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Spatiotemporal dynamics of 
random stimuli account for trial-
to-trial variability in perceptual 
decision making
Hame Park1,2,*, Jan-Matthis Lueckmann2,3,*, Katharina von Kriegstein4,5, Sebastian Bitzer1,2 & 
Stefan J. Kiebel1,2

Decisions in everyday life are prone to error. Standard models typically assume that errors during 
perceptual decisions are due to noise. However, it is unclear how noise in the sensory input affects the 
decision. Here we show that there are experimental tasks for which one can analyse the exact spatio-
temporal details of a dynamic sensory noise and better understand variability in human perceptual 
decisions. Using a new experimental visual tracking task and a novel Bayesian decision making model, 
we found that the spatio-temporal noise fluctuations in the input of single trials explain a significant 
part of the observed responses. Our results show that modelling the precise internal representations 
of human participants helps predict when perceptual decisions go wrong. Furthermore, by modelling 
precisely the stimuli at the single-trial level, we were able to identify the underlying mechanism of 
perceptual decision making in more detail than standard models.

Perceptual decision making is a core aspect in everyday cognition. In difficult perceptual situations, for instance 
when driving a car through heavy rain and trying to read a traffic sign, perceptual decision making can be error 
prone. Standard models assume that these errors are either due to a high noise level in the sensory input (raindrops 
on the windshield), or to internal brain processes (neuronal noise) or to a mixture of both1–3.

In the laboratory, perceptual decision making is usually investigated by linking the perception of incoming 
sensory information to making a choice among several alternatives4–8, often under time pressure. For example, in 
the widely-used random dot motion task (RDM), participants are required to report the net direction of a cloud 
of moving dots within a certain time frame9. The difficulty of such a decision depends on the amount of noise 
in the stimuli, i.e. the percentage of coherently moving dots in the cloud of dots10,11. The two current standard 
approaches to modelling behavioural data of such perceptual decision making experiments are the drift diffusion 
model (DDM)12,13 and the nonlinear attractor model14,15. These models analyse average measures of the behavioural 
data (e.g. performance expressed as percentage of correct decisions and averages of the reaction times across trials). 
The implicit assumption of these analyses is that behaviour can be understood by the average effect of sensory 
noise on decision making performance12.

What standard models cannot explain however, is how each single decision depends precisely on the specific 
noise pattern in that particular input stimulus. By only looking at the average performance over many trials, one 
cannot tell what caused a particular incorrect decision: In the example above, the raindrops might be in one instance 
covering more informative parts of the traffic sign than in others. Following this intuitive notion, we hypothesized 
that errors in perceptual decisions can be explained better based on the precise pattern of sensory input noise, as 
compared to using the average noise level. Such a finding would mean that one can analyse perceptual decision 
making data in high detail, and thereby enable more precise inference about the underlying mechanisms of deci-
sion making.

1Department of Psychology, Technische Universität Dresden, Dresden, Germany. 2Department of Neurology, Max 
Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany. 3Neural Computation and Behaviour 
Group, Max Planck Institute for Biological Cybernetics, Tübingen, Germany. 4Department of Psychology, Humboldt 
Universität zu Berlin, Berlin, Germany. 5Neural Mechanisms of Human Communication Group, Max Planck Institute 
for Human Cognitive and Brain Sciences, Leipzig, Germany. *These authors contributed equally to this work. 
Correspondence and requests for materials should be addressed to H.P. (email: mail.hamepark@gmail.com)

received: 10 August 2015

accepted: 18 November 2015

Published: 11 January 2016

OPEN

mailto:mail.hamepark@gmail.com


www.nature.com/scientificreports/

2Scientific Reports | 6:18832 | DOI: 10.1038/srep18832

To test this hypothesis, we developed a novel paradigm which enables tracking of the full details of what the 
observer has seen. This is necessary in order to test whether the participant utilizes the exact spatio-temporal 
dynamics of the input. We tested this by comparing a model which is informed about the actual trial-wise 
spatio-temporal noise details of the input stimuli; the exact input model (ExaM), and another model which does 
not include this information but relies, as standard models do, on average information about the stimuli plus noise 
as input. This model is mathematically equivalent to the pure drift-diffusion model (DDM)16, which is a standard 
model for perceptual decision making. We will therefore call this the DDM-equivalent model. Similarly constrained 
models as ExaM have been long developed in mathematical psychology17, and several studies in decision making 
used this technique to model traditional psychology paradigms, e.g.18–20. Here we applied this approach to com-
putational models of perceptual decision making and demonstrate the implications based on systematic analyses.

We expected two key findings. First, the ExaM will be able to explain more precisely and on a single-trial basis, 
how human participants make their perceptual decisions, as compared to the DDM-equivalent model. Second, 
this increase in modelling precision can be used to answer more detailed questions about the underlying mecha-
nism of perceptual decision making. To show this, we addressed the question whether participants use a specific 
mechanism to respond within a specific time window. One standing hypothesis is that participants dynamically 
lower their internal criterion of how much information is needed to commit to a decision by reducing their deci-
sion boundaries21,22. Neurophysiological experiments have found evidence that monkeys do employ this so-called 
collapsing bound model (or, similarly, the urgency signal model)21–23. However, in humans, there is less clear 
evidence presumably because the effect of time-pressure on behavioural data is small24,25. We hypothesized that 
a more precise model, as proposed here, should be able to detect whether human participants are indeed using a 
collapsing bound when making perceptual decisions.

Results
Task and Behavioural Data.  We used a novel behavioural paradigm to investigate perceptual decision mak-
ing. Human participants (n =  24) saw a single white moving dot, randomly jumping around two yellow target dots 
on a black computer screen. The white dot locations were sampled from a Gaussian distribution with its mean on 
one of the two targets with fixed standard deviation. The white dots jumped to a different location on the screen 
every 93.2 ms, for a maximum of 25 jumps, i.e., 2.33 s. Participants were told that the white dot represents a bee. 
The task was to decide whether the bee is coming from the left beehive or the right (the two yellow target dots) 
(Fig. 1a). The task had four difficulty levels, depending on the distance between targets (Fig. 1b). We recorded the 
decision (left/right, or timed-out) and reaction time (RT) for each trial. The participants were told to be as accurate 
and as fast as possible, and were given a monetary reward for overall high accuracy and a small number of timed-
out trials. As expected, for higher difficulty levels, the accuracy decreased and RT increased (Fig. 1c). The mean 
accuracy over participants was between 94.4% (standard error (SE) =  0.33) at the easiest difficulty level (D4) and 
61.0% (SE =  0.71) at the hardest difficulty level (D1). The corresponding mean RTs were 733 ms (SE =  4.6) and 
947 ms (SE =  6.0) (Fig. 1c). The amount of timed-out trials was small (0.2% in total).
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Figure 1.  Experimental design and behavioural data on group level. (a) The fixation cross is shown for a 
duration jittered between 300 and 500 ms, followed by the onset of two target dots (yellow) for 700 ms. After 
that, a single white dot starts to show, so that the participant observes a single white dot relative to two yellow 
targets. The position of the white dot changes every 93 ms. A trial ends when the participant makes a decision 
or when a maximum of 25 dots (~2330 ms) has been shown. The task is to decide fast and accurately around 
which of the targets the dot is moving. (b) Illustration of stimulus shown to participants summarised over 
time: The positions of the two yellow dots (targets) is fixed for one trial. The white dots are superimposed for 
all frames, to depict the variance of the dot trajectory. In the experiment, participants see each dot as a single 
frame, consecutively. The distance between the targets determines the difficulty of a trial, as the dot positions are 
drawn from a Gaussian with the correct target position as mean. (c) Reaction time and accuracy (as percentage 
of correct trials) averaged over all participants for four difficulty levels (D1–D4). Error bars are standard error 
(SE) over all participants, all non-timed-out trials.
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Models.  DDM-equivalent model vs. Exact Input Model.  We used a recently developed Bayesian model16 that 
consists of: (1) stimulus input to the model, (2) generative model(s) of the stimuli, (3) Bayesian inference as 
evidence accumulation and (4) a decision criterion. Depending on how we modelled the input, we obtained two 
different model instances, i.e., the DDM-equivalent model and the ExaM. Both models are exactly the same except 
for the input to each model: In the DDM-equivalent model, we obtained the equivalent to the pure DDM by mod-
elling the input as the constant, correct target position (yellow dot) with random noise16 (Fig. 2a). In the ExaM, 
we used as input the exact white dot positions (the bee locations) plus some noise caused by sensory processing 
(Fig. 2b). This models the time-varying sensory input seen by the participant during each trial. The Bayesian 
modelling technique used here computes after each update of the white dot position what the participant should 
compute as evidence for a decision. This is the so-called posterior beliefs over the two decision alternatives (left/
right) Fig. 2c,d. The decision is made when the posterior belief for one of the alternatives exceeds a bound (for 
details on the models, see Material & Methods).

To estimate the parameters of the two models for each participant, we used an advanced inference scheme called 
Expectation Propagation – Approximate Bayesian Computation (EP-ABC)26. We used seven free parameters that 

Figure 2.  Single trial evidence accumulation and predicted RT distribution for DDM-equivalent model 
and exact input model (ExaM) from the second hardest difficulty level (D2) from participant 20. (a) The 
input to the DDM-equivalent model: the mean of the correct target (black line indicating right target in this 
trial) with Gaussian noise (grey lines). (b) The input to the ExaM: exact dot position added with Gaussian noise. 
Red box indicates dots leading to an early left decision. (c) Posterior beliefs as in accumulated evidence, using 
the parameter estimates for participant 20, D2 under the DDM-equivalent model over 100 iterations. The model 
mostly predicts “right” (red) decisions at early RTs. In the experiment, the participant decided for the “right” 
alternative. The grey background shading is an interval defined by participant RT minus 95% quantile interval 
of the NDT. Black horizontal line is the bound. Here, the process is in the decision time frame (without NDT). 
(d) Same as (c) for ExaM. (e) Corresponding predicted RT distribution for DDM-equivalent model. Asterisk 
is participant response. The grey bar at the end indicates timed-out trials. (f) Same as (e) under ExaM. Green 
vertical lines in (a,b,e,f) indicates stimulus onset.
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are typically used in modelling perceptual decision making12,16. (1) Noise standard deviation (SD): the amount 
of noise in the perceptual process in the brain, (2) the mean and (3) standard deviation of the Gaussian which is 
transformed to the log-normal distribution for the non-decision time (NDT), i.e., the portion of the RT which 
is irrelevant to the decision process (e.g., perceptual encoding, motor preparation) (see Material & Methods),  
(4) The bound: the amount of evidence required to commit to a decision, (5) Prior: the bias of a participant for a 
specific alternative, (6) Lapse probability: the fraction of trials with a random response, and (7) timed-out (TO) 
lapse probability: the fraction of timed-out trials within the lapse trials (for a complete list of parameters, see 
Material & Methods). We estimated the parameters from the behavioural data (reaction time and decision for each 
single trial) for each participant and each difficulty level (for details see Material & Methods).

We found two main differences between parameters fitted by the DDM-equivalent model and the ExaM 
(Table 1): As compared to the DDM-equivalent model, the ExaM has for all difficulty levels (i) significantly lower 
noise parameter estimates (~48 pixels lower over conditions) and (ii) significantly shorter non-decision times  
(~40 ms shorter over conditions) (NDT mode, see Material & Methods). These differences in parameters indicate 
that with the ExaM the variability in the participants’ behavioural data was explained by using less neuronal noise 
and a shorter unspecific decision delay, as compared to the DDM-equivalent model. This means that the ExaM 
is able to explain more variability of the data by the actual decision making mechanism, as opposed to unspecific 
noise and processing delays.

Input Stimuli and Evidence Accumulation.  How is this noise reduction achieved by the ExaM? In Fig. 2a,b the 
sensory input for the DDM-equivalent model and ExaM is shown for an illustrative single trial. For the ExaM, 
the dot jumps around the right target but then (due to the random movement of the dot) jumps to the left side for 
several time points between 400 ms and 900 ms (red box in Fig. 2b).

Figure 2c,d show the evolution of the posterior beliefs for both models. The DDM-equivalent model mostly 
predicts a decision for the right, correct target (Fig. 2c). In contrast, the ExaM gives more specific predictions 
reflecting the dynamics in the actual sensory input over time (Fig. 2d). In this example trial, the participant’s 
(correct) response lies within the RT distribution predicted by the ExaM (Fig. 2e,f, asterisks below histograms). 
Interestingly, the ExaM also predicted that the participant may have responded earlier with the correct response, 
followed by a time period where the incorrect response would have been likely. This dynamic aspect of the ExaM 
predictions makes the model diverge from the predictions of the DDM-equivalent model, which (always) predicts a 
uni-modal RT distribution (Fig. 2e). This enables the ExaM to explain more variability in actual decision behaviour. 
While this is an exemplary single-trial result, this difference between models is the basis for the following results.

Model Comparison.  We used Bayesian Model Selection27–29 and the posterior predictive log-likelihood (PPL) 
to formally compare the ExaM and DDM-equivalent model. Bayesian Model Selection is based on the so-called 
protected exceedance probability and the posterior model probability28,29. We found strong evidence for the ExaM 
compared to the DDM-equivalent model (Fig. 3a): the protected exceedance probability was approximately 1.00 
for all difficulty levels, which means that the belief that the ExaM is more likely than the DDM-equivalent model 
is nearly 100%. The posterior model probability of the ExaM was on average above 90% (Fig. 3b). This means that 
the probability that the ExaM generated any randomly selected participant data is above 90%. These two results 
strongly in favour of the ExaM cannot be explained by different amounts of parameters in the model, because both 
models had exactly the same number of parameters; the only difference was how the input stimuli were modelled. 
The results indicate that using the exact input seen by participants results in a better model than relying on the 
average input assumptions made by the standard model, the DDM.

Parameter

DDM-Equivalent Model Exact Input Model

D1 (hard) D2 D3 D4 (easy) D1 (hard) D2 D3 D4 (easy)

Noise SD 236.70 (22.16) 76.90 (5.78) 70.73 (3.94) 51.29 (4.99) 95.63** (7.31) 58.27* (2.93) 52.10** (2.82) 38.22* (2.57)

NDT mode 563.26 (52.72) 453.31 (43.54) 431.24 (40.67) 430.51 (36.10) 520.73** (47.29) 415.96** (37.83) 382.16** (30.47) 399.35* (33.16)

NDT SD 195.17 (20.38) 121.61 (13.13) 137.60 (16.62) 164.97 (17.95) 201.66 (16.42) 181.27** (12.06) 172.54* (12.17) 167.54 (10.00)

Bound 0.71 (0.01) 0.74 (0.01) 0.83 (0.02) 0.83 (0.02) 0.65** (0.01) 0.77 (0.02) 0.87 (0.02) 0.88 (0.02)

Prior 0.46 (0.01) 0.46 (0.01) 0.46 (0.01) 0.43 (0.02) 0.47* (0.01) 0.47 (0.01) 0.44 (0.01) 0.42 (0.02)

Lapse prob. 0.03 (0.01) 0.03 (0.00) 0.02 (0.00) 0.03 (0.00) 0.02 (0.00) 0.02 (0.00) 0.02 (0.00) 0.02* (0.00)

Lapse (TO) prob. 0.24 (0.02) 0.16 (0.02) 0.18 (0.02) 0.14 (0.01) 0.24 (0.02) 0.17 (0.02) 0.18 (0.02) 0.15 (0.01)

Table 1.   Mean posterior parameter fit for the DDM-equivalent model and exact input model over the four 
difficulty levels for 24 participants. TO =  Timeout, NDT =  Non-decision time, SD =  Standard deviation. NDT 
mode and NDT SDs are reported in milliseconds. Bound and prior are both probabilities (range: 0 to 1). For the 
prior, 0 means complete right bias and 1 complete left bias. Values in parentheses are SE over participants. The 
asterisks indicate differences between DDM-equivalent model and exact input model for specific conditions 
(*p <  0.05, **p <  0.01, paired t-test over 24 subjects). Most notably, both the noise SD and NDT mode were 
higher for the DDM-equivalent model, for each condition. As expected, with increasing difficulty level the 
bound for making decisions decreases. The prior (i.e. a bias for reporting one of the two alternatives) indicates 
that participants slightly favour the right hand target. This is in line with the observed data; participants made 
on average approximately 5% more right decisions (data not shown).
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Next, to compare the two models at the single trial level, we calculated the PPL for each trial and each partic-
ipant. The PPL quantifies how likely a participant’s response is under a given model after fitting the parameters. 
As we have shown the same 800 trials to each participant we can average the trial-specific PPL, over participants. 
Figure 4 shows that a larger number of trials, for each difficulty level, has a higher PPL for the ExaM than for the 
DDM-equivalent model. This is most obvious for the most difficult condition (D1), for which the stimuli display 
the highest levels of random movements. This further substantiates that behavioural responses can be explained 
better if one informs the model about the exact noise pattern of the stimulus.

To further show the difference between the two models, we calculated point-predictions for matches between 
model and participant responses (Fig. 5). We calculated the most probable decision for each trial (see Material & 
Methods) based on the PPLs, and compared the model choice to actual participant choice for both DDM-equivalent 
model and ExaM. Figure 5 shows that for each of the four difficulty levels, the ExaM predicted the participants’ 
decisions better than the DDM-equivalent model. Similarly, the ExaM provides for more accurate RT point esti-
mates (Fig. S1). Again, as with the PPL results, the difference between the two models was more prominent in 
the most difficult conditions. Critically, we also found that the ExaM explained significantly more errors made by 
participants, as compared to the DDM-equivalent model (Table 2).

Decision Making Mechanisms.  Next we tested our hypothesis that the ExaM outperforms the 
DDM-equivalent model in providing evidence for a collapsing bound decision-making mechanism. To do this, 
we modelled and compared, for both models, three different mechanisms that have been suggested for perceptual 
decision making: the standard evidence accumulation employed above, the so-called leaky accumulation30,31, and 
the collapsing bound model21,22,32. For the DDM-equivalent model, the Bayesian Model Selection result showed 
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no evidence for the collapsing bound model; the standard evidence accumulation was the best model across all 
four difficulty levels and there was no evidence for leaky integration either (Fig. 6a,b). In contrast, with the ExaM 
we found a different picture: the collapsing bound model was frequent among the participants (Fig. 6d). This was 
the case for the intermediate difficulty levels. For the easiest and hardest difficulty levels there was strong evidence 
for the standard accumulation (Fig. 6c,d). These results are congruent with the PPL results, where we found for 
the ExaM that the collapsing bound model provides for each condition a closer fit to the behavioural data than 
the standard accumulation model (Fig. 7). Furthermore, for the ExaM there was no evidence of leaky integration 
(Fig. 6c,d).

In Fig. 8a–c, we show the three collapsing bound parameters (see Material & Methods), for both the 
DDM-equivalent model and the ExaM. These three parameters, the initial bound, the stretch (how far the bound 
falls), and shape (how early the bound falls) determine the overall effect of the collapsing bound. These parameters 
and their changes over conditions reveal how the collapsing bound may operate in our experiment: The initial 
bound (Fig. 8a) increases as the conditions get easier from D1 to D4 (Fig. 8b) for both DDM-equivalent model 
and ExaM. This effect is more prominent for the ExaM. For both the DDM-equivalent model and the ExaM, the 
stretch decreases as the conditions get easier. This means the overall effect of the collapsing bound (which also 
depends on the initial bound) is smaller for the easier trials. Again, this effect is more pronounced for the ExaM 
for all difficulty levels except for the easiest condition D1. For the shape parameter, we found that the bound drops 
earlier for the two most difficult conditions than for the two easiest conditions (See Material & Methods). See Fig. 9 
for a visualisation of the fitted collapsing bounds.

Figure 8d shows the absolute amount of collapse for each difficulty level in terms of bound. Importantly, the 
amount of collapse closely resembles both the overall PPL pattern and the model frequency for the ExaM (see 
Fig. 6c,d and 7, number of trials under dotted vertical line). This indicates that both the PPL differences and model 
frequencies indeed capture the amount of collapse expected for different conditions.

Figure 10 shows an example of the evolution of the decision-making process under ExaM, with (Fig. 10b,d,f) 
and without (Fig. 10a,c,e) the collapsing bound from the same trial. Due to the first dot starting on the right side 
(Fig. 10a), early decisions tend to be the right alternative (Fig. 10c,e), with later decisions choosing the correct left 
decisions. However, with the collapsing bound, the initial bound is higher than the standard accumulation, thereby 
delaying the earlier decisions, which makes the erroneous right decision less frequent. This therefore increases 
the probability for the left decision, while reducing the probability for timed-out trials altogether (Fig. 10d,f). 
In other words, the collapsing bound shifts the probability mass from both early and late time points to more 
intermediate RTs.
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Figure 5.  Model comparison using point predictions. For each participant the posterior parameter 
distributions were used to generate predictions of decisions (decision for left or right target). The fraction of 
matched decisions over 800 trials, averaged over the 24 participants, for both DDM-equivalent model and 
exact input model (ExaM) are plotted. Error bars indicate standard error over 24 participants. Matches were 
significantly higher for the exact input model for all conditions (*p <  0.05, **p <  0.01, paired t-test over 24 
subjects). Differences between the two models from D1 to D4 were 16.5%, 5.2%, 1.5%, and 1.4%, respectively. 
Yellow: DDM-equivalent model, green: exact input model.

DDM-Equivalent Model Exact Input Model

participant 
correct

participant 
Incorrect

participant 
correct

participant 
incorrect

model correct 0.76 0.15 0.76 0.08**

model incorrect 0.05 0.04 0.05 0.11**

Table 2.   Model performances on predicting choice. Proportion of correct and incorrect trials for 
DDM-equivalent model and exact input model (ExaM), pooled over all participants, and all conditions. 
The proportion of predicted incorrect trials was larger for the ExaM than for the DDM-equivalent model 
(**p <  0.01, paired t-test between DDM-Equivalent and ExaM over 24 subjects, and 4 conditions).
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Discussion
In the present study, we have shown that modelling the detailed sensory input observed by the participants enables 
predicting response time and choice at the single trial level for a simple visual perceptual decision making task. We 
found that with the detailed sensory input model, a collapsing bound and its shape can be identified, providing 
a deeper understanding of the underlying decision making mechanism in humans. The single trial analysis may 
be especially useful when applied to neural measurements, because the model predicts trial-specific variations 
of internal, decision-related variables. This can be used for investigating the representations of these variables in 
the brain33.

When we compared the exact input model (ExaM) to the DDM-equivalent model, there were three main find-
ings: Firstly, we found that the behavioural data, both choices and reaction times were better explained by the ExaM, 
both at the individual, single-trial level and on average. Secondly, the fitted noise parameter and non-decision 
time were significantly smaller for the ExaM compared to the DDM-equivalent model. This indicates that the 
DDM-equivalent model explained more of the behavioural data by unspecific noise processes, as opposed to 
the ExaM, which attributed more variability of the behavioural data to the actual decision making mechanism. 
Thirdly, the ExaM explained significantly more errors made by the participants than the DDM-equivalent model.

Our findings point towards a re-conceptualization of what constitutes an error: In the ExaM approach, there 
is no such label as correct/incorrect; rather we quantify how well such an apparently erroneous decision can be 
explained given the concrete sensory input seen by the participant (Fig. 2). This probabilistic way of modelling 
binary choices34 in combination with RT histograms may be a better basis for understanding the underlying mech-
anisms of decision making, than analysing average performance rates using only two classes of correct/incorrect 
decisions in conjunction with RT histograms reduced to five quantiles as typically done in standard analyses12,13.

Many experimenters in the perceptual decision making field use the ’random-dot motion (RDM)’ task rather 
than a single-dot tracking task as used here. The RDM task gained popularity after it had been used in perceptual 
decision making experiments with monkeys10,35. The original motivation was to employ a visual stimulus which 
is optimal for activating extrastriate areas, especially the motion-sensitive area MT, for neuronal recording10. In 
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(d) Same format as in (b) but for the ExaM. Error bars are standard deviation over participants. The model 
comparisons between the accumulation mechanisms were performed within the DDM-equivalent (a,b), and 
exact input (c,d) model, respectively.
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the present study, this was not the primary concern, but the aim was to design a stimulus that is most certainly 
perceived by the participant over all time points. This is important because with many dots as in the RDM task 
it is uncertain which dot movements the participants perceived and have used in their internal decision making. 
This uncertainty makes predicting behaviour at a single trial level challenging. By using single-dot stimuli, we 
minimized this uncertainty to showcase a proof of concept that precise modelling of the sensory input is useful 
for addressing specific questions about the underlying decision making mechanism. In our stimulus, the single 
dot location captures all variability whereas in standard RDM stimuli variability is distributed across many dots 
in the display. Thus, it is possible that we only observe a strongly predictable effect of the stimulus (tested with 
the ExaM), because participants attend more to the particular variability present in the single dot stimulus. This 
would also suggest that our paradigm is effective in isolating the mechanisms of decision making by reducing the 
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uncertainty effects of lower level sensory processing, i.e., stimulus feature extraction. Note, however, that there is 
evidence that low-level features of RDM stimuli affect choices. For example, it has been found that the transient 
motion energy content of a RDM stimulus influences choices even in zero coherence trials, especially early in long 
trials36, or when only the moment-to-moment fluctuations not associated with the motion strength nor direction 
is considered37. Further, Bair and Koch38 have shown that the firing of MT neurons is temporally highly consistent 
across repeated presentations of exactly the same RDM stimulus. Because these MT neurons are thought to provide 
the evidence for decision making in RDM tasks4, this finding suggests that the particular, dynamically changing 
features of the RDM stimuli affect perceptual decisions. Indeed, when performing an analysis of the responses 
recorded in an RDM experiment (online database used in11, http://www.neuralsignal.org database nsa2004.1), we 
found that responses to RDM stimuli with “frozen noise”, i.e., with exactly the same sequence of dot movements, 
were markedly less random than responses to RDM stimuli in which the particular dot movements varied across 
trials (see Fig. S2). Stimulus details, therefore, also matter in RDM tasks, but it remains to be shown how much, 
especially, because it is still unclear exactly which spatiotemporal features the brain uses to judge the direction of 
RDM stimuli. In our study, we aimed to show that these results showing the correlation between noise and behav-
iour can be modeled and predicted by accounting for the exact sensory input. Although we did not collect data 
with ‘frozen noise’, we used the exact same stimuli for all 24 participants. In Fig. S3–6, the predicted RTs pooled 
over all participants are shown for all difficulty levels. These figures identify those trials (by the trial-specific PPL 
difference) for which most of the participants chose the incorrect targets. This further supports the notion that 
details in the input stimuli were inducing similar behavior across participants.

A recent auditory decision making study has modelled the precise timing of a sequence of click sounds to better 
resolve specific decision making parameters, as compared to standard analysis procedures34. The authors found that 
the main source of variability was based in the sensory input, and the accumulation was without leak. In addition 

Figure 10.  Single trial evidence accumulation and predicted RT distribution for standard evidence 
accumulation (standard) and collapsing bound (collapsing) for the exact input model (ExaM). A single 
trial from the second hardest difficulty level D2 from participant 2. Format as in Fig. 2. The shaded area in (d) 
indicates the collapsing bound.

http://www.neuralsignal.org


www.nature.com/scientificreports/

1 0Scientific Reports | 6:18832 | DOI: 10.1038/srep18832

to the same single-trial approach in this study, we also analysed reaction times: By only modelling participants’ 
choices, one may be limited in fully resolving the underlying parameters of decision making. In particular, for 
our design, the reaction time of a single trial determines how many dots have been seen by the participant and 
is therefore clearly relevant for modelling the observed choices. Furthermore, one implicit assumption of the 
ExaM is that participants weight single pieces of evidence (here, a single dot shown for 93 ms) by their relevance 
for deciding between the two alternatives39–41. For example, the more a dot’s location is to the left, the higher the 
likelihood for the left target. We were able to show that this weighting of evidence actually holds by finding that 
the ExaM is a better model than the DDM-equivalent model.

Although most theoretical accounts agree on the accumulation of evidence as a general mechanism of percep-
tual decision making4,12,42–44, it is currently unclear whether humans use a collapsing bound to conform to time 
pressures of decision making. In behavioural studies, positive evidence is sparse22,45 and has been established 
using standard DDMs with only few free parameters (two or three). Milosavljevic et al.24 showed that there is no 
advantage of the collapsing bound DDM once the standard (i.e., more complex) DDM12 is considered. In a recent 
study25, the authors conclude from a literature review and additional experiments that evidence accumulation with 
a fixed bound (but not a collapsing bound) is the most favoured model in perceptual decision-making, both in 
humans and in primates. One reason for this finding may be that the measurable effect of the collapsing bound on 
reaction times is rather small. The standard DDM approach is based on a severe reduction of data which aggregates 
the RT data into typically just ten RT quantiles per condition12 and comparing these with the model predictions as 
a measure of fitness. This data-reducing method may not be able to catch the subtle effect of the collapsing bound. 
Here, we have provided evidence that this question can be investigated with an increased modelling resolution by 
using a single-trial analysis.

We found that the ExaM with a collapsing bound better predicted participant behaviour than the other two 
model variants (Fig. 7). In addition, we found trends towards a collapsing bound model using Bayesian model 
selection for the medium difficulty levels (Fig. 6c,d). We only found evidence for a collapsing bound with the ExaM, 
when the exact sensory input entered the analysis.

The collapsing bound has been suggested as a mechanism to cope with the time limit to execute a decision21,46,47. 
Therefore, intuitively, harder trials should benefit more from the collapsing bound. However, our results indicate 
that in the most difficult condition the drop in bound is rather low (Fig. 8d). This may be due to an interaction 
between collapsing bound and the speed-accuracy trade-off chosen by participants across difficulty levels. Figure 8a 
shows that the initial values for the bound decrease as the task becomes more difficult. We also observed this effect 
in the models without collapsing bound (Table 1) where the bound is thought to implement the speed-accuracy 
trade-off chosen by the participant, see also4,48. This finding suggests that participants adapt their bound, i.e., the 
speed-accuracy trade-off, to the difficulty level of a trial which is indicated before the stimulus comes on (in our 
task, yellow dots are shown before white dot, Fig. 1a). Especially, participants may choose low bounds in difficult 
trials to counter small momentary evidences and an otherwise slow accumulation. Since the bound is already low 
at the start of a difficult trial, the effect of a collapsing bound in the hardest condition D1 is limited. In the easiest 
condition D4, the amount of collapse is the lowest (Fig. 8d). This result is fairly intuitive - the participants can make 
fast decisions without having to fear the upcoming end of the trial. If we used a paradigm which does not indicate 
the difficulty level at the beginning, we expect to see a higher initial bound at the most difficult D1 condition, and 
therefore more measureable collapsing bound effect, under the ExaM.

The shape of the collapsing bound (Fig. 9) determines when the bound drops strongest throughout the trial. 
We have found that difficult conditions exhibit an early drop, whereas in easier conditions there is a more gradual 
decrease. Although this does not seem to comply with the intuition that bounds should collapse towards the end 
of the trial, it is consistent with previous findings21,22. Clearly, more research is needed to investigate the causes 
of these particular shapes of collapse. Overall, we suggest that the ExaM is in principle sensitive enough to find 
evidence for a collapsing bound based on experiments, but the actual implementation of a collapsing bound by 
participants may depend on several factors, for example on the precise experimental design, the level of training, 
and instructions to the participants25,49.

In conclusion, modelling random spatiotemporal dynamics in the sensory input provides better fits of partic-
ipant behaviour and enhances the predictive power of perceptual decision making models. Further, the increased 
modelling precision gained through incorporating the spatiotemporal dynamics of input stimuli into the model 
has allowed us to detect subtle effects of different decision making strategies in the behaviour.

In our present study we employed a particularly simple stimulus to maximally control the spatiotemporal infor-
mation available for decision making. The proposed Bayesian account of evidence integration and computation can 
be easily adapted to different, more standard or more natural stimuli as long as there is high certainty about what 
features or parts of the stimulus participants is used to make decisions. For example, for the RDM stimulus motion 
energy36 could be used as spatiotemporal stimulus feature in our model. The described approach thus opens up a 
wide range of new experimental-computational studies with a large variety of stimuli to enable improved insights 
into the underlying mechanism of perceptual decision making.

Material & Methods
Participants.  25 right-handed healthy volunteers participated in the study (mean age 24.8 years; 12 females). 
All had normal or corrected-to-normal vision, and reported no history of neurological or psychiatric diseases. 
Written informed consent was obtained from each participant. The experimental procedure was approved and 
carried out in accordance with the guidelines by the ethics committee of the University of Leipzig. One participant’s 
data were excluded due to the participant not being able to follow the instructions.
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Stimuli and Task.  Visual stimuli were presented using the Presentation®  software (Version 16.5, www.neurobs.
com) on a 1024 ×  768 pixels CRT monitor (refresh rate: 75 Hz). Participants were seated in a chair ~70–80 cm 
from the monitor.

Stimuli were composed of one white moving dot, and two yellow stationary target position dots on a black 
screen (Fig. 1a). Two yellow target position dots were located mirror-symmetrically from the vertical midline of 
the screen. The distance of the two dots from the centre determined the difficulty of the trial (Fig. 1b). There were 
four difficulty levels where the two targets’ horizontal positions had a distance of 55 (easy), 40, 25 and 10 pixels 
(hard) symmetrically from the centre of the screen (corresponding visual angles: 3°, 2.2°, 1.4°, 0.6°, respectively). 
Each target position pair (e.g., −10, 10) was presented simultaneously on the screen.

The white moving dot was presented for 93.2 ms (7 frames) at a specific location (Fig. 1a), and jumped to a new 
position every 93.2 ms. Each position of the white dot was drawn from a Gaussian distribution with a mean equal 
to the target positions (left and right) and a standard deviation of 70 pixels. Each difficulty level had 200 trials (100 
left +  100 right), resulting in a total of 800 trials per participant.

Experimental Setup.  The experiment consisted of three phases: 440 training trials with feedback followed 
by 40 rehearsal trials (without feedback) and finally the main phase with 800 trials (200 trials x 4 blocks, with 
breaks). In order to promote attentiveness and motivation, participants received a bonus for good performance 
(fast and accurate).

Before a trial started, a fixation cross was shown (duration: 300~500 ms). Next, two yellow target dot positions 
appeared for 700 ms, in addition to the fixation cross. Then the fixation cross disappeared (the yellow target position 
dots remained) and the moving white dot appeared (Fig. 1a). The task was to figure out around which target the 
white dot was moving. The stimulus was displayed until the participant reported the decision by pressing one of 
two buttons (left or right) on a 2-key button box, but maximally for 25 jumps of the white dot (≈ 2330 ms). If the 
participant failed to respond during this period, the trial timed-out and the next trial started.

Analysis of Behavioural Data.  All analyses were performed in MATLAB® (version 7 or above, Mathworks, 
MA). The reaction time and response (left, right, timed-out) for each trial were recorded. Importantly, since the 
input stimuli were generated before the experiment, each participant saw the exact same 800 trials of white dot 
movements but in randomized trial order. Therefore, for each participant and trial, the precise visual input was 
available for subsequent analysis using the Bayesian model. The models were fit to the data five times and evidences 
showed little variation across EP-ABC repetitions. The models were fit to the actual response (left, right, timed-out) 
of the participants rather than the correct/incorrectness of the responses. Parameter estimates are shown in Table 1. 
The runs that gave the best fit to the data (largest model evidences) were used for further analyses.

We computed point estimates of choice and RT for each trial and each participant from the predicted response 
distributions. Specifically, in a given trial we chose the alternative (left, right) which was most frequent among 
15000 simulations of that trial from the model with the fitted parameters. Further, we chose the corresponding 
RT as the most frequent time-point for the chosen alternative. Then, we did a simple match test between the real 
behavioural data and model predicted data (Fig. 5). For the RTs, we plotted the observed RTs against the predicted 
RTs as an indicator of a good match (Fig. S1).

Experimental Stimulus.  Input stimuli were generated by drawing dot locations for target i

µ σ( , ) ( )~z N I 1t i
2

Where µi is the location of target i, σ = 70 pixels is a standard deviation and I  is the two-dimensional identity 
matrix. We set µ = ± ,d[ 0]i j

Twhere d j is a distance (in pixels) from the centre of the screen which is positive for 
target 2 (right), negative for target 1 (left) and the magnitude is one of 10, 25, 40 or 55 as determined by the con-
dition (difficulty) of trial j.

Bayesian Response Model.  We recently presented a probabilistic Bayesian model which is equivalent to a 
pure drift diffusion model16. A major advantage of the Bayesian model is that it provides a direct link between 
stimulus and evidence accumulation whereas most other models of perceptual decisions abstract from the stimulus 
and only consider average effects of the stimulus on the evidence at any given point in time. We here exploit this 
property of the Bayesian model and simply deploy the mechanism we used to generate the stimulus for the exper-
iment as generative model in the decision model. The Bayesian response model consists of: 1) input to the model 
(observations), (2) generative model(s) of the stimulus, (3) Bayesian inference as evidence accumulation and 4) 
decision criterion. We call 2–4 the decision model. Its free parameters are bias π pr  and confidence bound λ, as 
described below.

Given the generative models and observed dot positions the decision model accumulates evidence for a target 
using Bayesian inference. Starting from a prior (bias) ( )p T i , the decision model recursively computes the posterior 
beliefs ( )p T Xi t1:  that the observed dot positions were generated from (one of) the two targets:

( | ) =
( | ) ( | )

∑ ( | ) ( | ) ( )
−

= −
p T X p x T p T X

p x T p T X 2
i t

t i i t

j t j j t
1:

1: 1

1
2

1: 1

where X t1:  indicates all observed dot positions up to time point t and for =t 1 the previous posterior belief 
( )−p T Xi t1: 1  is replaced by the prior ( )p T i . We parameterise the prior as the a priori probability that the dots were 

drawn from target 1, i.e., π = ( )p Tpr 1 . The a priori probability of target 2 then also derives from parameter π pr as 

http://www.neurobs.com
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π( ) = −p T 1 pr2 . ( )p x Tt i  represents the generative model within the decision model. The generative models 
define the likelihood of dot positions under the hypothesis that these were generated from the corresponding target 
T i. We assumed that the subjects had acquired a good representation of the possible stimuli after training and, 
consequently, used the same Gaussian distributions from which we created the stimuli as generative models. 
Specifically, we used µ σ( ) = ( , )p x T N It 1 1

2  and µ σ( ) = ( , )p x T N It 2 2
2 .

The computed posterior beliefs ( )p T Xi t1: are the decision variables of the model. Consequently, the model 
makes a decision when either one of them reaches a set bound, i.e., when

λ( ) ≥ ( )p T X ifor any 3i t1:

where λ is a parameter of the model and can directly be interpreted as a level of confidence that a decision maker 
wants to reach before making a decision.

The target i for which the posterior belief reached the bound is the choice of the model. The time t at which the 
bound was reached first is the decision time δt  which is a discrete variable counting the number of observed dot 
locations. As described in the main text, the total reaction time of the model is the decision time plus a variable 
non-decision time tn see, e.g.12,50, i.e.,

= + ( )δrt t t 4m n

We modelled the non-decision time with a log-normal distribution to ensure positive non-decision times, i.e.,

µ σ( , ) ( )~t Nln 5n tn tn
2

where µtn and σtn are again free parameters of the model.
We then transform rtm into a reaction time in millisecond, as recorded in the experiment, by multiplying with 

the time the single dot spent at the same location in the experiment, i.e., = ∗ .RT rt 93 2m m  ms.
In the experiment, responses of subjects were timed out after a fixed deadline. We applied the same rule to the 

responses generated by the model, i.e., if rtm was greater than 25, the trial was timed out. The non-decision time 
(NDT) and non-decision time standard deviation (NDT SD) were calculated as the mode ( )µ σ−e

2
 and standard 

deviation ( ( − ) )σ µ σ+ /e e{ 1 }2 1 22 2
 of the log-normal distribution with the fitted parameters µtn, σtn respectively.

Additional to these evidence-based decisions we allowed for random lapses in the model. We followed previous 
approaches to model lapses22 and randomly selected trials as lapse trials with probability πl  which was a free 
parameter of the model. When a trial was selected as lapse trial, it could either be a timed out trial, or a trial with 
random response. We set a lapse trial to timed out with probability πto (free model parameter). With probability 
π−1 to we then generated a random response by drawing choice and reaction time rtm from a uniform distribution 

( ,~rt U [0 25]m  where ,U [0 25] is the continuous uniform distribution within the range ,[0 25].
In summary, the free parameters of the decision model were the prior probability of choosing target 1 (π pr), 

the bound on the posterior beliefs (λ), µtn and σtn of the non-decision time log-normal distribution, the lapse 
probability (πl) and the probability that a lapse trial is timed out (πto).

Input to the Decision Model.  The Bayesian response model makes decisions based on observations which 
provide evidence for or against an alternative. We considered two kinds of observations reflecting different amounts 
of information about the true stimulus constituting the DDM-equivalent model and the exact input model (ExaM).

The observations containing most information about the stimulus are the dot locations themselves. Since we 
assumed that participants use the full information available on the screen (horizontal and vertical), we provided 
the 2D-coordinates of the moving dot in the ExaM as observations to the model: =x zt t. The DDM-equivalent 
model used minimal information about the time course of the presented stimulus, i.e., it used the fixed location 
of the true target as observations for the model: µ= ( )xt i j  ( ( )i j  indicates the true target i chosen in trial j). This is 
equivalent to how input is treated by previous perceptual decision making models, such as the drift diffusion model.

In both models we added noise to the mean (stimulus driven) observations xt such that the actual observations 
which were input to the decision model were

σ( , ) ( )~x N x I 6t t n
2

where σn is the standard deviation of sensory noise which was fit to data together with the parameters of the deci-
sion model and I  is the two-dimensional identity matrix.

Inference Over Models Given Participant Responses.  We used a second level of Bayesian inference to 
infer model parameters from behavioural data of participants. Standard inference methods require knowledge of 
the likelihood of the model for given data and model parameters. For the Bayesian response model, however, we 
chose a likelihood-free inference method. This approach has the advantage that we can easily modify the model 
without having to derive the potentially very complex likelihood function for the modified model. Yet, inference 
works as for the original model.

Likelihood-free inference methods are also known under the name of “Approximate Bayesian Computation” 
ABC, see51 for a recent review. Computation of likelihood values is skipped in these methods by simulating data 
points from the model and comparing simulated data points to the recorded real data on the basis of a summary sta-
tistic of the complete data set. As data points are simulated using a particular sample of parameter values (a sampled 
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parameter set), ABC then rejects parameter sets incompatible with the data and approximates posterior distribu-
tions of model parameters based on the accepted samples. The main drawback of ABC methods is that inference 
is computationally very demanding, especially, when the statistic summarising the data set is high-dimensional.

Recently, a variant of ABC has been proposed which circumvents the use of summary statistics of the data26. The 
method extends an efficient approximate inference method (expectation propagation: EP) to the likelihood-free 
setting and is called EP-ABC. Instead of comparing whole data sets, EP-ABC compares sampled against measured 
data points individually while speeding up likelihood-free inference by orders of magnitude.

EP-ABC has been applied to a diffusion model26. We here use it for the proposed Bayesian model. A data point 
(response of participant or model) consists of the combination of choice (left, right) and reaction time of a single 
trial. Data points simulated from the model lead to acceptance of the corresponding parameter sample, if the 
simulated choice equals that of the participant for the given trial and the difference between the simulated reaction 
time and that of the participant is smaller than a parameter ε. In all reported analyses we used ε = 46 ms (half as 
long as the dot stays in a location on the screen in the experiment).

EP-ABC cycles through all data points in a data set where in our application each data point corresponds to 
the recorded behaviour of a single trial (choice and reaction time). After reaching a minimum number of accepted 
parameter samples for the given data point (set to 300 in our analyses), it updates the posterior distribution over 
model parameters and moves to the next data point. The updating scheme implements expectation propagation 
(EP)52,53 in which the true, potentially complex posterior distribution is approximated with a product of feasible 
distributions. In our application of EP-ABC each factor of this product represents one data point (trial) and is a 
Gaussian distribution. Updates of the posterior adjust the mean and covariance of one Gaussian factor such that a 
hybrid distribution and the full product of Gaussian factors become maximally similar. The corresponding hybrid 
distribution for one data point is obtained by replacing the Gaussian factor under consideration with the distri-
bution estimated from the accepted parameter samples. Consequently, the main operation in the update of the 
posterior simply consists of estimating the mean and covariance of the accepted parameter values. In our analysis 
we used the implementation of this updating scheme provided by the first author of26 at https://sites.google.com/
site/simonbarthelme/software/abcep_release.zip.

With increasing number of data points the posterior approximated by EP-ABC converges. To ensure conver-
gence we made four passes through all data points of a data set. Additional to the posterior distribution over model 
parameters, EP-ABC also provides an estimate of the model evidence for the used model. The model evidence is 
returned as the log-marginal likelihood of the model given the whole data set.

We performed EP-ABC separately for trials from single conditions of individual participants, i.e., we obtained 
model evidences and parameter posteriors for each experimental condition of each participant. Therefore, EP-ABC 
data sets consisted of 200 trials. We had four different data sets per participant and we computed 24 ×  4 parameter 
posteriors and model evidences per considered model.

Because we performed Bayesian inference over model parameters, we also needed to define parameter priors. 
EP-ABC approximates posterior distributions with Gaussians and, by default, also requires Gaussian priors. For 
simplicity we chose standard normal priors internally within EP-ABC. Because EP-ABC is based on sampling 
parameter values, we could, however, easily include parameter transformations which allowed us to implement 
various constraints for different parameter values leading to non-Gaussian priors for the parameters. In particular, 
we used two types of transformation: 1) exponential-transform and 2) uniform-transform. The 
exponential-transform maps a variable defined on the real line to positive values only: ∈ → ( ) ∈ +R Rx xexp . 
Thus, it transforms the Gaussian prior into a log-normal prior. The uniform-transform maps a normally- 
distributed variable through the cumulative density function of the standard normal distribution: 

( , ) → (Φ( ) + ) , +⁎~ ~x N x r o U o o r0 1 [ ]. Thus, it transforms the Gaussian prior into a uniform prior on an 
interval defined by range rand offset o. We list the resulting priors in Table 3 and the corresponding prior densities 
in Fig. 11.

Model parameter Prior Prior parameters Used by models

σn (noise std) log-N µ σ= , = .4 1 5 all

µtn* N µ σ= . , =1 5 1 all

σtn* log-N µ σ= − . , =1 5 1 all

π pr (prior) uni = , =r o1 0 all

λ (bound) uni = . , = .r o0 5 0 5 all

π l (lapse probability) (cf. Fig. 11) = , =r o1 0 all

πto (time-out lapse probability) uni = , =r o1 0 all

γ (discount rate) uni = , =r o1 0 leaky

α (stretch) uni = , =r o1 0 collapsing

β (shape) log-N µ σ= ( . ), = .log 1 4 1 5 collapsing

Table 3.   Overview of free parameters in the Bayesian response model and its variants together with their 
prior distributions. log-N: log-normal prior with standard parameters µ and σ. uni: uniform prior in interval 
, +o o r[ ]. We chose these priors to cover all plausible parameter values while adhering to basic constraints  

such that standard deviation parameters must be positive and that parameters expressed as probabilities  
range between 0 and 1. For completeness, we show in Fig. 11 the resulting prior densities for each parameter.  
*: parameters of the log-normal distribution for the non-decision time.

https://sites.google.com/site/simonbarthelme/software/abcep_release.zip
https://sites.google.com/site/simonbarthelme/software/abcep_release.zip
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Figure 11.  Prior densities for each parameter in Table 3. Note particularly the ranges of the distributions. 
Largest shown x-values of log-normal densities are the 0.95-quantile of the distribution.

Figure 12.  An example posterior parameter distribution. Each panel is a 2D-slice through the 7-dimensional 
parameter space (standard accumulation).
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The posterior distribution over parameters inferred by EP-ABC for a given data set is a multivariate Gaussian 
distribution. Each dimension of that Gaussian corresponds to one parameter before its transformation. When 
reporting posterior parameter distributions, we report the distributions after transformation as estimated by 
sampling from the Gaussian EP-ABC posterior and transforming the samples according to the given transform 
functions. An example of a complete, sampled posterior distribution is shown in Fig. 12.

To compare models with different inputs and accumulation mechanisms, a random-effect Bayesian model 
selection (RFX-BMS) procedure as described by27–29 was used on model evidences produced by the ABC method. 
Protected exceedance probabilities were calculated with the VBM toolbox, available at: https://sites.google.com/
site/jeandaunizeauswebsite/code/rfx-bms.

Posterior Predictive Likelihoods.  To quantify how good a model fits to participants’ responses, we com-
puted the posterior predictive likelihoods. These quantify how likely a participant’s response is under the model 
after the model has been fit to the participant’s behaviour. Formally, the posterior predictive likelihood for a trial 
iis the probability ( , )p r M Ri  of the response ri given the model M and the responses (choice and RT) of all trials R.

We approximated the posterior predictive likelihood for a trial i by sampling 15000 parameter sets from the 
EP-ABC parameter posterior, transforming the parameter samples to the original parameter space and then sam-
pling a response from the model for each of the 15000 parameter sets. From the 15000 sampled responses we 
estimated the response distribution of the model for trial i. The posterior predictive likelihood is estimated as the 
fraction of sampled responses which are close to the participant response in trial ias determined by the EP-ABC 
distance criterion (matching choice and reaction time difference ε< = 46 ms).

Since the posterior predictive likelihoods reuse the data to evaluate the model after adaptation to the data, they, 
in principle, may be too optimistic, when the model is too flexible and explains the noise in the data, i.e., when 
the model overfits. We have not found indication that the models we used overfit the data. Also, the models which 
only differ by the input (DDM-equivalent and exact input model) are equally complex. Comparisons based on 
the posterior predictive likelihoods, therefore, only reflect how beneficial knowledge of the corresponding input 
is for predicting the response of a participant.

Evidence Accumulation Variants.  We investigated two additional decision models which implemented 
two additional mechanisms previously considered in perceptual decision making: leaky accumulation31,34,54 and 
collapsing bounds21,22,46,47,55. Leaky accumulation departs from the optimal accumulation of evidence as defined 
by the Bayesian decision model by continuously degrading the influence of past evidence on the current beliefs.

We implemented leaky accumulation by using the following instead of Eq. (2):

( ) =
( ) ( )

∑ ( | ) ( | ) ( )

γ

γ
−

= −
p T X

p x T p T X
p x T p T X 7

i t
t i i t

j t j j t
1:

1: 1

1
2

1: 1

The exponent γ of the previous posterior beliefs is an additional free model parameter. Its effect is more clearly 
seen in the space of log-probabilities where we have

γ( ) = ( ) + ( ) − ( )−
⁎p T X p x T p T X Zlog log log log 8i t t i i t1: 1: 1

γ controls how much influence the previous posterior beliefs have on the current beliefs. We also call it the discount 
factor. It varies between 0 (no accumulation) and 1 (perfect accumulation).

Motivated by electrophysiological findings e.g.,21 it has been suggested that decision variables are also influenced 
by ‘urgency signals’ which increase towards the end of a trial and push participants towards a decision independent 
of sensory evidence. Theoretically, an urgency signal is equivalent to a collapsing bound22. A collapsing bound 
captures participant’s willingness to trade accuracy against the chance to make a choice at all in light of an upcoming 
deadline. The overall shape of urgency signals, or collapsing bounds is still unclear. Although intuition dictates that 
bounds should collapse towards the end of a trial, empirical estimates tend to show an early drop in bound21,22. 
We here opted for a functional form for the bound which can represent both cases depending on its parameters:

Figure 13.  Demonstration of parameters of collapsing bound function. Each panel shows trajectories for 
varying values of one of the parameters λ, α and β. When one parameter was varied, the others were fixed at 
value 1.

https://sites.google.com/site/jeandaunizeauswebsite/code/rfx-bms
https://sites.google.com/site/jeandaunizeauswebsite/code/rfx-bms
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This function, describing the time-varying bound, has three parameters. λ is the initial (maximal) bound value. 
α determines how far the bound collapses: for α = 1 the bound collapses completely to the value of 0.5, for α = 0
the bound does not collapse at all and stays at its initial value λ. β determines the shape of the collapse: for 
β< < .0 1 4 (approximately) the bound collapses early, for β > .1 4 the bound collapses late. We demonstrate 

these effects in Fig. 13.
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