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Abstract

Background: The fundamental problem of causal inference is one of missing data, and

specifically of missing potential outcomes: if potential outcomes were fully observed,

then causal inference could be made trivially. Though often not discussed explicitly in

the epidemiological literature, the connections between causal inference and missing

data can provide additional intuition.

Methods: We demonstrate how we can approach causal inference in ways similar to

how we address all problems of missing data, using multiple imputation and the para-

metric g-formula.

Results: We explain and demonstrate the use of these methods in example data, and dis-

cuss implications for more traditional approaches to causal inference.

Conclusions: Though there are advantages and disadvantages to both multiple imput-

ation and g-formula approaches, epidemiologists can benefit from thinking about their

causal inference problems as problems of missing data, as such perspectives may lend

new and clarifying insights to their analyses.
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Key Messages

• Causal inference can be regarded as a missing data problem; therefore, missing data approaches can be taken to

causal inference.

• The exchangeability assumption central to causal inference is closely related to the way in which potential outcomes

are missing.

• Multiple imputation and the parametric g-formula can each be used to impute missing potential outcomes.
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Introduction

When we state that an exposure (or treatment) X causes an

outcome Y, we usually mean that if X is present, then Y is

more likely to occur; and also that if X is absent, then Y is

less likely to occur (or will occur at a later time than it

would have otherwise, as with inevitable outcomes such as

death). To estimate the causal effect of X on Y, we would

like to compare values of Y had a participant been exposed

and had that same participant been unexposed. We refer to

these two potential values for Y as potential outcomes.

However, we never observe the outcome Y simultaneously

for both X present (X ¼ 1) and X absent (X ¼ 0) for a

single study participant i; this can be regarded as a problem

of identifiability. Instead, under the counterfactual consist-

ency theorem,1–3 we observe exposed participants’ out-

comes when they are exposed, but we do not observe what

exposed participants outcomes would have been had they

been unexposed. For unexposed participants, the reverse is

true. As a result, the true causal effect of X is not identifi-

able at the individual level. The fundamental problem of

causal inference, and thus of analytical epidemiology, is

therefore one of missing data, or the inability to observe all

but one potential outcome.4,5

Yet, when epidemiologists analyse data for the purposes

of causal inference, in the absence of explicitly missing

data they typically do not consider missing-data

approaches to analysis. Most often epidemiologists ap-

proach causal inference using some form of regression ana-

lysis. Less often, they use methods that explicitly model

marginal (population-level) potential outcomes, such as

the g-computation algorithm formula,6 also known as the

g-formula,7–9 or inverse probability weights.10 In fact, in-

verse probability weights, as commonly used to fit mar-

ginal structural models, were originally developed as a tool

for data missing by design in survey sampling,11 and later

adapted for general missing data settings, and then causal

inference.12 Other techniques developed for missing data

such as multiple imputation,13,14 are typically used only

when some measured variables are partially missing (e.g.

when the epidemiologist wishes to control for age but

some study participants are missing a birthdate). Rubin15

described the link between causal inference and missing

data and proposed a Bayesian framework for inference

based on multiple imputation, and Rubin and others later

specifically suggested using multiple imputation to address

the problem of missing potential outcomes.16–18 The g-for-

mula9 is another approach to imputing missing potential

outcomes.

However, these missing-data methods have not been

used frequently in the epidemiological literature, and the

connections between causal inference and missing data are

often not made explicit, especially in use of traditional re-

gression approaches to data analysis. Here we describe

missing-data approaches to causal inference as an alterna-

tive way to think about causal inference and missing

data,19 and to assist in understanding identification condi-

tions20 necessary for causal inference. We include an algo-

rithmic approach as well as a simulation study to help

build intuition.

In the remainder of this paper, we review both potential

outcomes and selected approaches to missing data, and

demonstrate how missing data methods can be used to ob-

tain causal contrasts in a simple example. We discuss ad-

vantages and disadvantages of various approaches to

causal inference that take a missing data perspective.

Throughout, we focus equally on multiple imputation and

the g-formula as possible approaches to handling missing

potential outcomes.

Potential Outcomes

Neyman proposed the potential outcomes model of causal-

ity4 which was subsequently popularized in settings with

time-fixed exposures by Rubin5 and later generalized to

settings with time-varying exposures by Robins.6 Suppose

we have a dichotomous outcome Yi and a dichotomous ex-

posure Xi, for participant i (hereafter we assume data are

independently and identically distributed and suppress par-

ticipant-specific indices i). The potential outcome YX¼ x

(hereafter, Yx) is the outcome that we would observe if we

intervened to set the exposure X equal to x. For dichotom-

ous X (0 or 1), each participant has two potential out-

comes Yx, namely Y0 and Y1.

The potential outcomes are always hidden.21 We can

link potential outcomes to the observed data using the coun-

terfactual consistency theorem1–3,22–24 to assign Yx ¼ Y for

individuals with X ¼ x (here we do not enter into discus-

sions of treatment variation irrelevance, see;1,2 or interfer-

ence, see25). The fundamental problem of causal inference is

that Y0 remains missing for individuals with X ¼ 1 and Y1

remains missing for individuals with X ¼ 0; for this reason,

we cannot in general estimate individual contrasts in poten-

tial outcomes. We can estimate a marginal contrast in po-

tential outcomes, E Y1 � Y0
� �

¼ E Y1
� �

� EðY0Þ, if we can

recover E Yxð Þ for patients with X 6¼ x by assuming that the

expected values of the potential outcomes are independent

of the actual exposure received, or exchangeability:

EðYxÞ ¼ EðYx j XÞ.21,22,26

In a randomized setting, we intervene to set the exposure

X on each participant based on a random process. Because

treatment is assigned randomly, those assigned to X ¼ 0

and those assigned to X ¼ 1 are exchangeable: specifically,
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the potential outcomes are independent of treatment assign-

ment for all individuals and thus E(Y1jX¼ 1) ¼ E(Y1jX¼ 0)

and similarly E(Y0jX¼1) ¼ E(Y0jX¼ 0). Thus, randomiza-

tion allows an unbiased comparison of marginal potential

outcomes. In contrast, in an observational setting, we can

relax the unconditional exchangeability assumption by

assuming exchangeability conditional on a set of observed

confounders, chosen based on background knowledge of the

investigative team.27 The conditional exchangeability condi-

tion can be stated explicitly in terms of potential outcomes:

conditional on observed covariate set Z, exchangeability is

Yx
a

XjZ for all values x.26 Under conditional exchangeabil-

ity, we also require positivity, or a nonzero probability of all

levels of the exposure for all covariate combinations,22,28 al-

though we can relax positivity (e.g. if we allow model

extrapolation).

As noted above, the fundamental problem of causal in-

ference is that, for a dichotomous exposure under the

counterfactual consistency theorem, each participant is

missing at least one potential outcome: that corresponding

to the exposure or treatment not received. For a continu-

ous exposure, each participant has one observed potential

outcome and infinitely many missing potential outcomes.

To make causal inference using a counterfactual frame-

work, we must now find a way to impute the missing po-

tential outcomes either implicitly or explicitly, both of

which require the counterfactual consistency theorem, and

either an assumption of unconditional exchangeability or

of conditional exchangeability with positivity, as detailed

above.

We recognize that epidemiological analyses (for ex-

ample regression adjustment, or a Mantel-Haenszel esti-

mator) that are estimating a causal effect typically impute

the missing potential outcomes implicitly. As well, inverse

probability weighting or standardization can be used to

generate a pseudo-sample in which confounding is absent.

All of these methods estimate unbiased causal effects sub-

ject to the counterfactual consistency theorem and (condi-

tional) exchangeability (and positivity) assumptions.

From the above, it is evident that we may view causal

inference as a missing data problem—specifically, of miss-

ing potential outcomes. Thus, we will examine some as-

sumptions required to handle missing data in the following

section. Then, we describe two approaches that explicitly

impute the potential outcomes.

Missing Data

Discussions of missing data frequently concentrate on three

types of missing data: missing completely at random

(MCAR), missing at random (MAR) and missing not at

random (MNAR; sometimes NMAR13). We have an expos-

ure X, an outcome Y and a vector Z comprising covariates

of interest (e.g. a set of confounders sufficient to ensure con-

ditional exchangeability between the treated and untreated);

let U be a vector of additional covariates (not part of Z). We

define outcome missingness R such that R ¼ 0 denotes a re-

cord which is missing Y, and R ¼ 1 denotes a record which

is not missing Y; we assume that X and Z are fully observed.

Here, data are said to be MCAR if the missingness of Y is in-

dependent of all variables of interest, specifically P(R¼0jU,

Y, X, Z) ¼ P(R¼ 0jU).13,14,29,30 Informally, MCAR data

are those in which the observed data constitute a simple ran-

dom sample from the full data, and thus the only effect of

missing data is to reduce sample size but introduce no bias.

Of course, missingness of Y may depend on some external

factors U, but the fact that U is not of interest in this ana-

lysis is paramount.

MAR data are those in which the missingness of Y de-

pends only on fully observed 13,14,29,30 but not partially

observed or unobserved variables; formally for these data

P(R¼0jU, Y, X, Z) ¼ P(R¼ 0jU, X, Z).13 Finally,

MNAR data are those in which missingness is related to

partially observed or unobserved variables of interest; in

this case, where the missingness of Y depends on the unob-

served values of Y. We denote MNAR formally for these

data as P(R¼ 0jU, Y, X, Z) = P(R¼ 0jU, X, Z).13 In pass-

ing, we note that a complete case analysis is unbiased

under MCAR, but may be biased under either MAR or

MNAR, depending on which variables are incomplete and

how these variables are related to the outcome.31,32

There is a one-to-one relationship between the missing-

ness of the potential outcomes and the exchangeability as-

sumption.22 This relationship is explicit in the formal

statement of exchangeability (again, Yx
a

X; similarly

for conditional exchangeability), but may not be immedi-

ately apparent. The relationship becomes more clear if we

imagine two datasets, one containing only Y0 and

covariates Z and a second containing only Y1 and Z, both

omitting observed outcomes Y and exposures X. In the

first dataset Y0 is partially observed; similarly in the se-

cond dataset Y1 is partially observed. In each dataset, we

can consider whether missingness in the potential out-

comes is: completely at random; at random given Z; or

not at random. If missingness of the potential outcomes is

completely at random in both datasets, this is equivalent

to no confounding; if it is not at random in either dataset,

then this is equivalent to having unmeasured confound-

ing. Otherwise, missing potential outcomes are a combin-

ation of missing completely at random and missing at

random given Z; this is equivalent to no unmeasured

confounding.
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A main assumption of common missing data methods,

MAR, is therefore closely related to the conditional ex-

changeability condition which (framed as ‘no uncontrolled

confounding’) underlies the typical analytical approaches

taken to observational data.Therefore, we should have the

exact same level of confidence that potential outcomes are

missing at random as we have regarding the ‘no uncon-

trolled confounding’ assumption in a typical regression ana-

lysis. With this in mind, we now briefly describe

two analytical approaches to impute potential outcomes,

multiple imputation and the g-formula, reminding the reader

that other approaches are possible and are discussed later.

Multiple Imputation

Multiple imputation was developed by Rubin13,14,30 as a

general method for missing data (specifically, for non-re-

sponse in surveys) which yields asymptotically consistent

estimates of parameters when data are MAR and the im-

putation model is correctly specified. When data are MAR,

the observed data may be thought of as a simple random

sample from the full data conditional on levels of observed

values of variables, but not conditional on unobserved

variables or missing values of observed variables. Multiple

imputation may be used to account for data missing by

chance or by design;33 in the former case, as in this prob-

lem, a model for the mechanism by which the data became

missing must be assumed. We use one imputation

approach (monotone logistic) in the simulation example

below.

Briefly, imputation works by generating a copy of the

full dataset in which the missing values are predicted using

an imputation model. There are a variety of methods used

to generate these predictions. Stuart et al.34 and Schafer35

provide reviews of these methods. Multiple imputation re-

peats this process; we draw m (say 50) sets of complete

data, allowing for variation in the previously missing data.

Then we fit m analysis models and combine the results of

the m models by using standard approaches which account

for both within- and between-imputation variance with

correction for the fact that m is finite. Some implementa-

tions of multiple imputation rely on assumptions of nor-

mality or multivariate normality among variables affected

by missingness.

Here we suggest an algorithm for programming mul-

tiple imputation of potential outcomes19 in a setting of a

dichotomous point treatment X, an outcome Y and a vec-

tor of covariates Z ¼ z to estimate a causal risk difference.

The algorithm is shown in Table 1 (left column).

In the algorithm, note that one must impute Y1 and Y0

separately (steps 3a and 3b) because the original data con-

tain no information about the joint distribution of Y1 and

Y0; thus the data structure precludes the imputation of

both potential outcomes simultaneously. Step 3a also re-

quires assuming a model for the process by which the data

became missing. In addition, note that in these steps, we

Table 1. Proposed algorithms for imputation of potential outcomes using multiple imputation and the g-formula

Multiple imputation The parametric g-formula

1a For each of N observations, defined by {Y¼ y, X¼x, Z¼ z}, create two additional

Variables Y0 and Y1 which are initially set to missing.

The observation is now defined by {Y¼ y, X¼x, Z¼ z, Y0¼ ., Y1¼ }

1b Assuming counterfactual consistency, set Yx ¼ Y. That is,

if X ¼ 0, then set Y 0¼ Y

2 Fit a model (e.g. logistic regression) for the association of

X, Z on Y, resulting in estimated model parameters b

3a Perform m imputations (e.g. in SAS procedure MI) for the

missing values of Y1 based on observed values of Z.

For each observation, use the model (fit in step 1) to predict

expected value of Y1 setting X ¼ 1, and of Y0 setting

X ¼ 0This will result in m complete datasets

3b Impute the missing values of Y0 based on observed values

of Z in each of the m datasets. This keeps total number

of datasets at m

Note that if Y is dichotomous, the expected value is the

same as probability P(Yx¼1)

4a Within each of m complete datasets, do:

4b Calculate the mean of Y0 and Y1 and take the difference (ratio) of the two means for the estimated causal risk difference (ratio)

4c . . . and then combine across imputations by taking a

simple mean (on the log scale for a risk ratio)

5 Bootstrap the process b times to obtain standard errors
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impute only based on Z, because the exchangeability

means exactly that the potential outcome is independent of

the observed exposure given covariates. In Step 4c, note

that we are only estimating a mean, so accounting for be-

tween-imputation variance is unnecessary; and related in

step 5, Rubin’s formula for the variance11 cannot be used

because every observation contributes to both exposed and

unexposed calculations, and therefore we bootstrap. A

closed-form variance estimator is likely possible though

not explored here.

The G-Formula

The nonparametric g-formula is a generalization of direct

standardization to allow for time-varying as well as time-

fixed covariates.6 The parametric g-formula (hereafter, the

g-formula) is a finite-dimension model-based version of the

g-formula which allows for handling higher-dimension

problems, for example continuous data or multiple covari-

ates.7–9 With a time-fixed exposure, the g-formula is

straightforward to describe, again with a dichotomous point

treatment X, an outcome Y and a vector of covariates Z¼ z.

The algorithm for imputation of potential outcomes

with the g-formula is shown in Table 1 (right column).

Comparing the left and right columns of Table 1, it is im-

mediately clear that the g-formula algorithm is similar to

the multiple imputation (MI) algorithm in the left column,

differing only at steps 1b, 2, 4a and 4c. Like multiple im-

putation, the g-formula is asymptotically consistent if po-

tential outcomes are MAR conditional on covariates

included in the model fit in step 2 of the algorithm, and if

parametric model specifications are correct. The large-

sample behaviour of both MI and the g-formula should be

similar in the sense that both are consistent, asymptotically

normal and parametrically efficient.

There are three key differences between the approaches:

first, MI does the imputation m times, rather than once;

this can be seen as increasing the Monte Carlo sample, and

could be done equivalently in the g-formula (by resampling

with replacement from the original data at a larger sample

size). Second, our implementation of MI incorporates

sampling of parameter values prior to imputing missing

data, which is termed ‘proper’ by Rubin;13 see also;36 and

ensures the propagation of uncertainty into estimates of

variance when using Rubin’s formula. The g-formula does

not incorporate sampling of parameter values. In this ex-

ample, however, variance estimates for both MI and the g-

formula are obtained by non-parametric bootstrap, and so

this distinction is less critical. One final difference is that in

the MI case, we use the counterfactual consistency theorem

to set Yx ¼ Y for observed X¼x, and thus only impute

one of (Y1, Y0), whereas in the g-formula we impute both Y1

and Y0. We could take a similar approach in the g-formula,

but this would break from the method of the g-formula and

can be seen as a hybridization of MI and the g-formula.

Example

Here we present an example to illustrate the use of missing

data methods in a causal inference framework, and com-

pare these methods with more traditional approaches. We

illustrate these methods with a simple simulated dataset.

We simulated a dichotomous exposure X, a dichotomous

outcome Y and one dichotomous confounder Z. Marginal

prevalence of X, Y and Z were fixed at 0.20, 0.13 and

0.50, respectively. The relationship between X and Y was

defined using a log-binomial model with an intercept of

5% incidence, a risk ratio of 2 for X and a risk ratio of 3.5

for Z; the association of Z on X was also defined using a

log-binomial model with an intercept of 30% and a risk

ratio of 1/3. One realization of such a dataset including

10 000 participants is shown in Figure 1.

We performed four analyses on these data: (i) a

crude analysis; (ii) an adjusted analysis using a correctly

specified log-binomial regression model; (iii) a multiple im-

putation analysis using default SAS procedures (see algo-

rithm above; here we used a ‘logistic monotone’ imputation

approach, to reflect dichotomous outcomes); and (iv) a

parametric g-formula analysis using a log-binomial model

(see algorithm above). For each analysis, we simulated 5000

datasets of size 1000 individuals each; we report mean coef-

ficient and standard error for each method in Table 2.

Z=1 Outcome Total Risk RR Z=0 Outcome Total Risk RRY=1 Y=0 Y=1 Y=0
X=1 177 323 500 0.354 2.0 X=1 150 1350 1500 0.100 2.0X=0 798 3702 4500 0.177 X=0 175 3325 3500 0.050

Z Outcome Total Risk RRY=1 Y=0
X=1 327 1673 2000 0.164 1.34X=0 973 7027 8000 0.122

Figure 1. Expected realization for 10 000 participants from example data, by stratum of Z and overall.(Color online).

International Journal of Epidemiology, 2015, Vol. 44, No. 5 1735



As expected, the crude estimate of effect is biased (due

to confounding by Z), whereas the adjusted log-binomial

model is unbiased. Multiple imputation (with a monotone

logistic imputation approach) and the parametric g-formula

(using the correct parametric model) both yielded unbiased

results. The standard errors of all methods were similar.

Overall, we demonstrate that imputation of potential out-

comes by MI or the g-formula can estimate the same quan-

tity as a standard approach using regression analysis.

Discussion

All approaches to causal inference implicitly account for

the missing potential outcomes. This accounting is hidden

from casual users of regression analysis but, as we have

demonstrated, the conditional exchangeability assumption

necessary to identify causal effects, also known as the as-

sumption of no uncontrolled confounding, is equivalent to

the assumption that the missing potential outcomes are

MAR given the measured confounders. Here we have dem-

onstrated valid results from regression analyses and also

from two different methods for imputation of potential

outcomes in a simple setting.

As noted above, our chief goal in this work is to propose

an alternative way to think about causal inference and miss-

ing data; that said, the g-formula is of late enjoying wider

use for the purposes of causal inference in observational

data (e.g.37). In either context, it is worth recalling the point

made above that conditional exchangeability is the condi-

tion in which missing potential outcomes are MAR, rather

than MNAR. Reiterating our statement from above: what-

ever our level of confidence about a ‘no uncontrolled con-

founding’ assumption in a regression analysis (for example),

we should have the same level of confidence that the poten-

tial outcomes are missing at random.

In both the multiple imputation and g-formula analyses

above, we estimated standard errors using the bootstrap;

as noted, a closed form approach to variance estimation

accounting for inflated sample size may be possible here.

An alternative approach to imputation in time-fixed data

which may have implications for precision is a hybrid

approach of the two methods: in the g-formula step 3, if

X ¼ 1 then assume Y1 ¼ Y, and only predict the value of

Y0—and vice versa. Related, readers may have noted that

our g-formula approach did not impute potential outcomes

per se, but rather estimated probabilities (expected values)

of these potential outcomes. An additional step could re-

solve these probabilities into outcomes (0s and 1s), but

doing so is unnecessary. Both approaches may have bene-

fits depending on the setting:8,9 for example, imputation of

outcomes rather than probabilities is necessary for the esti-

mation of relative hazards.9

Alternative missing data approaches, such as direct max-

imum likelihood,38 may also be viable approaches to handle

missing potential outcomes. In addition, multiple imput-

ation and the parametric g-formula can be refined to in-

crease their utility. For example, multiple imputation can be

performed by chained equations,39 and the g-formula can be

made more robust to model misspecification through ma-

chine-learning techniques.40 The parametric g-formula can

be used to impute potential outcomes in longitudinal data,9

even in the presence of time-varying confounding, though

other methods may also work well41 in this setting.

Here we have explained and illustrated how missing data

methods can be used in much the same way as traditional

approaches to data analysis, as well as how causal inference

can be viewed as inference under missing (potential out-

come) data. The use of such techniques—though more tech-

nically complex than regression approaches even in point-

exposure settings—often results in the concentration on a

single causal model for a single causal effect of interest, and

thus may help avoid problems such as the misinterpretation

of the regression coefficients for covariates as causal effects

when such interpretations are not justified.42 In all cases,

however, we believe that epidemiologists can benefit from

thinking about their causal inference problems as problems

of missing data, as such perspectives may lend new and clar-

ifying insights to their analyses.
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Table 2. Estimated beta coefficients, exponentiated beta coefficients and standard errors derived from 5000

samples of 1000 individuals sampled from a population with the same characteristics as the sample

population shown in Figure 1 and described in the text

Approach Parametric assumption Average beta Exp (average beta) Average standard error

Crude regression Log-binomial 0.290 1.336 0.1889

Adjusted regression Log-binomial 0.686 1.986 0.1882

Multiple imputation Logistic monotone 0.684 1.982 0.1967

Parametric g-formula Log-binomial 0.686 1.986 0.1882
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