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Abstract

Protein-protein interactions represent an exciting and challenging target class for therapeutic 

intervention using small molecules. Protein interaction sites are often devoid of the deep surface 

pockets presented by “traditional” drug targets, and crystal structures reveal that inhibitors 

typically engage these sites using very shallow binding modes. As a consequence, modern virtual 

screening tools developed to identify inhibitors of traditional drug targets do not perform as well 

when they are instead deployed at protein interaction sites. To address the need for novel inhibitors 

of important protein interactions, here we introduce an alternate docking strategy specifically 

designed for this regime. Our method, termed DARC (Docking Approach using Ray-Casting), 

matches the topography of a surface pocket “observed” from within the protein to the topography 

“observed” when viewing a potential ligand from the same vantage point. We applied DARC to 

carry out a virtual screen against the protein interaction site of human anti-apoptotic protein 

Mcl-1, and found that 4 of the top-scoring 21 compounds showed clear inhibition in a biochemical 

assay. The Ki values for these compounds ranged from 1.2 to 21 µM, and each had ligand 
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efficiency comparable to promising small-molecule inhibitors of other protein-protein interactions. 

These hit compounds do not resemble the natural (protein) binding partner of Mcl-1, nor do they 

resemble any known inhibitors of Mcl-1. Our results thus demonstrate the utility of DARC for 

identifying novel inhibitors of protein-protein interactions.

Introduction

Protein-protein interactions comprise the underlying mechanisms for cell proliferation, 

differentiation, and survival; manipulation of these interactions thus represents a promising 

avenue for therapeutic intervention in a variety of settings. Despite the urgent need for 

small-molecule modulators of protein interactions, however, as recently as five years ago the 

dearth of success stories meant that even the druggability of this target class was very much 

in question [1,2]. At the same time, the challenges associated with these important targets 

help spur refinement of innovative new techniques, including fragment-based methods [3], 

peptidomimetics [4], and non-peptidic mimetics of protein secondary structural elements 

[5,6]. By now, these advances have enabled discovery of inhibitors against many different 

protein-protein interactions, and have led to an impressive array of compounds in various 

stages of clinical trials and pre-clinical optimization [7,8].

Modern methods for structure-based virtual screening have proven effective for a variety of 

applications, providing novel hits to address a very wide range of “traditional” targets such 

as enzymes and G protein-coupled receptors [9,10]. Unfortunately, structure-based virtual 

screening tools for identifying small-molecule inhibitors of protein-protein interfaces have 

lagged behind: due to their relatively exposed binding modes, the same docking methods 

that perform well for traditional drug targets struggle to correctly identify compounds that 

disrupt protein interactions [11]. This problem is particularly acute because the natural 

partners of these targets – proteins – cannot easily be used for inspiration in designing small-

molecule inhibitors or as templates for ligand-based virtual screening, as is possible for 

many enzymes [12,13] and G protein-coupled receptors [14].

In a number of cases, protein structures have been solved both in complex with a biological 

protein partner and also in complex with a small-molecule inhibitor. Comparison of the 

unbound protein structure to the equivalent structure in complex with a small molecule 

shows that binding is not associated with a large conformational change; and yet, the 

concave pocket on the protein surface in which the small molecule binds is often absent in 

the unbound structure, so that the flat surface of the unbound structure must often undergo 

local rearrangement to reveal the small-molecule binding site [15]. This has confounded 

structure-based methods for identifying inhibitors – how can the protein structure be used to 

identify an inhibitor, if the protein structure will change upon binding?

We recently described a method for identifying protein surface pockets suitable for small-

molecule binding, from either co-crystal structures or from simulations starting from the 

unbound protein structure [16]. Here, we introduce a method that we call DARC (Docking 

Approach using Ray-Casting) for matching these surface pockets to shape-complementary 

small molecules. Since many inhibitors of protein interactions are found to bind in shallow 

flat pockets on the protein surface [11,15], this method is specifically designed for such 

Gowthaman et al. Page 2

J Med Chem. Author manuscript; available in PMC 2017 May 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



protein-ligand interactions. Further, our method is intrinsically low-resolution, to allow for 

minor conformational variation of the protein upon ligand binding. We anticipate this 

method will provide suitable starting points for cases in which the protein structure is not 

perfectly optimal for the ligand, and cases in which further small conformational changes of 

the protein are expected to accompany ligand binding.

Computational Approach

Computational methods are implemented in the Rosetta software suite [17]; Rosetta is freely 

available for academic use (www.rosettacommons.org), with the new features described here 

included in the 3.6 release.

Scoring with DARC

To map the pocket shape on the protein surface, we use a variation of the LIGSITE [18] 

algorithm described fully in our earlier work [16]. In its most basic form, this method 

involves building a three-dimensional grid around a protein (or select region of a protein), 

then tagging the grid points that are covered by the protein. Next, each grid point not 

covered by the protein is examined to determine whether the point is bounded on two 

opposing sides by the protein along any direction of the grid, including diagonals. A 

continuous group of such special points are labeled a “pocket.” We then restrict this 

collection of “pocket” points to those “surface pocket” points that immediately contact the 

protein: these points together define the concave surface with which a ligand may interact.

From an “origin” point within the protein (determination of this point is described in 

Supplementary Methods), we then cast a series of rays towards the surface pocket; each ray 

connects the origin point to one “surface pocket” point (Figure 1a). For each ray we express 

the position of the “surface pocket” point relative to the origin using spherical coordinates 

(θ,ɸ,ρpocket); collectively these spherical coordinates represent a map of the binding pocket’s 

topography when viewed from the protein interior.

When viewed from the same vantage point (the origin), the topography of a suitably-bound 

ligand is expected to be highly complementary to that of the protein’s binding pocket. To 

evaluate the degree of complementary, we therefore cast the same set of rays (defined by 

their angles θ and ɸ), and determine the distance at which each ray first intersects the ligand 

(Figure 1a). If the ligand is indeed complementary to the pocket, the distance to the ligand 

(ρligand) for a given ray will closely match the distance to the pocket (ρpocket) for the 

corresponding ray.

We define the DARC “overlap score” as the degree to which the pocket and ligand 

topographies match, by summing over all rays as follows:

(1)
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From a physical perspective, rays that reach the pocket before the ligand indicate 

underpacking between protein and ligand (condition #1); alternatively, rays that reach the 

ligand before the pocket indicate a steric clash (condition #2). Rays that do not intersect the 

small molecule at all are penalized as well (condition #3); from a physical perspective, this 

corresponds to the ligand not completely filling the pocket. Finally, we include a series of 

rays that do not intersect the pocket; intersection of these rays with the ligand indicates that 

the ligand is too large for the pocket (condition #4).

For a given set of rays, evaluating the intersection distance of each ray with the ligand is a 

task that is naturally very amenable to parallel computing; indeed, the need to efficiently 

carry out the related “ray tracing” operation provided motivation for development of 

graphics processing units (GPUs). We have recently demonstrated that the ray-casting 

approach we describe here can also be carried out on GPUs, leading to dramatic speed 

enhancement relative to the analogous calculation on a CPU alone [19].

Determination of the values for parameters c1/c2/c3/c4 used in these studies is described in 

Supplementary Methods.

Docking with DARC

Determining the optimal bound pose of a small molecule within a pocket (i.e. “docking”) 

entails varying the ligand position and orientation to minimize the DARC score (Equation 

1). Though the first derivative of the DARC score can be calculated with respect to the 

ligand position and orientation, we instead carry out a derivative-free minimization using the 

particle-swarm optimizer implemented within the Rosetta software suite [17]. The ligand 

internal degrees of freedom are held fixed during this search; to account for ligand 

flexibility, we prebuild ligand “conformers” using OMEGA [20–22] and independently dock 

each of these. The final DARC score for a given ligand is taken to be the minimum DARC 

score from among each of its docked conformers.

Application of DARC for virtual screening is summarized though the workflow in Figure 1b. 

The starting pocket shape derives from a protein crystal structure, and can be an unbound 

structure, a bound structure in which the ligand has been discarded, or a structure generated 

from simulation (e.g. the “pocket optimization” simulations we have described for 

identifying low-energy pocket-containing conformations [16]).

Results

Building a virtual screening benchmark

Comparing DARC to other methods for virtual screening requires development of a 

benchmark to evaluate the performance of each method for correctly identifying known 

inhibitors from among “decoy” compounds. Assembling a large benchmark set is 

complicated by the relatively small number of available crystal structures of small-molecule 

inhibitors of protein interactions that have been solved in complex with their protein targets. 

Rather than assemble many tests with a very small number of active compounds (known 

inhibitors), we instead built two separate benchmark tests around protein interaction sites for 

which numerous chemically diverse inhibitors have been reported: Bcl-xL’s interaction with 
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Bak peptides, and XIAP’s interaction with Smac/Diablo peptides. These two proteins (and 

their homologs) were excluded from parameterization of DARC (see Table S1 and 

Supplementary Methods), to ensure that DARC would not inadvertently be trained to 

perform well against these two protein targets.

When generating a set of “decoy” compounds for this screening experiment, it is important 

that these compounds be suitably matched to the “active” compounds. If the decoy 

compounds are systematically different in some physicochemical property, for example, a 

docking method may successfully pick out active compounds simply due to some implicit 

bias (e.g. by simply picking the largest compounds, or the most hydrophobic, etc.). On the 

other hand, it is important to consider that decoy compounds are not necessarily inactive, but 

rather “presumed inactive”: typically they have not been explicitly tested experimentally 

against the target proteins in the benchmark to ensure they are not active. If decoy 

compounds are too similar to active compounds in chemical structure, certain decoys may 

themselves be active, which will confound analysis of the results (because the “right 

answer” in the benchmark is to label decoy compounds as inactive).

To generate well-matched decoy compounds for these benchmarks, we drew from either i) a 

set of 85 drug-like compounds that comprise the Astex Diverse Set [23], or ii) a set of 6912 

compounds reported to inhibit a different protein-protein interaction than our protein targets, 

compiled from the TIMBAL database [24,25].

To reduce the likelihood that “decoy” compounds might be active, we removed any decoy 

compounds that exhibited strong chemical similarity to a compound in the “active” set for 

this target (2D Fingerprint Tanimoto score [26] > 0.7). To ensure non-redundancy of the 

active set and non-redundancy of the decoy set, we also removed any compound with strong 

chemical similarity to another compound already present in the same set (2D Fingerprint 

Tanimoto score > 0.7).

For Bcl-xL this approach yielded 27 (diverse) active compounds, with 33 decoy compounds 

from the Astex set or 328 decoy compounds from the TIMBAL set. For XIAP this yielded 

14 (diverse) active compounds, with 45 decoy compounds from the Astex set or 425 decoy 

compounds from the TIMBAL set. Though smaller than the TIMBAL decoy sets, the Astex 

decoys have the advantage that these compounds have typically been advanced through 

further optimization for their respective targets; this makes the Astex decoys less likely to 

exhibit (undesired) activity against Bcl-xL or XIAP.

In addition, we also generated a third set of decoy compounds using the DUD-E server [27]. 

In this case, we identified 50 “custom” property-matched decoys from each active 

compound. Thus, the 27 compounds active against Bcl-xL led to a set of 1350 DUD-E 

decoys, and the 14 compounds active against XIAP led to a set of 700 DUD-E decoys. The 

careful matching of the decoys’ physicochemical properties to those of specific active 

compounds makes this a much more challenging benchmark; at the same time, however, 

there is an increased likelihood that some decoy compounds may themselves be active 

against the target protein.
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Screening against a ligand-bound protein structure

The challenge in virtual screening entails identifying as many active compounds as possible 

from a library (true positives), while minimizing the number of inactive compounds 

incorrectly assigned as active (false positives). A very stringent score cutoff for any method 

will result in few compounds being assigned as active (such that some active compounds 

will be missed), whereas relaxing this cutoff will lead to many more compounds assigned as 

active (such that more false positives will be included). Since only a small fraction of the 

total compound library is expected to be further evaluated or validated experimentally, a 

typical goal for virtual screening is to rank active compounds at the very top of the sorted list 

(good “early” behavior), corresponding to the ability to build a small subset of the original 

library that is strongly enriched in active compounds [28]. The “late” behavior (the fraction 

of the library that must be screened to ensure no active compounds are missed) is irrelevant 

for virtual screening applications, since a screening tool that offers to eliminate only a small 

fraction of (inactive) compounds from a large library is not particularly useful.

We started from the crystal structures of Bcl-xL and XIAP, each solved in complex with an 

inhibitor that had been excluded from our library of active compounds. In addition to 

DARC, we used five other methods to score and rank each compound in this benchmark 

experiment. Four of these (DOCK [29,30], AutoDock [31], rDock [32], and PLANTS [33]) 

are receptor-based screening tools that we used to dock each compound in the protein 

interaction site of each protein. The fifth (ROCS [34–36]) is a ligand-based screening tool, 

which ranks compounds on the basis of how well their three-dimensional structure mimics 

the volume and chemical features of a template – in this case, the structure of the inhibitor 

solved in complex with the target protein. Parameters used for each of these other packages 

are included in the Supplementary Methods.

Given the rank order of each compound using each of the three methods, we prepared 

separate receiver operating characteristic (ROC) curves for both Bcl-xL and XIAP, 

corresponding to an experiment in which we screen a library comprised of active compounds 

and Astex decoys (Figure 2a). Each point on such a plot corresponds to a given score cutoff, 

and each point indicates the fraction of active compounds collected at this cutoff, as a 

function of the inactive compounds incorrectly assigned as active at this cutoff. On this plot, 

the critical “early” behavior described earlier corresponds to a steep rise at the leftmost part 

of the plot: a useful method for screening must pick out as many active compounds as 

possible while accumulating a very small fraction of the inactive compounds. All three 

methods outperform the behavior that would result from randomly ranking the compounds 

in the library (grey curve), especially in this “early” region. We also observe similar results 

when carrying out the same screening experiment using decoy compounds drawn from the 

TIMBAL set rather than from the Astex set (Figure S1). With the exception of ROCS 

applied to XIAP, meanwhile, none of the methods perform at a comparable level when used 

to distinguish known active compounds from their closely-matched decoys in the DUD-E set 

(Figure S2).

As seen in representative examples of docked active compounds (Figure 2b), the DARC-

generated models exhibit clear shape complementarity that allowed these compounds to be 

(correctly) identified as true ligands; experimentally-derived structures of these compounds 
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in complex with their protein partners have not been reported to date. While low-resolution 

considerations of shape complementarity alone cannot be sufficient to reliably predict 

binding affinity or details of the interactions, it is striking that for these two benchmark tests 

the simple approach employed by DARC successfully distinguishes active from inactive 

compounds with similar accuracy as more sophisticated methods. We further note that the 

performance of DARC in this benchmark is remarkably robust to the location of the “origin” 

point from which rays emanate, provided a reasonable approach is used to define this point 

(Figure S3). Thus, these observations support the hypothesis that the crude pocket shape on 

the protein surface provides a strong restriction on the chemical “shape space” of inhibitory 

compounds.

Screening against a “pocket optimized” protein structure

The fact that a protein interaction site is likely to undergo a conformational change upon 

inhibitor binding [15] makes the choice of receptor conformation of particular interest for 

this target class, especially given that the performance of most approaches decreases 

considerably when an unbound starting structure is used in place of a ligand-bound starting 

structure [37]. A variety of methods exist for incorporating receptor flexibility, typically by 

docking against multiple receptor conformations from either crystal structures [38–42] or 

simulation [43–45].

Rather than start from unbound crystal structures of Bcl-xL and XIAP – which lack the 

surface pocket required for inhibitor binding – we instead started from conformations 

generated using the “pocket optimization” approach we have recently described [16]. 

Briefly, we developed a biasing potential that drives conformational sampling in molecular 

mechanics simulations towards conformations containing surface pockets suitable for small 

molecule binding. This biasing potential operates solely on simple geometric considerations, 

so that the shapes of the resulting surface pockets are influenced solely by properties of the 

protein surface and not knowledge of any particular ligand. Starting from unbound crystal 

structures, we carried out simulations to generate “pocket optimized” conformations of Bcl-

xL and XIAP: conformations containing a surface pocket, but without the precise details that 

would be encoded in a ligand-bound structure (our application of this approach to generate 

these protein conformations is described in Supplementary Methods).

We re-screened the same compound library described earlier, this time using a “pocket 

optimized” conformation of Bcl-xL or XIAP (Figure 3a). We did not include ROCS in this 

stage of the benchmark, since there is no structure of a cognate ligand available for this 

protein conformation that could be used as a template. Unsurprisingly, the performance of 

DOCK, AutoDock, rDock, and PLANTS all suffer dramatically in this more challenging 

regime. In contrast, the performance of DARC is remarkably similar to the earlier 

experiment, demonstrating that the low-resolution nature of the underlying calculations 

makes DARC relatively robust to slight mismatches between protein and ligand. Indeed, 

representative examples of active compounds docked to these alternate conformations 

demonstrate that the overall pocket shapes remain complementary to these ligands (Figure 

3b). We note that these observations also hold when carrying out the same experiment using 

decoy compounds drawn from the TIMBAL set rather than the Astex set (Figure S4), but 
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that again all of these methods exhibit diminished performance against the DUD-E set 

(Figure S5).

In summary, slight differences in these protein conformations lead to diminished 

performance from other receptor-based docking methods in this regime, but DARC performs 

equally well in this experiment as in the previous benchmark that used protein 

conformations from ligand-bound crystal structures. This finding is confirmed by extending 

this experiment to consider a series of five more distinct low-energy conformations for each 

protein, as generated by the “pocket optimization” approach: we find that the performance of 

DARC in this benchmark is notably insensitive to the precise details of the protein 

conformation (Figure 3c).

Collectively, these experiments point to different regimes in which each class of method is 

expected to prove superior. Detailed docking methods, such as DOCK, AutoDock, rDock, 

and PLANTS, are expected to out-perform DARC if the protein structure is solved in 

complex with a ligand of similar chemotype to the desired compounds. By contrast, DARC 

allows greater discrimination if the protein conformation is not quite optimal for the ligand: 

this can occur when one wishes to discover inhibitors with a radically different chemotype 

than known ligands, or when the protein conformation derives from simulation.

Identifying novel Mcl-1 inhibitors using DARC

To evaluate the performance of DARC in a realistic application, we next applied this 

approach to screen for novel classes of inhibitors for Mcl-1, a member of the Bcl-2 family of 

proteins. Individual members of this protein family can serve either a pro- or anti-apoptotic 

role, and interact with one another through a structurally-conserved binding motif. Small-

molecule inhibitors of Bcl-2/Bcl-xL have shown promising efficacy in overcoming chemo/

radioresistance in various tumor models including prostate cancer [46–50]. One such 

compound is ABT-737, a potent Bcl-2/Bcl-xL inhibitor [50]; a more recent Bcl-2-selective 

derivative of this compound is currently in clinical trials [51]. Recent studies have shown 

that cancer cells resistant to ABT-737 have high levels of Mcl-1, and that knockdown of 

Mcl-1 promotes ABT-737-induced apoptosis [35,48,49,52,53]. Taken together, these 

observations motivate the pressing need for development of potent and selective inhibitors of 

Mcl-1 in treating of a variety of cancers, to be used either as a single agent or in combination 

with inhibitors of Bcl-2/Bcl-xL [54].

The strong evidence supporting the potential impact of effective Mcl-1 inhibitors has spurred 

intense efforts using a variety of complementary approaches [54,55], including high-

throughput screening of standard libraries using a fluorescence polarization competition 

assay [56,57], and of an sp3-rich library using differential scanning fluorimetry [58]. Aiming 

to build upon the success of the ABT-737 series for Bcl-2, several groups have since applied 

similar NMR-based fragment screening to Mcl-1; fragment hits were prioritized on the basis 

of ligand efficiency (binding free energy per heavyatom), first yielding weakly-binding 

compounds that were subsequently merged or elaborated to give inhibitors with improved 

potency at the expense of some ligand efficiency [59–62]. Inspired by the helical 

conformation adopted by Mcl-1’s interaction partners, a number of groups have grafted the 

interaction partners’ sidechains onto small-molecule scaffolds that allow them to be 
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presented in a similar geometry [63–65], or have used “stapled” derivatives of the helical 

peptides [66–68]. Such approaches predicated on mimicry of a known helical binding 

partner can rapidly lead to potent inhibitors, but the large chemical scaffolds required to 

recapitulate the helical geometry diminish from their ligand efficiency.

Like other members of the Bcl-2 family, Mcl-1’s interaction partners bind to an exposed 

hydrophobic groove on the protein surface [69]. We recently applied our “pocket 

optimization” approach to this protein surface, and generated ensembles of low-energy 

Mcl-1 conformations that present surface pockets suitable for small molecule binding [70]. 

Among these ensembles we find conformations similar to those observed in crystal 

structures of Mcl-1 bound to diverse small-molecule ligands, and we also observe “distinct” 

conformations that have not yet been observed in any experimentally-derived structures [70]. 

We elected to use DARC to screen chemical libraries for compounds that would complement 

one of two Mcl-1 conformations: either an experimentally-derived conformation, or a 

conformation derived from “pocket optimization” simulations. At the time we initiated these 

studies no unbound structure was available [71], so for the former we used a peptide-bound 

crystal structure (PDB ID 2pqk) [69]. For the latter, we used the lowest-energy pocket-

containing conformation generated from 1000 independent trajectories.

Drawing from the ZINC database [72], we compiled a small virtual library corresponding to 

62,442 highly-diverse compounds with drug-like properties (MW ≤ 500 Da, xlogP ≤ 5, etc., 

see Supplementary Methods) available for immediate purchase from a commercial vendor. 

We then applied DARC to separately dock and rank each compound using the peptide-bound 

structure of Mcl-1, and also separately using the “pocket optimized” conformation of Mcl-1.

The docked models produced by DARC are intrinsically low-resolution, since they rely only 

on matching the protein-ligand topography. To achieve further high-resolution 

discrimination, we therefore included an additional final step (Figure 1b): for each of the top 

ranked 10% of the complexes produced by DARC we carried out fullatom gradient-based 

minimization in Rosetta, using the standard Rosetta fullatom energy function [17] and ligand 

parameter definitions [73]. All internal dihedral angles of the protein were included as 

degrees of freedom, along with the ligand position and orientation relative to the protein. We 

then filtered the resulting models to remove those with no intermolecular hydrogen bonds or 

an abundance of buried unsatisfied polar groups. From the remaining models, we then 

purchased the top-scoring 21 compounds on the basis of DARC score (Table S2). Of these 

21 compounds, 11 were identified by screening against the (peptide-bound) crystal structure 

of Mcl-1, and the other 10 were from screening against the “pocket optimized” structure.

The structural basis for the favorable scores in our DARC screen is evident from the models 

of these compounds in complex with Mcl-1 (Figure 4a). In each case the ligand – in its 

modeled conformation – exhibits exquisite shape complementarity for the protein surface; 

this is unsurprising, given that the DARC score is expressly built to identify the ligand 

position, orientation, and conformation that will maximize similarity to the topography of 

the protein surface. Nonetheless, there is also clear diversity amongst the models: the ligand 

shapes are different from one another, and they fill the protein surface pocket in distinctly 

different ways. In the case of M0, for example, a hydrophobic groove on the Mcl-1 surface 

Gowthaman et al. Page 9

J Med Chem. Author manuscript; available in PMC 2017 May 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



is neatly complemented by the spatial arrangement of the two aromatic rings in the selected 

ligand conformation.

The selected compounds also represent a diverse array of different chemical scaffolds 

(Figure 4b), with no evident similarity to one another. It must be noted that of the 

compounds shown, only M7 (a natural product) is devoid of potentially reactive functional 

groups. This is, of course, a reflection of the screening library: in a typical drug discovery 

application, such compounds should be removed from the library prior to screening since 

their potential for advancement is likely to be extremely limited [74]. For the purpose of 

evaluating the performance of DARC in this virtual screening experiment, however, we did 

not exclude such compounds.

By visual inspection, the structures of these compounds bear no obvious resemblance to any 

known inhibitors of Mcl-1, or to any known inhibitors of any other Bcl-2 family members. 

To systematically identify biologically active compounds most resembling these compounds, 

we applied the Similarity Ensemble Approach (SEA); this method uses ligand similarity to 

identify likely receptors for a query ligand [75]. In most cases SEA identifies chemical 

scaffolds with clear resemblance to our queries, but these related compounds have each been 

described in the context of very different activities (Figure 4c); even delving further into 

each list, we did not find similarity to other inhibitors of Bcl-2 family members. This 

observation highlights the fact that these compounds would have been very difficult to pick 

out using ligand-based screening, due to their lack of similarity to any known inhibitors of 

this protein family.

We next examined the ability of each compound to inhibit the interaction of Mcl-1 with one 

of its binding partners. We used a fluorescein-labeled peptide derived from the Noxa protein, 

which exhibits an increase in polarization upon Mcl-1 binding (Figure S6a). Upon addition 

of a known Mcl-1 inhibitor, AT-101 (i.e. R-(-)-gossypol), we observe a dose-dependent 

decrease in polarization that confirms this compound competes with Noxa for Mcl-1 

binding, and is consistent with previously reported data [76] (Figure S6b). Using this assay 

we found that six of the 21 compounds from our computational screen appeared to inhibit 

the interaction between Mcl-1 and its cognate peptide with Ki values ranging from 1.2 to 21 

µM (Figure 4d). These results were not affected by the presence of absence of detergent 

(CHAPS), suggesting that compound aggregation was not contributing to the observed 

inhibition. We then used an orthogonal label-free assay based on bio-layer interferometry 

(BLI) to test for direct binding of these compounds to Mcl-1, and through this assay 

confirmed the activity for four of these six compounds (see Supplementary Results) (Figure 

S7): M0, M1, M5, and M7 (Table 1). In all four cases we found that inhibition did not 

increase over time in the competition assay, and that the BLI signal showed a dissociation 

phase (decreased amplitude) upon transfer into buffer lacking the compound of interest; 

together, these imply that all four compounds bind in a reversible manner.

Given the chemical structures of these four most potent compounds, these observed Ki 

values correspond to ligand efficiency (binding free energy per heavyatom) of 0.21 to 0.27 

kcal/mol•heavyatom, which is typical of other promising small-molecule inhibitors of 

protein-protein interactions reported in the literature [8]. With respect to other Mcl-1 
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inhibitors in particular, these four initial hits are less active than the most potent compounds 

arising from screens of libraries designed to mimic the sidechain interactions of helical 

cognate peptides [63–65]; however, the DARC hits exhibit greater ligand efficiency, due to 

the extensive size of the compounds designed for mimicry of the helix.

Superposition of the modeled complexes for each of the DARC hits with the structure of 

Mcl-1 bound to a cognate peptide reveals that these compounds are decisively not 
recapitulating the interactions of the helical peptide (Figure 5a). While the cognate peptide 

uses a cluster of aliphatic residues at its N-terminus and aromatic residues at its C-terminus, 

compound M0 (as a representative example) occupies only the regions of the Mcl-1 surface 

engaged by the N-terminus of the peptide. Given that it is not constrained to fit onto the 

backbone of the helix, this compound also fits more deeply into the binding pocket on the 

Mcl-1 surface. In contrast, the most potent of the helix-mimetics was designed to 

recapitulate the complete set of interactions provided by the helical template [63]. The 

sidechains that comprise these interactions are separated by a span of 15 residues in 

sequence, and while this led to an inhibitor with Ki of 0.2 µM, the large chemical scaffold 

needed to present these interactions reduced the ligand efficiency of this compound to 0.21 

kcal/mol•heavyatom.

While the underlying methodology used in our DARC screen did not explicitly select for 

compounds that bind in place of the N-terminus of the cognate peptide, each of the resulting 

hits complemented this region. This is in stark contrast to the binding modes observed in 

crystal structures of Bcl-xL solved in complex with potent inhibitors such as ABT-737 and 

WEHI-539: each of these bind to the region of the protein surface used by the C-terminus of 

the cognate peptide, and thus have relatively little overlap with the models of the DARC hits 

(Figure 5b). In the time since we carried out our computational screen, crystal structures of 

Mcl-1 solved in complex with four distinct classes of inhibitor have been reported [58–

60,77], and in each case the ligand occupies the region of the protein surface corresponding 

to the N-terminus of the cognate peptide. Thus, the lack of DARC hits complementing the 

protein surface used by inhibitors of Bcl-xL may indicate a lack of druggability for the 

analogous surface of Mcl-1.

In contrast to Mcl-1 inhibitors derived by mimicry of the cognate helix, the most promising 

hits emerging from fragment screens initially proved less potent than those identified by 

DARC but had superior ligand efficiency [59–62]. One representative class of fragments 

inhibited Mcl-1 with Ki of only ~100 µM, albeit with a promising ligand efficiency of about 

0.3 kcal/mol•heavyatom [59]. NMR-derived models of the binding mode for this class of 

compound suggested that they induce a conformational change in Mcl-1, which in turn 

produces a very deep pocket required for binding; upon merging with another fragment 

class, crystallography confirmed that the larger compound also induced this conformational 

change [59]. In retrospect, each of the Mcl-1 crystal structures in complex with an inhibitor 

(solved after completion of our screen) revealed a conformational change that allowed the 

ligand to access a deep pocket that was not evident from the unbound or peptide-bound 

structures [58–60,77] (Figure 5c). The observation that extensive ligand burial is related to 

high ligand efficiency (across many small-molecule inhibitors of protein-protein 

interactions) [11] is thus consistent with the impressive ligand efficiency of these (deeply 
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buried) Mcl-1 fragment hits. However, such conformations were not among those included 

in our DARC screen, and accordingly the DARC hits could not have taken advantage of the 

deep pockets presented upon conformational rearrangement of the protein.

Evaluating the DARC model of M0 binding

An important benefit that can arise from the use of structure-based modeling (such as 

DARC) is the prospect of immediately using the model of the complex to guide design of 

derivatives, once an initial hit compound is validated experimentally. In order to test whether 

a DARC model can indeed serve this purpose, we next sought to test whether the tighter-

binding derivatives could be designed from the DARC model. Despite the fact that M0 (2’,4-

dihydroxy-3,4’,6’-trimethoxychalcone) was the least potent of the four hits in our original 

screen, and concerns of promiscuity because similar chalcones have been found to exhibit 

other diverse activities in biological assays, the straightforward synthetic accessibility of the 

chalcone series prompted us to select this scaffold for further investigation. While this 

compound would not necessarily be an optimal starting point for advancement into a drug or 

biological probe, then, selecting of this compound as a starting point allowed us to make and 

test more derivatives than would have been possible with the other three validated DARC 

hits.

Starting from compound M0, we therefore we sought to ask whether such a model could be 

used to explain the structure-activity relationship (SAR) observed across a series of related 

compounds. Since our goal was to gauge the veracity of the modeled complexes that led to 

selection of these compounds, and not simply to identify the most potent derivatives, we 

further restricted our study to compounds very close to the parent compound, M0 – we 

reasoned that these would best allow us to test our model of the structure, reducing the 

likelihood of conformational changes leading to drastic and unexpected SAR.

Before designing a series of analogs, however, we noted that other chalcones are known to 

form covalent adducts to proteins (the chalcone α,β-unsaturated carbonyl system is a 

Michael acceptor and thus may react with unpaired cysteine sidechains) [78,79]. We 

therefore carried out analysis via surface plasmon resonance (Figure S8) and HSQC 

chemical shift mapping (Figure S9) to further characterize this interaction (see 

Supplementary Results). Taken together, the stoichiometric Hill coefficient [80] and 

insensitivity to the presence of detergent [81] in the fluorescence polarization assay, the fact 

that the SPR response did not exhibit super-stoichiometric behavior [82], and the 

observation of a small number of distinct chemical shift differences in the HSQC spectrum 

[83] all provide evidence that the observed activity of M0 is not due to compound 

aggregation that deactivates Mcl-1, but results from specific binding. The NMR experiment 

also supports two features of our model for M0 binding: first that the M0 binding mode is 

not completely overlapping with that of the Bcl-xL inhibitors (Figure 5b), and second that 

M0 binding does not induce extensive protein conformational changes as seen in other 

Mcl-1 inhibitors (Figure 5c).

We then proceeded to produce a variety of M0 derivatives, using a simple aldol condensation 

reaction (Figure S10). We were concerned that designing these analogs from our model of 

the M0/Mcl-1 complex might bias the resulting series towards certain regions of chemical 
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space, and thus not provide a fair assessment of our model. In order to evaluate the structure-

activity relationship more objectively, we therefore designed a set of compounds by 

selecting the most readily available starting materials, based only upon the chemical 

structure of M0 and without consideration of our model of the complex. Using the same 

fluorescence polarization competition assay described earlier, we characterized a total of 27 

analogs of M0 (Table 2, Figure S11). As described below, the SAR deduced from this series 

presents a compelling narrative when interpreted using our model of M0 binding (Figure 

5d).

The most potent of these M0 analogs are D1 and D2: they each inhibit Mcl-1 about 7-fold 

more potently than M0. Compounds D1 and D2 differ only by a single methoxy versus 

fluorine substitution at the 3-position; M0 harbors a methoxy here. This methoxy group is 

exposed in our model of the M0/Mcl-1 complex, consistent with the observation from D1 

versus D2 that its replacement with fluorine does not affect activity. Compounds D1 and D2 

together share three differences relative to M0: both have a chlorine at the 5-position, both 

have a methoxy group at the 5’-position, and both lack the 2’-hydroxyl of M0. The latter two 

positions are exposed in our model of M0 binding, and are thus assumed not to strongly 

affect activity. In contrast, the 5-position (unsubstituted in M0) faces towards the protein, 

and points towards a small cavity (Figure 5d): thus, the improved packing resulting from this 

substitution may explain the slightly enhanced potency of D1/D2 relative to M0.

The only other two compounds in this series with potency exceeding that of M0 are D3 and 

D4; this equipotent pair again differs only by the same fluorine versus methoxy substitution 

that distinguished D1 and D2. Relative to D1/D2, compounds D3/D4 lack the 5’- and 6’-

methoxy groups. While the 5’-position is unsubstituted and exposed in our model of the M0/

Mcl-1 complex, the 6’-methoxy group is deeply buried in a hydrophobic cavity (Figure 5d); 

loss of this interaction may explain the reduced potency of D3/D4 relative to D1/D2.

Across this series of 27 M0 analogs, only compounds D1-D4 proved more potent than M0. 

While the SAR described above is consistent with our model of M0 binding, these results 

are also notably inconsistent with the behavior expected if these compounds were simply 

carrying out thia-Michael additions. Kinetic studies using a model thiol (cysteamine) 

demonstrate that the presence of the 6’-methoxy group decreases reactivity, and the 2’-

hydroxy group increases reactivity [84]. Through the comparisons above, we find that the 

most potent compounds for inhibition of Mcl-1 correspond to those expected to be least 
reactive, further implying that the inhibition we observe is not due to reactivity of these 

compounds with Mcl-1’s unpaired cysteine sidechain.

Through the results presented in Table 2 we demonstrate that chalcones are not “privileged 

scaffolds” [85,86] for inhibition of Mcl-1, an assertion that is best supported by specific 

examples. Compounds D7/D12/D13/D14 lack the key 6’-methoxy group described earlier 

(Figure 5d), and accordingly are less potent than M0. Compound D5 preserves each of the 

M0 functional groups that interact with Mcl-1 in our model (i.e. the 6’-methoxy group and 

the 4-hydroxyl group), and accordingly exhibits a very similar inhibition constant as M0. 

Compound D8 maintains the substituents of D2 on one ring, but lacks the substituents on the 

other ring (including the 6’-methoxy group), and is thus less potent. Compounds 
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D9/D10/D11 maintain the 6’-methoxy group but harbor a variety of alternate substituents on 

the other ring, making them less potent as well. Compounds harboring extra fused rings 

(D20/D21/D22/D23) are inevitably less potent, as are compounds in which the chalcone 

linkage has been replaced with a flavone (D24/D25/D26/D27). Overall, the assertion that 

chalcones are not privileged scaffolds for inhibition of Mcl-1 or generic helix-mimetics is 

supported by the observation that most analogs presented here – designed without 

consideration of our model of binding – inhibit Mcl-1 less potently than the parent 

compound M0. In summary then, it is the precise complementary of select compounds for 

the surface of Mcl-1 that dictate their activity, and not some property of this chemical 

scaffold.

Ultimately, direct structural evidence will be required to confirm that these compounds are 

indeed binding via the designed pose. Unfortunately, our efforts to crystallize Mcl-1 in 

complex with a member of this chemical series have not yet proven successful. Validating 

the models that lead to selection of active compounds through structural biology will be 

important not only for retrospective evaluation of the DARC models, but also as a starting 

point for inspiring design of subsequent analogs. Accordingly, we used DARC to compare 

our model of the M0/Mcl-1 complex to a model in which M0 was replaced with D1 (Figure 

5e). We find that DARC scores D1 even more favorably than M0, due to the improved 

packing resulting from substitution of chlorine at the 5-position. Thus, we expect that 

compounds with even better shape complementarity for Mcl-1 than those selected in our 

initial screen – compounds such as D1 – can be identified by screening larger chemical 

libraries with DARC. By further analogy to D1, we anticipate that such compounds will also 

exhibit superior potency relative to the initial hits described in this first screen. Despite the 

improved potency relative to M0, we nonetheless note that compound D2 does not exert the 

desired biological effect using an in vitro cellular assay (see Supplementary Results) (Figure 

S12). This underscores the need to test candidate inhibitors in cellular assays as well, since 

biochemical activity may not necessarily translate to cellular activity. Indeed, careful 

analysis has shown that a number of other inhibitors, each with comparable binding affinity 

for Mcl-1 as that of compound D2, also appear not to act on Mcl-1 in cells [57,87,88].

Discussion

Screening on the basis of surface topography

Since the protein surfaces of “traditional” drug targets have evolved to bind some cognate 

small-molecule ligand, they typically include a deep pocket or groove that can be targeted by 

inhibitors. In contrast, protein interaction sites typically do not include such surface features, 

and accordingly small-molecule inhibitors acting at these sites rely on shallower bound 

poses [11]. Because these shallow binding modes prove challenging to predict by 

conventional docking approaches, modern virtual screening tools exhibit diminished 

performance when used to predict inhibitors of protein interactions (relative to their 

performance when applied to “traditional” drug targets) [11]. Here we present DARC, an 

alternate approach to docking and virtual screening. By matching the topography of the 

protein surface to the buried face of the ligand, we find that DARC outperforms popular 

Gowthaman et al. Page 14

J Med Chem. Author manuscript; available in PMC 2017 May 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



canonical tools (DOCK, AutoDock, rDock, and PLANTS) when screening for inhibitors of 

protein-protein interactions.

Given the importance of shape complementation for binding, several other fast approaches 

have been described to rapidly evaluate poses and enable large-scale virtual screening. These 

include methods based on Fourier correlation theory [89,90], spherical harmonics [91,92], 

geometric hashing [93], and negative images [94–96]. Most recently, others have used 

variations of ray-casting to compare internal pockets in proteins to one another [97,98]. In 

addition to their intended usage, a subtle – but very important – difference between the latter 

work and DARC is the origin from which rays emanate. This other study casts rays from 

within the pocket (at the center of mass), resulting in a shape description that is most useful 

when the pocket is mostly (or completely) enclosed by the protein [97,98]. In contrast, 

DARC casts rays that originate from “behind” the pocket (i.e. inside the protein): this 

instead emphasizes shape complementarity at the deepest regions of the binding groove, and 

is thus better suited for describing the shallow bound poses typical of small-molecule 

inhibitors acting at protein interaction sites.

While shape complementarity is clearly a necessary feature of ligands that will bind to a 

protein surface, this alone obviously cannot be sufficient. In the present study, we used 

DARC to optimize and evaluate surface shape complementarity without consideration of 

electrostatic complementarity or solvation effects; for this reason, we included a “re-

ranking” step in our virtual screen against Mcl-1 to filter out models with no intermolecular 

hydrogen bonds or an abundance of unsatisfied buried polar groups. In retrospect, the 

hydrophobicity of the Mcl-1 surface pocket provided a convenient testing ground for the 

ability of DARC to identify shape-complementary ligands, without the complication of polar 

groups on the protein surface. In future, however, we expect that incorporation of 

electrostatic complementarity into DARC lead to improved performance in virtual screens 

against protein surfaces that display surface polar groups [99].

Approaches for identifying inhibitors of protein-protein interactions

In many cases, artificial ligands that bind to a specific protein surface bear some 

resemblance to an endogenous ligand that also binds to that surface: analysis of precedented 

drug targets shows that knowledge of a substrate, product, or effector with “drug-like” 

physicochemical properties is a good predictor of druggability for a given protein surface 

[100]. Analogs of endogenous ligands can also provide a starting point for designing 

inhibitors [101]. In the case of protein interaction sites, however, the natural ligand is not a 

small molecule and thus does not provide an obvious template from which to start. This has 

driven advances in new methodologies for identifying inhibitors of these “non-traditional” 

targets, most notably including mimicry of key interacting groups of the protein partner [63–

65,102–104] and fragment-based approaches [59,105–107].

In addition to chemical scaffolds that mimic secondary structural elements [63–65], exciting 

new computational approaches have facilitated identification of compounds that instead 

mimic the geometric orientation of key “hotspot” or “anchor” sidechains in a protein-protein 

interface [102–104]. While either mimicry-based approach may provide a robust starting 

point for recapitulating the interactions of a protein partner using a small-molecule scaffold, 
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both are likely to encounter the same intrinsic limitation: ligand efficiency is unlikely to 

exceed that of the interacting groups from the protein partner, which in turn is usually less 

than that those achieved by small-molecule inhibitors that do not explicitly mimic 

interactions of the protein partner [15]. Accordingly, an important advantage of de novo 
structure-based screening methods that do not rely on mimicry, such as DARC, is the 

potential to identify inhibitors that achieve superior ligand efficiency through deeply buried 

interactions not available to a protein-based ligand.

In contrast, fragment-based approaches often prioritize small compounds with very high 

ligand efficiency from the outset: this allows exploration of deep crevices that would not 

necessarily be evident from the structure of the protein-protein complex. Here, the challenge 

often lies in elaborating initial fragment hits (by growing, merging, or linking them) into 

larger compounds that maintain these highly productive interactions [108,109]. In our 

DARC screen against Mcl-1, we focused on compounds larger than traditional fragments: 

this led to initial hits with easily detectable activity, albeit at some expense of ligand 

efficiency. Much as the “multiple solvent crystal structures” method [110] uses very small 

fragments to probe the protein surface for productive interactions with isolated functional 

groups, screening a commercially-available library of “prototype” compounds – as we have 

done here – allows rapid evaluation of specific protein-ligand interactions predicted in silico, 

and can provide potential chemical scaffolds for further optimization.

Screening against multiple protein conformations

The compounds identified as “hits” by DARC, and by structure-based screening methods in 

general, naturally depend on the conformation of the protein target. With respect to 

inhibitors of protein-protein interactions in particular, a number of examples have been 

shown to bind concave surface pockets that are absent in the corresponding unbound protein 

structures: these “cryptic” pockets are revealed by local conformational changes associated 

with inhibitor binding [15]. In the case of Bcl-2 family members, the protein surface can 

also adopt a number of different conformations to accommodate ligands with radically 

different shapes and chemical properties [70].

Variation in the protein structure is most commonly included in virtual screening by first 

generating an ensemble of relevant conformations from crystal structures [38–42] or 

simulation [43–45], and then separately screening against each of these conformations. 

Nonetheless, identifying the optimal conformations to include in these ensembles is still a 

challenging task [111–113]. By preferentially exploring conformations that contain a surface 

pocket suitable for binding some (unspecified) ligand [16], the “pocket optimization” 

approach provides a natural complement to DARC screening. In principle, each of these 

low-energy pocket-containing conformations represents a starting point for screening, and 

capturing the potential diversity of pockets on the protein surface will be essential for fully 

realizing the available diversity of potential inhibitors.

In our Mcl-1 screen, DARC identified inhibitors both when screening against the peptide-

bound conformation and when screening against the pocket-optimized conformation. Due to 

the conformations selected for these screens, however, our models did not take advantage of 

deep pockets that have been observed in recent inhibitor-bound crystal structures of Mcl-1 
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[58–60,77] (Figure 5c): the particular pocket-optimized conformation used in our screen was 

much more similar to the peptide-bound conformation, making these deep pockets 

unavailable to DARC. Careful analysis showed that similar conformations to those observed 

in the inhibitor-bound crystal structures were indeed represented in the ensemble produced 

by pocket optimization [70], but were not included here because we only screened against a 

single pocket-optimized conformation. In future, then, inclusion of additional pocket-

containing protein conformations may allow identification of inhibitors that bind more 

deeply, and exhibit improved ligand efficiency.

Advantages to structure-based virtual screening

Enhanced and reliable tools for structure-based virtual screening will enable development of 

new tool compounds, particularly in academic settings where the costs associated with large-

scale biochemical (or phenotypic) screening can be prohibitive. However, the ability to 

precisely complement a specific surface pocket also makes structure-based virtual screening 

particularly attractive in a variety of other contexts that may prove challenging for traditional 

biochemical screening. These include building “conformation-selective” inhibitors (such as 

compounds that are sensitive to the phosphorylation state of a kinase activation loop [114]), 

targeting sites that enable unique binding kinetics (such as a newly-discovered pocket on 

ERK1/2 [115]), and building allosteric inhibitors that address both the wild-type and drug-

resistant isoforms of a target (such as BCR-ABL [116] or HIV-1 protease [117]).

In light of the plasticity of many protein interaction sites [15], these tools may also prove 

particularly useful for designing inhibitors that exhibit specific selectivity profiles. We have 

shown that the activity of a given compound against various members of the Bcl-2 family 

can be predicted from whether or not each protein samples a complementary surface pocket 

[70]. In other words, a given compound will inhibit those Bcl-2 family members that include 

conformations to suitably accommodate this compound, but will not inhibit other family 

members that cannot adopt such conformations. By identifying “common” pockets harbored 

on the surfaces of multiple family members, it may be possible to identify inhibitors 

designed to act against multiple family members (pan-inhibitors). “Pocket optimization” 

simulations also reveal highly unique pockets for each family member, that are sampled by 

one family member but are not accessible to any other family member [70]. Thus, DARC’s 

ability to identify ligands that precisely address a given family member’s unique “signature” 

pockets may also provide a means to identify highly selective compounds at a very early 

stage of development.

Methods

Detailed descriptions of computational and experimental methods are provided in the 

Supplementary Methods section, along with sample command-lines and instructions for 

using DARC.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Docking Approach using Ray-Casting
(A) DARC first casts a set of rays emanating from an origin within the protein (red dot), and 

maps the topography of the surface pocket by monitoring intersection of these rays with the 

pocket (left). To evaluate the shape complementary of a given ligand for this pocket, DARC 

casts the same rays (from the same origin) and monitors their intersection with the ligand 

(right). If ligand (in its current position and orientation) is perfectly shape-complementary to 

the pocket, each ray will intersect the ligand at the same distance from the origin as it 

intersected the protein surface pocket. By moving the ligand to maximize this shape 

complementarity, a ligand can be docked into a protein surface pocket. (B) A schematic 

diagram of the complete workflow split into three stages: pre-DARC preparation, DARC, 

and post-DARC re-ranking/filtering of the docked models.
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Figure 2. Virtual screening benchmark experiment using an inhibitor-bound protein structure
(A) This receiver operating characteristic (ROC) plot compares the performance of various 

methods (DARC, DOCK [29,30], AutoDock [31], rDock [32], PLANTS [33], and ROCS 

[34–36]) for predicting whether a given compound is active against a particular protein 

interaction site. Drug-like “decoy” compounds were drawn from the Astex diverse set [23], 

then further filtered to remove any compounds that are similar in chemical structure to an 

active compound or any other decoy compound. The results are presented on a semi-log plot 

to highlight the “early” performance of the methods; the grey curve indicates the random 

retrieval of compounds (i.e. a random predictor). Left: discriminating 27 diverse compounds 

active against Bcl-xL from among 33 matched decoy compounds. Right: discriminating 14 

diverse compounds active against XIAP from among 45 matched decoy compounds. (B) 
DARC-docked models of representative active compounds against Bcl-xL (left) and XIAP 

(right). These compounds were not chemically similar to those used in solving these crystal 

structures (such compounds were excluded from this benchmark).
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Figure 3. Virtual screening benchmark experiment using protein structures from “pocket 
optimization” simulations
(A) This benchmark experiment involves discrimination of the same active versus “decoy” 

compounds as in Figure 2, however this time compounds were screened against a protein 

conformation generated via “pocket optimization” simulations initiated from an unbound 

crystal structure (instead of protein conformations from an inhibitor-bound crystal structure) 

[16]. The results are again presented on a semi-log plot to highlight the “early” performance 

of the methods; the grey curve indicates the random retrieval of compounds (i.e. a random 
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predictor). (B) Models of representative active compounds docked by DARC to the “pocket 

optimized” conformation of Bcl-xL (left) or XIAP (right). (C) The performance of DARC in 

this benchmark is essentially equivalent when screening against a known ligand-bound 

structure (solid black line), the lowest-energy “pocket optimized” conformations (i.e. as 

described in the previous panels) (solid red line), or any of five other low-energy “pocket 

optimized” conformations (dashed red lines); this observation demonstrates the insensitivity 

of the method to details of the protein structure.
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Figure 4. DARC can be used to identify novel inhibitors of human Mcl-1
Screening was carried out against the protein interaction site of Mcl-1, and 21 of the top-

scoring compounds were tested in a biochemical assay. (A) Docked models generated by 

DARC for four compounds emerging from our screen. Compounds were screened either 

against an experimentally-derived peptide-bound structure of Mcl-1, or against an Mcl-1 

conformation generated via “pocket optimization” simulations [16]. (B) The chemical 

structures of the compounds in each model are shown. We note that some of these have 

reactive functional groups: such compounds could be removed from the library prior to 

screening, in applications where such moieties are undesirable. (C) The most likely activity 

of each compound was predicted using the Similarity Ensemble Approach (SEA) [75]. None 

of these compounds are assigned as likely inhibitors of Bcl-2-family proteins, underscoring 

their lack of similarity to known inhibitors of this family. (D) Each of these four compounds 

inhibit Mcl-1’s interaction with a FITC-labeled cognate peptide, as determined via 

fluorescence polarization. CHAPS detergent (0.1%) was included in this assay, to ensure 

that these results were not due to compound aggregation; we also observe equivalent 

inhibition in the absence of CHAPS. Each curve is fit to a one-site inhibition model, with a 

single free parameter in the fitting. Direct binding of each of these compounds to Mcl-1 was 

subsequently confirmed via bio-layer interferometry (see Supplementary Results).
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Figure 5. Evaluating DARC’s model of the M0/Mcl-1 complex
(A) Though M0 was identified in a screen against a peptide-bound conformation of Mcl-1, 

M0 (peach) is distinctly not mimicking the interactions of the cognate peptide (light gray). 

In the DARC-generated model M0 competes with the N-terminus of the peptide for Mcl-1 

binding, but fits more deeply into the Mcl-1 surface pocket than the peptide sidechains. (B) 
This M0 binding mode is distinctly different from that of known Bcl-xL inhibitors such as 

ABT-737 (green), which instead overlap with the C-terminus of the peptide-binding site. 

The surface of the Bcl-xL protein is shown (grey), solved in complex with ABT-737. (C) 
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Other recently-described inhibitors of Mcl-1, including the representative example shown 

here (dark pink) [59], bind at a similar location to M0; however, each distinct series of 

inhibitors induce their own unique Mcl-1 conformational change to allow deeper ligand 

burial. (D) The locations of two M0 positions that play key roles in our model of the 

complex: the 6’-methoxy group (yellow) and the unsubstituted 5-position (green). (E) A 

model of the D1, the most potent M0 derivative, in complex with Mcl-1. This compound 

preserves the crucial 6’-methoxy group, and embellishes the 5-position with a chlorine 

substitution to improve packing. Closely analogous compounds to D1 that lack the methoxy 

group at the 6’-position (D3) or that lack the chlorine at the 5-position (D5) exhibit reduced 

activity.
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Table 1
DARC screening hits confirmed experimentally as inhibitors of Mcl-1

The complete set of DARC hits (including those that did not inhibit Mcl-1) are included as Table S2. Ki values 

were determined via a fluorescence polarization competition assay (see Supplementary Methods), and then 

bio-layer interferometry was used to directly confirm binding to Mcl-1 (see Supplementary Results).

Compound Chemical structure Ki (µM) L.E.
(kcal/mol•heavyatom)

M0 21 0.27

M1 1.2 0.24

M5 12 0.21

M7 7 0.27
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Table 2
Chemical analogs of M0

We designed and synthesized a series of 27 M0 derivatives, and tested each of these for inhibition of human 

Mcl-1 using a fluorescence polarization competition assay (see Supplementary Methods). This series of 

analogs was designed without consideration of DARC’s model of the M0/Mcl-1 complex, to allow unbiased 

evaluation of the model.

Compound Chemical structure Ki (µM) L.E.
(kcal/mol•heavyatom)

M0 21 0.27

D1 2 0.29

D2 3 0.30

D3 7 0.33

D4 10 0.31

D5 28 0.33
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Compound Chemical structure Ki (µM) L.E.
(kcal/mol•heavyatom)

D6 20 0.32

D7 40 0.25

D8 >50 N.D.

D9 >50 N.D.

D10 >50 N.D.

D11 >50 N.D.

D12 >50 N.D.
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Compound Chemical structure Ki (µM) L.E.
(kcal/mol•heavyatom)

D13 >50 N.D.

D14 >50 N.D.

D15 >50 N.D.

D16 >50 N.D.

D17 >50 N.D.

D18 >50 N.D.

D19 >50 N.D.

D20 >50 N.D.
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Compound Chemical structure Ki (µM) L.E.
(kcal/mol•heavyatom)

D21 >50 N.D.

D22 >50 N.D.

D23 >50 N.D.

D24 >50 N.D.

D25 >50 N.D.

D26 >50 N.D.
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Compound Chemical structure Ki (µM) L.E.
(kcal/mol•heavyatom)

D27 >50 N.D.
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