colon) or MCF7 (breast) cells with a low, non-lethal, cytostatic 

dose of the allosteric inhibitor Akti-1/2 for three days in vitro, which partially suppresses 

AKT kinase activity, to induce the AKTlow quiescent cell state rather than killing these cells 

(i.e., HCT116 = 20μM; MCF7 = 2μM) (10). We then injected 5×105 pre-treated cancer cells 

subcutaneously in nude mice and assessed their ability to form tumors compared to vehicle-

treated control cells (i.e., DMSO, n=5 mice per condition). We previously had found that 

Akti-1/2 inhibitor treatment increases the fraction of AKTlow slow proliferators within these 

cancer cell populations from a baseline of 1% up to 60% within 3 days of treatment (10). 

Surprisingly, we found that transiently increasing the fraction of AKTlow cells, by 

suppressing AKT signaling in this way, resulted in a substantially improved engraftment of 

these poorly tumorigenic cell lines compared to DMSO-treated control cells (Fig. 1A–B). 

This result was counterintuitive since both HCT116 and MCF7 have activating mutations in 

PIK3CA, rendering them constitutively dependent on AKT signaling for their proliferation, 

growth, and survival (4).

To determine the basis of this paradox, we next applied a battery of RNA, protein, and 

metabolite profiling technologies to Akti-1/2-treated cells in order to define the AKTlow cell 

state in further molecular detail. We performed: 1) genome-wide GRO-sequencing (global 

run-on) to examine active transcription across the genome; 2) RNA-sequencing to measure 

genome-wide steady-state mRNA levels; 3) multiplexed, quantitative mass spectrometry-

based proteomics to assess levels of approximately 10,000 proteins at steady state; and 4) 

mass spectrometry-based metabolite profiling to assess levels of approximately 375 
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metabolites at steady state. Integration of these datasets allowed us to define a multi-scale 

molecular snapshot of AKT-inhibited cell quiescence (Fig. 1C–H). Details on experimental 

procedures, data quality, bioinformatics, and computational analyses for these different data 

types can be found in the methods section. Complete results for each dataset can be found in 

Supplementary dataset S1.

We first compared transcriptional profiles from AKTi-treated and DMSO-treated control 

cells. We focused on transcripts or proteins with greater than an average 2-fold change after 

AKTi treatment in both HCT116 and MCF7 cells. We found that AKTi-treated cells 

displayed only a subtle increase in the expression of a few transcripts compared to control 

cells at the GRO-Seq level (n = 128) (Fig. 1C and Supplementary dataset S1A). 

Furthermore, gene-set enrichment analysis (i.e., GSEA) applied to this GRO-Seq profile did 

not reveal significant enrichment in any gene sets out of the 2000+ that we tested (FWER < 

5%) (18). In addition, computational analysis of GRO-Seq profiles comparing pausing 

indexes for all genes across conditions also failed to reveal global changes transcriptional 

activity in AKTi-treated versus control cells (Supplementary Fig. S1). These results 

suggested that AKTi-induced quiescence was likely not associated with programmatic 

changes in RNA PolII-associated transcriptional activity.

Consistent with these findings, RNA-Seq profiling further confirmed that AKTlow cancer 

cells did not up-regulate many transcripts at steady-state (Fig. 1D and Supplementary dataset 

S1B). In contrast, however, slow proliferators suppressed thousands of mRNAs at steady 

state compared to rapidly proliferating cells (i.e., 2913 genes < -2-fold across both HCT116 

and MCF7 cells, ~16% of total number of profiled transcripts) (Fig. 1D). However, most of 

the transcripts beyond this threshold (i.e., 85% - 2483/2913) showed mild expression levels 

(i.e., average log2 expression < 4), while many of the higher expressed genes that account 

for most of the sequenced reads remain stable after Akti-1/2 treatment. GSEA applied to this 

down-regulated RNA-Seq signature, however, only revealed statistically significant 

enrichment in a single gene set related to XBP1-mediated protein folding (FWER < 5%) 

(Supplementary dataset S2A). Moreover, this mRNA suppression did not relate to decreases 

in the active transcription of these genes as determined by GRO-seq analysis (Fig. 1F). 

Overall, these results were consistent with AKT inhibition producing a global, post-

transcriptional, and largely random degradation of many mRNA transcripts.

Against this transcriptional backdrop, we identified 192 proteins that were also down-

regulated after AKTi treatment in both HCT116 and MCF7 cells (i.e., < -2-fold) (Fig. 1E). 

For some of these proteins, corresponding mRNA transcripts were also suppressed, while 

for others we found that protein and mRNA levels correlated poorly, suggesting a mixed 

transcriptional and post-transcriptional effect (Fig. 1H). Moreover, GSEA applied to this 

down-regulated protein signature was associated with statistically significant enrichments in 

13 gene sets related to cell cycle transit, ribosomal activity, and translational regulation 

(FWER < 5%) (Fig. 1I and Supplementary datasets S2B-C). These findings were consistent 

with known effects that inhibition of AKT signaling might be predicted to have on cell 

cycle, ribosome function, and RNA stability (1).

Salony et al. Page 8

Mol Cancer Ther. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We also identified 294 proteins that were up-regulated after AKTi treatment in both 

HCT116 and MCF7 cells (> 2-fold) (Fig. 1E). The expression of these proteins correlated 

poorly with changes in either active transcription or steady state mRNA levels, however, 

suggesting that these changes more likely related to post-translational protein stabilization 

(Fig. 1G–H). Furthermore, GSEA of this up-regulated protein signature revealed a 

significant enrichment in 23 gene sets related to cholesterol biosynthesis, lipid metabolism, 

the endoplasmic reticulum, vesiculo-membrane transport, trafficking, secretion, along with 

membrane and extracellular matrix proteins (FWER < 5%) (Fig. 1J and Supplementary 

datasets S2D-E). Metabolite profiling further suggested the up-regulation of a select set of 

13 out of 379 metabolites analyzed, but did not reveal major changes in metabolites related 

to cellular energetics in AKTi-treated versus control cells (i.e., > an average 2-fold change 

for both HCT116 and MCF7 cells) (Fig. 2A). Eleven of these thirteen metabolites were 

lysolipid derivatives that are major components of cell membranes. Furthermore, cholesterol 

and cholesterol-like molecules (e.g., lathosterol) also showed milder increases in quiescent 

cells (Supplementary dataset S1D). Consistent with this finding, we also noted the 

corresponding up-regulation of FDFT1 protein (which is a rate-limiting enzyme in the 

cholesterol biosynthetic pathway) with proteomic profiling (Supplementary dataset S1C).

In addition, we used a highly validated antibody array platform to measure the expression of 

approximately one thousand different cytokines, chemokines, growth factors, and receptors 

in conditioned media from Akti-1/2-treated HCT116 and MCF7 cells. These experiments 

suggested the up-regulation of a small set of 13 secreted proteins (Fig. 2B and 

Supplementary dataset S1E). This set included multiple TNF, VEGF, and WNT family 

members known to powerfully modulate a spectrum of cell types, including epithelial, 

mesenchymal, vascular, and immune cells (e.g., TNFSF10) (20). Overall, these results were 

consistent with the notion that AKTi-induced slow proliferators might broadly activate their 

endo-vesiculo-membrane system, membrane formation, membrane remodeling, and 

secretion of bioactive factors. Initial validation experiments using immunofluorescence 

confocal microscopy confirmed increase in the expression of CD63 (i.e., a strongly up-

regulated membrane protein), FDFT1, cell membrane cholesterol, and membrane lipid rafts 

after Akti-1/2 treatment in HCT116 and MCF7 cells (Fig. 2C and Supplementary Fig. S2).

CD63 is not only expressed on cell membranes but also marks exosomes, which are 

extracellular microvesicles that are secreted by both cancer and normal cells (21). These 

microvesicles are known to mediate cell-cell communication within cancer 

microenvironments through complex mechanisms that have yet to be fully elucidated (22). 

We therefore asked whether AKTlow cancer cells also increase their secretion of 

extracellular microvesicles. We used differential solubility to biochemically isolate secreted 

microvesicles ranging in size from 30–120nm (which includes the CD63/CD81+ exosome 

fraction) in conditioned media from Akti-1/2 treated HCT116 and MCF7 cells compared to 

control. These experiments, which compared whole cell lysates to microvesicles isolated 

from equivalent numbers of either treated or untreated cells, confirmed the increased 

secretion of CD63/CD81-expressing microvesicles by Akti-1/2-treated cells in HCT116 and 

MCF7 cell lines. Further immunoblotting for Calnexin (i.e., an ER-vesicle marker) and 

GM130 (i.e., a Golgi vesicle marker) excluded other potential vesicle contaminants in 

enriched microvesicle fractions (Fig. 2D). We also isolated microvesicles from the HCT116-
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AKT1/2−/− cell line, which has adeno-associated virus (AAV)-mediated disruption of the 

AKT1 and AKT2 gene loci (23). AKT1/2−/− cells do not express either AKT1 or AKT2, nor 

do they express AKT3, and thus survive and proliferate albeit poorly in the complete 

absence of AKT signaling, presumably through compensatory changes that arose during 

their initial selection. Akti-1/2 treatment of these HCT116-AKT1/2−/− cells did not produce 

an increase in CD63/CD81+ microvesicle secretion as observed with wild-type HCT116 

cells (Fig. 2E). Overall, these results supported the idea that AKT signaling negatively 

regulates microvesicle secretion by cancer cells. In addition, these microvesicles displayed a 

time-dependent increase in the expression of TNFSF10 (Fig. 2F), which we had identified as 

up-regulated in conditioned media of Akti-1/2-treated cells using antibody arrays. RNA-

sequencing also revealed an increase in the expression of various small RNAs in 

microvesicles from Akti-1/2-treated compared to control cells (> an average 2-fold change 

for both HCT116 and MCF7) (Fig. 2G and Supplementary dataset S1F). These same 

microRNAs were suppressed within AKTi-treated cells themselves, however, suggesting 

their active export in microvesicles. (R=−0.49) (Fig. 2H–I and Supplementary dataset S1G).

Next, we asked whether microvesicles isolated from AKT-inhibited cancer cells have 

functional effects either in vitro or in vivo. We used Akti-1/2 inhibition to produce AKTi-

induced microvesicles from five different human cancer cell lines of different molecular 

types (i.e., HCT116, MCF7, A375 (melanoma) (20 μM), MDA-MB-231 (breast) (20 μM), 

and PC9 (lung) (20 μM)). We then admixed either Akti-1/2-induced or control microvesicles 

with untreated, isogenic cancer cells for one hour, and examined the behavior of these pre-

treated cells in a variety of functional assays in vitro. We found that pre-conditioning with 

AKTi-induced microvesicles did not increase the growth of target cells in culture over time, 

as assessed by either direct cell count (Fig. 3A–E) or vitality (i.e. MTS) assay 

(Supplementary Fig. S3A–E). Based on both cell and colony count assays, pre-treatment 

with microvesicles derived from AKTi-treated cells mostly increased the resistance of 

proliferating cancer cells to various stress conditions, however, including in vitro serum 

deprivation (1%), hypoxia (4%), and paclitaxel chemotherapy (0.05μM, HCT116; 0.5μM, 

MCF7; 0.001μM, MDA-MB-231; 10μM, PC9 and 0.05μM, A375; and 2.5μM, AG11726) 

(Fig. 3F–J, Supplementary Fig. S3F–J). Importantly, we also obtained similar results when 

pre-treating cancer cells with MK-2206, a second allosteric AKT1/2 small molecule 

inhibitor, further confirming that these effect likely related to small molecule inhibition of 

AKT signaling (Supplementary Fig. S4). In contrast, cancer cells pre-treated with Akti-1/2 

microvesicles, but passaged for two weeks before challenge, did not display an increased 

resistance to stress, suggesting a transient rather than prolonged effects in vitro (Fig. 3F–J). 

Additionally, microvesicles from one cell type (e.g., HCT116) could not pre-condition 

virgin cancer cells of other types (i.e., MCF7, MDA-MB-231, PC9, A375) or normal human 

fibroblasts (i.e., AG11726) to withstand these stress conditions in vitro (Supplementary Fig. 

S5). Finally, we exposed cancer cells for 1 hour to microvesicles derived from 1×106 

Akti-1/2 or DMSO treated cells. In order to assess xenograft efficiency, we subcutaneously 

injected 100,000 pre-treated cells in nude mice (n=6, initially per condition). Remarkably, 

pre-treatment with AKTi-induced microvesicles resulted in the increased engraftment of 

isogenic cancer cells in most cell lines tested relative to control, which was only associated 

with small, inconsistent differences in MKI67 expression within resulting experimental and 
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control tumors (Fig. 4 and Supplementary Fig. S6). Similarly, DMSO or Akti-1/2-treated 

cancer cells also produced tumors displaying inconsistent differences in MKI67 expression 

(Supplementary Fig. S7). These functional experiments supported a model whereby 

microvesicles that are secreted by AKT-inhibited slow proliferators can promote the 

context-specific, non-cell autonomous survival of rapidly proliferating cancer cells exposed 

to a variety of experimental stresses, including xenotransplantation both in vitro and in vivo.

DISCUSSION

Small molecule drugs that are designed to target specific aspects of cell behavior may 

produce unanticipated biological effects that are interesting but might ultimately 

compromise their therapeutic utility. Strategies to systematically understand these effects 

may therefore prove valuable for both biological research and pre-clinical drug 

development. We have piloted a multi-scale profiling approach to functionally assess 

inhibition of AKT signaling in human cancer cell lines. In these experiments, we use a 

single, sub-therapeutic drug dose of Akti-1/2, which is a well-studied, prototypic, small 

molecule, allosteric AKT inhibitor to partially inhibit AKT signaling, and a time of exposure 

carefully chosen in each individual cell line to induce a reversibly quiescent cell state rather 

cell death (i.e., 3 days) (10). We specifically focus on allosteric AKT inhibitors in our 

studies, since we previously found that catalytic AKT inhibitors do not induce the same 

quiescent cell phenotype, suggesting a class-specific inhibitor effect, likely related to the 

ability of allosteric but not catalytic inhibitors to induce degradation of AKT protein (24).

We apply combined RNA, protein, and metabolite profiling to this highly validated 

experimental system in order to develop an integrative molecular view of the AKTlow cell 

state. This multi-scale profiling strategy reveals a rich and complex landscape of molecular 

activity in AKT-inhibited cancer cells. Surprisingly, AKT-inhibited cancer cells continue to 

actively transcribe most genes similar to rapidly proliferating cells, but post-transcriptionally 

suppress several thousand mRNAs and proteins, consistent with prior observations regarding 

AKT signaling and its regulation of cell cycle transit, transcript stability, ribosomal activity, 

and protein translation (1). In addition, AKT-inhibited slow proliferators appear to post-

translationally increase their expression of endo-vesiculo-membrane proteins, membrane 

remodeling, secretion of inflammatory proteins, and elaboration of extracellular 

microvesicles. We further find that microvesicles from both Akti-1/2 and MK-2206-

inhibited cells functionally increase the resistance of a molecularly diverse panel of target 

cancer cell types to various stress conditions including serum deprivation, hypoxia, and 

chemotherapy exposure in vitro. Additional experiments will be required to elucidate at a 

molecular level how precisely microvesicles elaborated in response to AKT-inhibition 

promote cancer cell survival. Several miRNAs that we identify within Akti-1/2-induced 

microvesicles have been previously reported to play roles in response to hypoxia (i.e., 

miR-210 (25, 26)); stress response (i.e., miR-320a (27), miR-574 (28)); and chemotherapy 

resistance (i.e., miR-92b (29), miR-375 (30, 31), miR-345 (32), miR-197 (33, 34), and 

miR-140 (35)). It is therefore possible that these or other individual miRNAs promote stress-

resistance in trans, and that mild differences in biological effect size that we observe across 

different cell types might relate to multiple factors including specific microvesicle content or 

the molecular profiles of target cells. Nevertheless, microvesicles from one cancer cell line 
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do not induce stress resistance when applied to cancer or normal cells of different types in 

vitro, suggesting additional, complex, and context-specific effects yet to be fully elucidated. 

Intriguingly, cancer cells of various types, either pre-treated with a sub-therapeutic dose of 

Akti-1/2, or with microvesicles isolated from Akti-1/2-treated cells, also display increased 

engraftment upon xenografting into nude mice in vivo. While a transient ability of 

microvesicle-treated cells to withstand xenotransplantation-associated stress might account 

for increased experimental tumorigenesis, additional experiments are required to determine 

the possibility of more sustained effects on tumor growth in vivo.

Cancer cells growing in culture or within tumors continuously encounter both internal (e.g., 

oncogenic, proteotoxic) and external (e.g., hypoxic) stresses, and use a range of cellular 

programs to survive this constant pressure (36, 37). We recently discovered that dividing 

epithelial cancer cells encountering a loss of integrin signaling trigger a conserved 

mechanism to partially suppress AKT signaling and produce a newborn “AKTlow” daughter 

cell (9, 10). These “G0-like” daughters remain quiescent for a period of time within the 

population before eventually resuming their cell cycle (10). Interestingly, we have also 

identified these AKTlow slow cyclers within actual human breast tumors, where they appear 

to survive exposure to intensive, prolonged, combination chemotherapy (10). Our current 

findings suggest that epithelial cancer cells in this AKT-inhibited state may in fact instruct 

rapidly proliferating neighbors to increase their resistance to stressful challenge. This view 

might explain why rapid proliferators, which have evolved through years of mutation and 

clonal selection, continuously produce small fractions of naturally-arising AKTlow slow 

proliferators via a conserved signaling mechanism (9, 10). Slow proliferators, while only 

marginally reducing overall population expansion, may not only resist cytotoxic challenge 

themselves because they are slowly cycling, but might also provide a survival advantage to 

more rapidly proliferating neighbors. Consistent with this model, recent findings suggest 

that targeted inhibition of growth factor signaling in cancer cells (i.e., EGFR, HER2, ALK, 

MET, KRAS) might contribute to the drug resistance of neighboring cells through secreted 

factors such as IFN-γ (38). Similarly, targeted inhibition BRAF, ALK, or EGFR in cancer 

cells may induce a complex, reactive secretome that both enhances cancer cell drug 

resistance and also supports the expansion and dissemination of drug resistant clones in vivo 

(39). We also note that cells undergoing programmed senescence secrete various 

inflammatory proteins, most notably IL6 and IL8 (i.e., the senescence-associated secretory 

phenotype) (40). Unlike senescent or drug tolerant phenotypes, however, AKT-inhibited 

quiescent cells apparently increase their secretion of different factors including exosomes 

and WNT-, TNF, and VEGF-related proteins (41). Nevertheless, an emerging body of work 

suggests that various cell stresses, either naturally arising or iatrogenic, may trigger cell-cell 

interactions of various types within tumors with potentially important consequences.

Since the non-selective AKT inhibitors that we use inhibit both AKT1 and AKT2 isoforms 

(i.e., Akti-1/2 and MK-2206), and the HCT116-AKT1/2−/− cells that we use in further 

validation experiments also lack activity for both these genes, additional experiments will be 

required to determine whether observed effects relate to inhibition of a single or multiple 

AKT isoforms. Given that allosteric AKT inhibitors have proven disappointing when used 

clinically despite strong pre-clinical rationale for their development, however, we speculate 
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that incomplete pharmacologic inhibition of AKT signaling with small molecule AKT 

inhibitors within tumors may paradoxically increase cancer cell survival through the type of 

non-cell autonomous communication we observe, rather than inducing cell death as intended 

(4). Finally, no single type of molecular profiling technology was sufficient to reveal the 

biological insight provided by our multi-scale approach. For example, RNA-profiling alone 

would suggest that Akti-1/2 treatment generally results in transcriptional repression, which 

is not consistent with the fuller picture revealed through a multi-scale profiling approach. 

Additionally, while proteomic profiling appears to be a richer source of information in this 

context, suggesting the broad-scale activation of biological pathways related to endo-

membrane trafficking, we find that metabolite and secreted protein profiling adds layers of 

useful information that further sharpen the focus of down-stream biological validation 

experiments. Additional experiments with related or different drugs, across full dose and 

time ranges, in many additional cell lines, and using additional profiling technologies (e.g., 

translational profiling) may therefore prove useful as a general approach that complements 

ongoing efforts aimed at understanding the molecular action of cancer therapeutics (12, 15).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A–B: Tumorigenicity of Akti-1/2 treated cells. Plots depict tumor growth curves after 

injection of 500,000 HCT116 (A) or MCF7 (B) cells in two sets of mice. Blue curves 

correspond to mice that were injected with Akti-1/2 treated cells, while red curves 

correspond to mice that were injected with DMSO treated cells. Five mice were initially 

used for each cell line and condition. Each data point represents the average of the replicates 

and error bars show the standard error of the mean (SEM). P-values correspond to the t-test 

statistical differences in tumor volume on the last day of follow-up.

C–E: Multi-scale genomics profiling of AKTlow cells. Average M-A plots for GRO-Seq (A), 

RNA-Seq (B) and protein (C) datasets for both HCT116 and MCF7 cell lines. X-axis shows 

the average log2 expression, and y-axis shows the average log2 fold-change between both 

conditions (Akti-1/2 - DMSO). Positive log2 fold-changes correspond to overexpression in 

Akti-1/2 treated cells compared to DMSO. Only genes or proteins displaying consistent 

changes after Akti-1/2 treatment (i.e. log2 fold change either positive or negative in both cell 

lines) are shown. Numbers on the right side of the plots depict the number of genes or 
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proteins with an average fold change larger than 2-fold (i.e. 1 in log2 space) in absolute 

terms (grey dashed lines).

F–H: Correlation between changes in each data type. Scatterplots of log2 fold changes for 

genes or proteins in common between the different data types: GRO-Seq vs RNA-Seq (D), 

GRO-Seq vs protein (E), RNA-Seq vs protein (F). For each plot, only genes or proteins that 

show consistent change in both cell lines for both data types are selected. Numbers in the 

corners correspond to the number of genes or proteins that show a log2 fold change outside 

the 2-fold change region (grey dashed lines).

I–J: Gene-set enrichment analysis of proteomics results. Barplots depict the number of 

significantly down-regulated (I) of up-regulated (J) gene sets in AKTlow cells that fall in 

each functional category (FWER < 5%). Only canonical gene sets (i.e., KEGG, 

REACTOME, BIOCARTA, PID, GO) were included in these analyses. Complete lists of 

gene sets queried can be found in Supplementary dataset S2.

Salony et al. Page 17

Mol Cancer Ther. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
A: Metabolic profiling of AKTlow cells. Barplot depicts the log2 fold-changes (Akti-1/2 - 

DMSO) of 13 up-regulated metabolites with an average fold change > 2 (log2 > 1). Green 

bars correspond to lysolipid metabolic derivatives.

B: Secretory profiling of AKTlow cells. Barplot depicts the log2 fold-changes (Akti-1/2 - 

DMSO) of 13 up-regulated secreted proteins with an average fold change > 2 (log2 > 1). 

Blue, red, and orange bars correspond to proteins related to the TNF, VEGF and WNT 

families, respectively.

C: Immunofluorescence images for both HCT116 and MCF7 cells, treated either with 

DMSO or Akti-1/2. Cells were stained for DAPI, MCM2, H3K9me2 and CD63. Merged 

images represent respective stains merged with underlying DAPI stain. Size bar = 10μm.

D–E: Western blots of purified microvesicle fractions probed for CD63 and CD68 (i.e., 

exosome markers), Calnexin (i.e. ER vesicles marker), and GM130 (i.e., Golgi vesicles 

marker) in HCT116 and MCF7 (D), and HCT116 AKT1/2−/− knockout (E) cell lines after 

treatment either with DMSO or Akti-1/2 for 72h. A whole cell lysate (WCL) has been added 

as a control. For each cell line and condition microvesicle fractions were isolated from 

equivalent number of cells (1×106).

F: Western blots of purified microvesicle fractions probed for TNFSF10 in HCT116 (left 

panel) and MCF7 (right panel) after treatment either with DMSO or Akti-1/2. Microvesicle 

fractions used for the Western Blots were isolated from equivalent number of cells (1×106).
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G–H: Microvesicle (G) and cell (H) small RNA-Seq profiling. Average M-A plot of both 

HCT116 and MCF7 cell lines. X-axis shows the average log2 small RNA abundance, and y-

axis shows the average log2 fold-change between both conditions (Akti-1/2 - DMSO). 

Positive log2 fold-changes correspond to a small RNA abundance increase in Akti-1/2 

treated cells compared to DMSO. Only small RNAs displaying consistent changes after 

Akti-1/2 treatment (i.e., log2 fold change either positive or negative in both cell lines) are 

shown. Numbers on the right side of the plots depict the number of small RNAs with an 

average fold change larger than 2-fold (i.e. 1 in log2 space) in absolute terms (grey dashed 

lines).

I: Correlation between changes in microvesicle and cell small RNA abundance. X-axis 

corresponds to log2 fold change in cellular small RNA expression (Akti-1/2 - DMSO), while 

y-axis corresponds to log2 fold change in microvesicle small RNA expression (Akti-1/2 - 

DMSO). Positive log2 fold-changes correspond to a small RNA abundance increase in 

Akti-1/2 treated cells compared to DMSO-treated cells. Numbers in the corners correspond 

to the number of small RNAs that show a log2 fold change outside the 2-fold change region 

(grey dashed lines).
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Figure 3. 
A–E: Effect of microvesicles on growth rate. Different tumor cell lines (e.g., HCT116 (A), 

MCF7 (B), MDA-MB-231 (C), PC9 (D), and A375 (E)) were exposed to microvesicles 

derived from either Akti-1/2 or DMSO treated cells of the same type for 1 hour. 

Experiments were done in triplicate for each cell line and treatment. Error bars show the 

standard error of the mean (SEM). P-values shown at the top-left corner on each panel 

correspond to the model comparing the two slopes of the linear models fitted for each 

condition (i.e., DMSO or Akti-1/2 microvesicles). Non-significant p-values in all five cell 

lines support the finding that there is no evidence of any significant difference in cell growth 

based on the differential microvesicle treatment.

F–J: Akti-1/2 microvesicles bioactivity in vitro. Barplots depict the log2 fold change 

(Akti1/2 - DMSO) in the total number of cells exposed to microvesicles derived from either 

Akti-1/2 or DMSO treated cells of the same type for 1 hour. Cells were then placed under 
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three different stress conditions (e.g. 1% serum, 4% oxygen, standard chemotherapy agent) 

for 72h (grey bar). After pre-conditioning, cells were also passaged for two weeks before 

placing under three different stress conditions (e.g. 1% serum, 4% oxygen, standard 

chemotherapy agent) for 72h (open bar). Experiments were done in triplicates for each 5 

different cells line (e.g., HCT116 (F), MCF7 (G), MDA-MB-231 (H), PC9 (I), and A375 

(J)), treatment, and stress condition. Error bars show the standard error of the mean (SEM). 

Asterisks on top of bars designate statistically significant increases (i.e., p < 0.05, one-sided 

t-test) in cell count after exposing them to microvesicles derived from Akti-1/2 treated cells, 

compared to microvesicles derived from DMSO treated cells.
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Figure 4. 
A–E: Akti-1/2 microvesicles bioactivity in vivo. Plots depict tumor growth curves after 

injection of tumorigenic cells exposed during 1 hour to microvesicles derived from 

equivalent (i.e., 1×106) numbers of either Akti-1/2 or DMSO treated cancer cells (e.g., 

HCT116 (A), MCF7 (B), MDA-MB-231 (C), PC9 (D), and A375 (E)). 500,000 cells were 

injected into each mice. Blue curves correspond to mice that were injected with cells 

admixed with microvesicles derived from Akti-1/2 treated cells, while red curves correspond 

to mice that were injected with cells admixed with microvesicles derived from DMSO 

treated cells. Six mice were initially used for each cell line and condition. Each data point is 

an average of all replicates and error bars show the standard error of the mean (SEM). P-

values correspond to the t-test statistical differences in tumor volume on the last day of 

follow-up.
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