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Abstract

The tree-based methodology has been widely applied to identify predictors of health outcomes in 

medical studies. However, the classical tree-based approaches do not pay particular attention to 

treatment assignment and thus do not consider prediction in the context of treatment received. In 

recent years, attention has been shifting from average treatment effects to identifying moderators 

of treatment response, and tree-based approaches to identify subgroups of subjects with enhanced 

treatment responses are emerging. In this study, we extend and present modifications to one of 

these approaches (Zhang et al., 2010 [29]) to efficiently identify subgroups of subjects who 

respond more favorably to one treatment than another based on their baseline characteristics. We 

extend the algorithm by incorporating an automatic pruning step and propose a measure for 

assessment of the predictive performance of the constructed tree. We evaluate the proposed 

method through a simulation study and illustrate the approach using a data set from a clinical trial 

of treatments for alcohol dependence. This simple and efficient statistical tool can be used for 

developing algorithms for clinical decision making and personalized treatment for patients based 

on their characteristics.
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1. INTRODUCTION

The ultimate goal of personalized medicine is selecting and tailoring treatments for specific 

patients so that the best possible outcome can be achieved. With an ever increasing number 

of possible predictors of good response including genetic and other biomarkers, and many 

treatment options, the task of identifying an optimum treatment is daunting. This process is 

further complicated because most clinical trials focus on average treatment effects and 

investigate potential moderators one at a time [16]. For example, the primary analysis of the 

COMBINE Study (the largest clinical trial of treatments for alcohol dependence in the USA 

[1]) found a significant main effect of one of the considered pharmacological treatments 

(naltrexone) but not of the other (acamprosate). To date, however, only individual 

moderators of treatment effects have been considered in COMBINE (e.g. [2]) and 

“unsupervised” learning methods have been applied [3]. As an alternative to this approach, a 

systematic search of the large number of collected data on baseline predictors in order to 

identify subgroups with differential treatment effects would be valuable.

Methods based on recursive partitioning such as Classification and Regression Trees [4, 28] 

provide a tool of simultaneous consideration of a large number of potential predictors and 

identification of combinations of patient characteristics associated with good outcome. 

Classical CART methods focus on predictors of good outcome. We previously used classical 

tree-based approaches to identify predictors of good outcome regardless of treatment in 

COMBINE [12]. For the purposes of personalized medicine, however, identifying for whom 

a particular treatment may be more effective than another treatment is of particular interest. 

This is the goal of recent developments both in tree methods (e.g. [29, 9]) and in approaches 

for individualized treatment rules [25, 30, 14]. The motivation for the current study was to 

develop and apply a modified tree-based approach that would allow us to guide selection of 

the best treatment for a particular individual based on baseline characteristics.

Tree-based methods originated with the development of automatic interaction detection 

(AID) algorithms by Morgan and Sonquist [22], Morgan and Messenger [21] and Kass [15]. 

CART methods were formalized by Breiman and colleagues [4]. Modern developments 

include deterministic and random forests [5, 28] and take full advantage of the 

computational power available today.

Using classical recursive partitioning methods, tree based methods divide the study sample 

recursively into subgroups that are most homogeneous with respect to the outcome and most 

distinct from one another. All predictors and all possible cutoffs for splitting on each 

predictor are considered. Different versions of the algorithm incorporate different statistical 

criteria for splitting the sample and determining the optimal size of the tree.
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Tree-based methods are appealing alternatives to standard linear model techniques when 

assumptions of additivity of the effects of explanatory variables, normality and linearity are 

untenable. Tree-based and forest-based methods are nonparametric, computationally 

intensive algorithms that can be applied to large data sets and are resistant to outliers. They 

allow consideration of a large pool of predictor variables and can discover predictors that 

even experienced investigators may have overlooked. These methods are most useful for 

identification of variable interactions and may be easier to use in clinical settings because 

they require evaluation of simple decision rules rather than mathematical equations [28].

Modifications of decision trees proposed in recent years allow identification of subgroups of 

subjects for whom there are significant differences in effectiveness of treatments and vary in 

the type of outcomes they can be used to predict. The approaches proposed by Zhang et al. 

[29] and Foster et al. [9] focus on binary outcomes, Su et al. [26], Dusseldorp et al. [6] and 

Dusseldorp and Van Mechelen [7] develop interaction tree methods for continuous 

outcomes, and the approaches of Negassa et al. [23] and Loh et al. [19] are appropriate for 

censored continuous outcomes. The SIDES and SIDESscreen approaches [17, 18] can be 

used with either binary or continuous outcomes.

Approaches also vary by whether they focus on identification of treatment-covariate 

interactions or on identification of subgroups of patients with enhanced treatment effect (i.e. 

subgroups for which one treatment is significantly better than a control treatment). 

Treatment-covariate interactions can be restricted to be qualitative (i.e. in different 

subgroups different treatments are more beneficial or there may be subgroups where the two 

treatments are approximately equivalent, [7]) or unrestricted (i.e. both quantitative and 

qualitative interactions can be identified, e.g. [27]). Approaches that identify subgroups with 

enhanced treatment effect can build complete trees (e.g. [9]) and thus completely partition 

the sample space, or can focus on identification of subgroups for whom the treatment effect 

is most significant (e.g. [17, 18]) and hence provide only a partial partition of the sample 

space.

Most of the proposed approaches rely on modifying the splitting criterion to build trees for 

identification of moderator effects, however some (e.g. the Virtual Twin method of Foster et 

al. [9]) use a modified outcome variable. The Virtual Twin method relies on classical tree-

building and pruning methods but uses the estimated causal treatment effect (i.e. the 

estimated difference between the outcome on the actual and counterfactual treatment for 

each subject) as the dependent variable.

In this manuscript, we chose to focus on the approach of Zhang et al. [29] because it 

provides clear tree structures on the original outcome, can handle different types of 

predictors (binary, nominal, ordered categorical, continuous) and can be easily automated. 

This method uses a modified splitting criterion based on comparing the difference in 

treatment effectiveness for subjects in a particular node of the tree to the corresponding 

differences in the potential daughter nodes. The original publication of this method [29] was 

not targeted to a statistical audience so herein we explain the method in more detail. Also, in 

the originally proposed method, pruning is done manually so that daughter nodes that favor 

the same treatment are combined. Herein, we extend the approach to incorporate an 
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automatic pruning step and propose a measure of the algorithm’s predictive performance. 

We evaluate the algorithm and the performance measure via a simulation study and apply 

the methods to the data from the COMBINE Study. We also compare our method to the 

Virtual Twin approach of Foster et al. [9] in terms of final trees produced, classification 

accuracy and expected reward. R code for fitting the models is available from the authors.

2. METHODS

2.1 Notation

Consider a study with the following data design: (Yi, Ti, Xi), i = 1, …, N, where i denotes the 

subject, Yi denotes a binary outcome of interest for subject i, Ti denotes treatment 

assignment for subject i (either treatment A or B), and Xi = (Xi1, …, Xip) denotes a vector of 

potential categorical or continuous predictors for subject i.

A binary tree structure is shown in Figure 1a and will be used for illustration. The tree is 

composed of a root node (Node 1), internal nodes denoted by ovals, and terminal nodes 

denoted by rectangles. The root node contains all the observations in the sample. Each 

internal node has two offspring (daughter) nodes. Terminal nodes do not have offspring 

nodes. For a tree with k layers, there are at most 2k−1 terminal nodes.

Tree building proceeds in two steps: tree growing and tree pruning. An initial large tree is 

built recursively starting with the root node. For each internal node of the tree, the best 

splitting variable and cutoff on this variable is selected according to a statistical criterion 

based on differential treatment effectiveness as described below. The initial large tree is 

built by making all possible splits according to the splitting criterion within the limits 

imposed by the stopping criterion. Tree pruning is then performed from the bottom-up so 

that sibling nodes with similar treatment effects are combined.

2.2 Building an initial large tree

To build an initial large tree, we start with the root node of the tree containing the entire 

sample of subjects. The number of subjects and the response rates on each treatment (A on 

the left, B on the right) are shown in the top and bottom part of the root node respectively. In 

the root node in Figure 1a there are 500 subjects on treatment A and 500 on treatment B and 

the proportions of subjects with good outcome on both treatments are 0.5. We seek to split 

the sample in two parts with most differing treatment effects. To do this we calculate the 

squared difference in the response rates on the two treatments in the node (t) that we are 

seeking to split:

and compare it to the weighted sum of the corresponding difference measure of the two 

potential daughter nodes ts, s = L, R, respectively:
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Here tL and tR denote left and right daughter nodes, while nL and nR are the number of 

subjects in the left and right daughter nodes, respectively.

We split only when the offspring nodes provide a larger difference between the effects of the 

two treatments compared to their parent node, that is, when

(1)

To decide which variable to split on and what cutoff to select, we consider all predictor 

variables and all possible splits on these variables. For continuous predictor variables with k 

distinct levels or ordinal predictor variables with k levels, there are k − 1 possible cutoffs 

that need to be considered for splitting. For binary predictors, there is only one possible 

split. Nominal categorical variables with k levels require consideration of all 2k−1 − 1 

possible splits so that any grouping of categories per daughter node can be considered. We 

select the variable and the cutoff with the largest DIFF(tL, tR) value and split the sample on 

this variable and cutoff.

In Figure 1a, X1 is selected as the best splitting variable of the root node and 0.5 is selected 

as the best splitting point so that subjects with values less than or equal to the cutoff (350 on 

each treatment) are placed in the left daughter node and the rest of the subjects (150 on each 

treatment) are placed in the right daughter node of the root node. While in classical trees the 

splitting criterion is focused on separating the sample so that subjects in the two daughter 

nodes differ the most in the proportions with good outcome, in the modified approach, we 

focus on treatment assignments to identify subgroups of patients who respond more 

favorably to one treatment than to another. In Figure 1a, a larger proportion of subjects in 

the left daughter node who receive treatment A have a good outcome compared to subjects 

who receive treatment B (64% vs. 36%) while the opposite is true in the right daughter node 

(17% vs. 83%).

After dividing the root node, we proceed recursively by trying to divide each daughter node 

according to the criterion in (1) until no further splits are possible or a stopping criterion is 

satisfied. The stopping criterion involves limiting the total number of subjects in each node 

or the minimum number of subjects per treatment within a node. For example, one might set 

the minimum number of subjects in the node to be 50, or to have at least 25 subjects in a 

node on each treatment. The criterion and number of subjects need to be pre-set before 

growing the tree. We recommend at least 30 subjects per treatment within each node so that 

the results are more likely to validate internally and/or externally. It is also possible to limit 

the number of layers in the tree so that overly complicated combinations of variables can be 

avoided.
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2.3 Pruning the tree

Zhang et al. [29] proposed a manual pruning approach so that any pair of terminal offspring 

nodes is merged if the same treatment is identified as more beneficial in both nodes. In this 

manuscript, we propose a new automatic pruning approach based on comparing the odds 

ratios for the association between treatments and outcome in sibling nodes. Let ORs, s = L, 

R, denote the odds ratio obtained from the left or right daughter node and let  be the 

number of subjects assigned to each treatment (k = 1 for treatment A, and k = 2 for B) in a 

daughter node s, who don’t have and have the desired outcome (Yi = 1), respectively. For 

each set of paired nodes (tL, tR), one can compute the odds ratios for the association between 

treatment and outcome based on the two by two contingency tables as shown in Table 1. A 

constant (e.g. 0.5) can be added to the cell counts in order to avoid problems with zero 

counts and to improve performance for small counts as necessary.

Let δs = eθs − 1, where θs = log ORs, s = L, R. We consider the following scenarios:

1. The odds ratios of the considered sibling nodes are significantly different from 1 

and in the same direction. That is, ORL and ORR are either both larger than 1 or 

both smaller than 1, which implies that δLδR > 0.

2. The odds ratios of the considered sibling nodes are significantly different from 1 

and in different directions. In this case, either ORL > 1 and ORR < 1, or ORL < 1 

and ORR > 1, so that δLδR < 0.

3. The odds ratios of the considered sibling nodes are both not significantly different 

from 1 and are either in different directions or in the same direction, or at least one 

of the odds ratios is not significantly different from 1. In this case, δLδR ≈ 0.

To decide whether the set of terminal nodes should be pruned, we formulate the following 

hypothesis test:

Then by the delta method, the test statistic has the form of

where , s = L, R, and

The proof provided in Appendix A shows that the test statistic Z asymptotically follows a 

standard normal distribution. Thus, the decision rule developed for pruning is to prune if Z ≥ 
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−Zα, where Zα is the 100 × (1 − α)% percentile of a standard normal distribution. That is, 

the sibling terminal nodes are pruned if we do not reject the null hypothesis: Z ≥ −Zα and are 

not pruned if we reject the null hypothesis in favor of the alternative. By choosing a lower α 

level (e.g. ≤ 0.05) more parsimonious trees that are more likely to be replicated will be 

favored. A higher α level (e.g. > 0.05) will favor larger trees with more splits.

2.4 Tree performance evaluation

In order to use a constructed tree as a tool for guiding treatment decisions, the performance 

of the tree should be validated on an independent sample if available, and if not, it should be 

validated on the existing sample. Herein, we propose a measure of predictive performance of 

a particular tree based on weighted differences in the proportions of subjects with good 

outcome on the two treatments in the terminal nodes of the tree. We first estimate the 

magnitude of the discrimination between treatments on the sample on which the final tree 

was built by computing the measure U described below. This measure can be interpreted as 

the estimated difference in probabilities of good outcome on the better treatment in each 

terminal node compared to the worse treatment in each terminal node. Thus, it is somewhat 

similar to the expected value/reward measure of an individualized treatment rule E(A) [25, 

30], which in our context is the empirical average of the proportions of subjects with good 

outcome among those who were assigned to the better treatment in each terminal node. In 

this special case, the expected value/reward is simply a measure of how good the outcome 

could be if everybody got the treatment that the built tree predicts to be their better 

treatment. In contrast, our proposed measure shows how much better the outcome could be 

if we chose the better treatment compared to the worse treatment for each subject based on 

the built tree. However, calculating either measure on the sample used to build the tree is of 

limited value as we are ultimately interested in how the tree will perform on an independent 

sample. Thus using a similar formula based on the better and worse treatments in the 

original sample, we propose a new corresponding measure (U*) to be used with the 

independent validation sample. When an external independent sample is not available, we 

can use counterfactual datasets (as in Foster et al. [9]) based on the original sample as 

described below and calculate U* for these datasets. The proposed procedure is as follows:

i. Calculate the U measure based on the final tree applied to the original sample.

Let the tree have m terminal nodes with nk subjects in terminal node k, and let pk,Tk, 

k = 1, …, m, denote the response rate for individuals in terminal node k on 

treatment Tk, where Tk = A or B. If N is the total sample size, U is defined as 

follows:

The larger the differences in proportions of subjects with good outcome between 

the two treatments in the terminal nodes in either direction, the higher the value of 

this measure. The value of 1 can be achieved only when there is complete 

separation of outcomes in the terminal node (that is, all subjects on A have one 

outcome and all subjects on B have the other outcome in all of the terminal nodes). 
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The value of 0 can be achieved only with a degenerate tree consisting only of a root 

node where the proportion of subjects with good outcome on A and B is exactly the 

same. Note that U simply shows how much separation there is between the 

outcomes of the subjects on the two alternative treatments in the terminal nodes of 

the tree. Larger values are achieved when there are large treatment-by-covariate 

interactions and the algorithm successfully identifies these interactions. An 

equivalent way of expressing U is as follows:

where

The relationship between the proposed measure U and the expected value/reward 

measure E(A) of our algorithm is clearer when we write E(A) in the following way:

where all the notation is as above except that nk,A and nk,B are the corresponding 

sample sizes on treatments A and B in the kth terminal node respectively. E(A) is an 

empirical average of the outcome for subjects who are on the better treatment in 

each terminal node and thus tells us how well we can do in terms of outcome if 

subjects are assigned to the better treatment.

We now proceed to calculating the corresponding measures on the validation 

sample.

ii. Calculate the U* measure based on the same tree as in (i) but on another sample. 

The other sample can be an independent external validation sample, if available, or 

a generated sample with estimated counterfactual outcomes based on the original 

dataset.

The formula for calculation of U* is as follows:

where  is the sample size in terminal node k in the new sample (external or 

counterfactual), N* is the total sample size in the new sample and , k = 1, …, m 

are the response rates for individuals in terminal node k on treatment  in the new 

sample. Ik is based on the original sample. This introduces a penalty when in a 
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terminal node the better treatment in the original sample happens to be worse in the 

validation sample. Thus the measure U* is not restricted to be between 0 and 1. It 

can be less than 0 if in the new sample the terminal nodes favor different treatments 

than in the original sample. For example, if in the original sample pk,A > pk,B, but in 

the new sample , then the corresponding term for this terminal node in 

the sum for U* is going to be negative. If this happens for a sufficient number of 

terminal nodes in the new sample, then the entire U* may be negative. Intuitively, 

U* is a weighted average across terminal nodes of differences in proportions of 

subjects with good outcome on the better treatment and with good outcome on the 

worse treatment, where better and worse treatments are defined based on the 

original sample.

The expected value/reward can also be calculated on the new sample (we will 

denote this as E(A)* to distinguish from E(A)), but as for U* we will base this 

calculation on the better treatment in the original sample and not in the validation 

sample. The formula for E(A)* is then:

In contrast to U*, E(A)* is an empirical average of the outcome for subjects who are 

on the better treatment (according to the original sample) in each terminal node and 

thus tells us how well we can do in terms of outcome if subjects are assigned to the 

better treatment. E(A)* does not tell us how much better the better outcome is 

compared to the worse outcome and thus is more a measure of absolute rather than 

comparative effect. The magnitude of U* can be evaluated in the context of 

difference in probabilities, while E(A)* can be evaluated as an absolute probability.

When the new sample on which we desire to calculate U* or E(A)* is an 

independent external data set (or a left-over sample of the original data set), the 

calculations are straightforward. However, when no such data set is available, we 

can generate a sample of counterfactual outcomes for the subjects in the original 

data set following the idea of Foster et al. [9] based on random forests and then 

calculate U* and E(A)* as follows:

Step 1: We fit a general random forest algorithm for prediction of outcome with 

all possible covariates and treatment to the original data set. We follow the 

recommendation of Foster et al. [9] to include interactions between the treatment 

and all covariates, and between the alternative treatment and all covariates as 

potential predictors for all subjects. This has been empirically shown to improve 

prediction slightly.

Step 2: We generate a counterfactual treatment assignment for each subject i by 

changing the treatment assignment for this subject from the one received to the 

alternative (counterfactual) treatment. That is, we switch the treatment 

assignment to B if subject i actually received A, and vice versa.
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Step 3: We obtain the predicted probabilities for the counterfactual treatment 

using the result from the random forest algorithm from Step 1, simulate a new set 

of binary outcomes from Bernoulli distributions , and combine them with the 

predictor variables to generate a new independent sample, i.e., ( , Xi), i = 

1, …, n.

The U* and E(A)* measures are calculated for the sample of counterfactual 

outcomes as one would for an external data set. Higher values for U* indicate that 

subjects have substantially better outcome on the better treatment identified in the 

original sample for them than on the worse treatment. Higher values of E(A)* 

indicate how good the outcome would be if subjects were placed on their predicted 

better treatment identified from the tree built on the original sample. The magnitude 

of these measures depends strongly on the signal-to-noise ratio in the data. We 

study the performance of the measures via simulations. To improve the robustness 

of U* and E(A)*, multiple counterfactual data sets are generated and the average 

and standard deviation for each of these two measures are calculated. Since U* is a 

weighted average of differences in proportions, we can interpret its magnitude as an 

effect size for a difference in proportions. Value of U* that are .5 or higher 

correspond to very large separation of treatments, values between .2 and .5 

correspond to more modest separation of treatments in terms of outcome, lower 

values that are still positive may be considered of interest in scenarios where even a 

small improvement in probability of outcome is of interest while negative values 

show poor predictive ability of the tree on the external validation sample or the 

counterfactual outcomes sample.

3. SIMULATION STUDY

In this section, we examine how the proposed algorithm performs depending on the strength 

of treatment-covariate interactions and the level of noise in a data set. We consider two 

scenarios: one tree structure with sizeable treatment-covariate interactions (e.g. sizeable 

treatment effects in different directions in different subgroups of the sample) and the same 

tree structure but with small treatment-covariate interactions. Figures 1a and 1b present 

these two scenarios. The trees in these figures are what we call the “true” tree designs. For 

each of the two scenarios, a sample of 1,000 subjects is generated according to the tree 

structure in the two figures. That is, there is a binary outcome variable, a binary treatment 

indicator variable, and three different covariates related to treatment effects, including one 

continuous variable (denoted by X1), one binary variable (denoted by X2), and one variable 

with five categories (denoted by X3). The rates of the outcomes on the different treatments 

for the subgroups identified by combinations of predictor levels are as indicated in the nodes 

of the trees.

We then consider 3 settings for each of these two scenarios called Design 1, 2 and 3 that 

vary in the proportion of noise variables included among the predictors, where a noise 

variable is one that does not associate with differential treatment response (see Online 

Supplement (http://www.intlpress.com/SII/p/2016/9-2/SII-9-2-TSAI-supplement.pdf) for a 

detailed description of the data generation method). In Design 1 there are no noise variables 
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in the data set, that is, we construct and evaluate a tree based only on the variables that 

moderate treatment effects according to the tree structures in the figures. Design 2 has 21 

noise variables, including 10 continuous variables, 10 binary variables, and one nominal 

variable with 3 levels. We call this setting the design with some noise variables. The noise 

variables are generated randomly so that they are not associated with the outcome, and are 

added to the Design 1 data set. A tree is then constructed and evaluated when both the “true” 

splitting variables and the noise variables are in the data set. Design 3 has 100 noise 

variables among which there are 75 continuous variables, 15 binary variables, and 10 

nominal variables (4 nominal variables are with 3 levels, 3 are with 4 levels, and 3 are with 

5 levels). This is called the design with many noise variables. As in Design 2, the noise 

variables are generated randomly so that they are not associated with the outcome and are 

added to the Design 1 data set. A tree is then constructed and evaluated when both the “true” 

variables and the noise variables are in the data set. The word “true” is in quotes because 

especially in scenarios with many noise variables, it is possible that a different set of 

variables might produce similar or even better classification of individuals in terminal nodes 

in terms of differential treatment effects. The evaluation of each constructed tree is based on 

1,000 samples with counterfactual outcomes.

We also considered a scenario that did not have a tree structure. Data in this case were 

generated according to the following logistic regression model with main effects only (see 

Online Supplement for details): logit P(Yi = 1) = −1 + 0.3I(Ti = B) + 0.5X1i + 0.5I(X3i ≥ 3) + 

0.5X2i, where I denotes the indicator function.

Table 2 shows the means and the standard deviations of U* based on the samples with 

counterfactual outcomes. Since the U* measure is specific to our approach while the E(A) 

measure can be calculated for any algorithm we compare the performance of our approach 

to the performance of the Virtual Twin approach of Foster et al. [9] in terms of E(A) on the 

original sample and mean (standard deviation) of the E(A)* measures on the samples with 

counterfactual outcomes. We also compare methods based on classification error since in the 

simulation study we do know what the true best treatment for each individual is and we can 

see whether the recommended treatment by each algorithm corresponds to the best 

treatment. We consider different alpha levels (0.05 and 0.20) for pruning.

In the scenario with sizeable treatment effects (Figure 1a), the trees constructed based on the 

proposed algorithm under the restriction of no fewer than 30 subjects per treatment per node 

are almost identical under all noise scenarios to the original “true” tree and do not depend on 

the chosen alpha level (0.05 or 0.20). In particular, the tree constructed under Design 3 (with 

many noise variables) is shown in Figure 2a. The only difference between this tree and the 

“true” tree is a slight difference in the exact cutoff for the continuous variable. This 

demonstrates that the algorithm is able to identify the correct tree structure under different 

levels of noise in the data set accurately when there are sizeable treatment-covariate 

interactions. The U measure for the constructed trees is fairly large (U = 0.65) which can be 

interpreted as an absolute difference in probabilities on the better and worse treatment of 

0.65. This indicates that the sample is separated into subgroups with decidedly different 

treatment effects. Also, the expected value/reward of all trees is high (E(A) = 0.85) which 

suggests that the good outcome can be achieved about 85% of the time if subjects are placed 
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on the better treatment as indicated by the terminal node to which they belong. The approach 

of Foster gives very similar results although for Design 3 the tree (not shown) is a little 

larger than the true tree. Almost no subjects are misclassified in terms of their best treatment 

in both approaches in this scenario (classification error < 1% in all cases). However since 

both U and E(A) are calculated on the same sample on which the trees are developed, they 

are potentially optimistic. When the measures are calculated on the 1,000 samples of 

counterfactual outcomes unsurprisingly the U* measures decrease on average for the 

constructed trees as the level of noise in the data set increases (i.e. Mean(U*) is the highest 

for Design 1 and the lowest for Design 3). Also, the variability of the U* measures increases 

as the level of noise increases as evidenced by the change in SD(U*). The expected value/

reward measures E(A)* are also high in this scenario (from 0.79 to 0.67) for both approaches 

and decrease as the noise in the data increases.

In contrast to the scenario with sizeable treatment-covariate interactions, in the scenario with 

small treatment-covariate interactions (Figure 1b), the trees constructed based on the 

proposed algorithm under the node size restriction as above (i.e. no fewer than 30 subjects 

per treatment per node) are different from the “true” tree. If an α level of 0.05 is used, all 

branches of the trees are pruned. Using an alpha of 0.20 results in trees with several splits. 

We show the constructed tree under the design with no noise variables (Design 1) in Figure 

2b. We notice that even in this simple case, the constructed tree is larger and more difficult 

to interpret, the selected cutoffs for the continuous and ordinal variables are different, more 

than one split occurs on the continuous variable and the order of splitting in the constructed 

tree is different from the order in the “true” tree. However, the samples of subjects in the 

terminal nodes favoring one treatment overlap significantly with the corresponding samples 

of subjects in the terminal nodes favoring the same treatment of the “true” tree. In the 

designs with noise variables the constructed trees are even larger and very different from the 

“true” tree (not shown). All trees constructed using Foster’s approach are also with a 

different structure than the “true” tree. In both approaches, when noise variables are present, 

the true splitting variables are not generally picked as splitting variables but rather other 

continuous predictors are chosen as splitters.

Interestingly, the U measures increase as the level of noise in the data set increases (U = 

0.13 in Design 1, U = 0.24 in Design 2 and U = 0.30 in Design 3). This is because when the 

effect sizes are small, combinations of noise variables may be associated with better 

prediction than the variables in the “true” tree by chance in the sample on which the tree is 

built. The expected value/reward values show a similar trend but classification error rates 

also increase. However, in these cases the U* measures are quite small (i.e. for the 

constructed trees in Designs 2 and 3, the average U* values are 0 and −0.02 respectively 

with standard deviations of 0.03) and suggest that outcomes do not vary significantly if 

subjects are assigned to the better treatment compared to the worse treatment for the 

terminal node to which they belong. The expected value/reward measures E(A)* in the 

counterfactual samples of both approaches are lower than in the sizeable treatment-covariate 

interactions scenario and decrease with increasing noise as expected.

In the scenario with no underlying tree structure, with α = 0.05, our approach correctly 

pruned all branches of the tree when there were no noise variables but split several times 
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when there were noise variables. In contrast, Foster’s approach resulted in the root-only tree 

when there were many noise variables (Design 3) but not in the other two designs. Expected 

value/reward measures and classification errors were similar in the two approaches.

The simulations suggest that when there are sizeable treatment-covariate interactions, the 

“true” tree structure can be recovered and U* measures are reasonably large. In contrast, 

when there are only small or no treatment-covariate interactions, the constructed trees reflect 

the noise in the data and values of U* hover around 0. Classification errors are quite sizeable 

in all scenarios except when there are sizeable treatment-covariate interactions. Expected 

value/reward measures do not provide much information regarding how well treatment 

effects are distinguished by the trees. They simply show how good the outcome is on the 

better treatment identified by the trees. For data sets with underlying tree structures, our 

approach has comparable performance to Foster’s Virtual Twin approach.

4. THE COMBINE STUDY: A CLINICAL TRIAL IN ALCOHOL DEPENDENCE

In this section, we use the proposed approach to identify subgroups with differential 

treatment effects to naltrexone and acamprosate on abstinence from heavy drinking during 

the last eight weeks of treatment in the COMBINE Study [1]. The study sample consisted of 

1,383 abstinent alcohol dependent patients across 11 sites and the primary goal was to assess 

the main and interactive effects of the two pharmacological treatments (naltrexone and 

acamprosate) and behavioral therapy (the Combined Behavioral Intervention – CBI) on 

drinking measures assessed during the 16-week double-blind phase of the study. The 

primary analyses revealed a significant effect of naltrexone but not of acamprosate. 

However, acamprosate is an approved treatment for alcohol dependence and has been 

previously found to be especially effective among those who are committed to abstinence 

[20]. Hence, it is likely that there are subgroups of subjects for whom one treatment is more 

effective than the other and vice versa.

The design of the COMBINE Study was a 2 × 2 × 2 factorial. However, in the current 

manuscript we compare the two active treatment conditions of acamprosate and naltrexone. 

To do so, we focus only on subjects who received naltrexone but not acamprosate and those 

who received acamprosate but not naltrexone. Both medication groups include those who 

did and did not receive CBI. We also selected the outcome measure of no heavy drinking 

during the last 8 weeks of double-blind treatment because measures of heavy drinking after 

a grace period have been recommended as the best outcome in clinical trials of alcohol 

dependence [8]. The purpose of our study was to identify subgroups of patients with alcohol 

dependence who benefit more from acamprosate than from naltrexone and those who benefit 

more from naltrexone than from acamprosate. There were 611 subjects in our data set.We 

randomly divided this sample in 2:1 ratio into a training sample and a validation sample. 

The training sample consisted of 408 alcohol dependent patients while the validation sample 

consisted of 203 individuals. We considered 77 continuous, 11 binary, and 8 categorical 

predictors with more than 2 levels, including demographics and measures of baseline 

alcohol consumption, alcohol severity, prior alcohol treatment, drinking goal, family history, 

craving, smoking, alcohol abstinence self-efficacy, quality of life, general health, mood, 
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perceived stress, legal problems and laboratory biomarkers. A description of these measures 

is provided in [12].

We used the proposed tree construction approach, limited the number of subjects in each 

node on each treatment to 30 or more and used an alpha level of 0.20 for pruning. The 

constructed tree is displayed in Figure 3a. There are two subgroups of subjects who seem to 

benefit more from acamprosate than from naltrexone: those with high Blood Alcohol 

Concentration (BAC) peak {BAC peak > 0.4664} and among those with lower BAC peak, 

those with lower systolic blood pressure (BP) and who have 5 or fewer Consecutive Days of 

Abstinence (CDA) prior to treatment {BAC peak ≤ 0.4664, BP ≤ 135, CDA ≤ 5}. On the 

other hand, we find two subgroups of subjects who appear to benefit more from naltrexone: 

subjects with higher systolic blood pressure and low BAC peak {BAC peak ≤ 0.4664, BP > 

135} and subjects with longer pre-treatment abstinence who have lower BAC peak and 

lower systolic blood pressure {BAC peak ≤ 0.4664, BP ≤ 135, CDA > 5}. The U measure of 

the constructed tree in Figure 3a is 0.27 suggesting that treatment-covariate interactions 

effect sizes are small. The U* measure in the validation data set is 0.10 which indicates a 

small difference in outcome between the two treatments. Figure 3b shows that in the 

validation data set all but one of the terminal nodes (node 5, patients with lower BAC and 

higher BP) favor the same treatments as the corresponding terminal nodes in the training 

sample (Figure 3a). However, the mean value and the standard deviation of U* based on 

1,000 counterfactual datasets are −0.02 and 0.05, respectively, suggesting that the level of 

noise in the data is high and that we are in small treatment by covariate interactions scenario 

with many noise variables. Hence, the constructed tree may not be picking up the most 

important combinations of moderator variables. This also explains why Foster’s approach 

results in a very different regression tree (not shown). The expected value/reward of our 

approach on the training and validation samples is 0.59 and 0.42, respectively, while the 

expected value/reward of Foster’s approach is 0.41 and 0.38, respectively. Thus on this 

particular example our approach performs better on this measure on the independent 

validation data set than Foster’s approach.

Of the splits in our tree, the split on systolic blood pressure fails to validate in the left-out 

sample and is difficult to explain from a subject-matter perspective. On the other hand, 

blood alcohol concentration peak is a moderator of naltrexone effect as indicated using both 

tree and logistic regression models in the same data set (manuscript under preparation). 

Also, consecutive days of abstinence prior to treatment has been identified as a moderator of 

acamprosate effect compared to placebo in the same data set using trajectory and logistic 

regression approaches [11]. Both BAC and consecutive days of abstinence are meaningful 

clinical variables that can be used in order to inform treatment assignment. However, due to 

the high signal-to-noise ratio in this data set, the findings are unlikely to be robust and 

further external validation of these results is necessary.

5. DISCUSSION

In summary, in this work we extended the recursive partitioning algorithm of Zhang et al. 

[29] for identification of subgroups with differential treatment effects by incorporating an 

automatic pruning step and proposed a method to evaluate the constructed trees on simulated 
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counter-factual or independent validation samples. Our simulation study shows that tree 

structure can be successfully recovered when the signal-to-noise ratio in the data set is high 

but that noise variables are often chosen as node-splitters when the signal-to-noise ratio is 

small. The proposed U and U* measures indicate how discriminating the tree is with respect 

to the outcome on different treatments in the terminal nodes and how well the tree validates 

within the same sample or on an external validation sample. When values of U and U* are 

small, results must be interpreted with caution. While establishing cutoffs for acceptable 

values of U and U* is desirable, such cutoffs are likely to be data-dependent and to vary 

widely based on the subject-matter area.

The proposed method can deal with predictor variables of different types: continuous, 

ordinal, binary, and nominal. However, the simulation study and the data example show that 

continuous variables are picked as splitters much more frequently because of the many 

possible cutoffs that can be considered for each variable. A penalty in the algorithm could be 

incorporated into the program so that continuous and ordinal measures with many levels are 

chosen less frequently. An approach to that effect has been considered by Lipkovich et al. 

[17] and can be adapted in our algorithm. Alternatively, continuous and ordinal variables 

can be a priori categorized based on practical or clinical considerations into a similar 

number of categories. This reduces the chance of over-selecting continuous covariates as 

splitters and can make results more interpretable [13]. For example, laboratory measures and 

other clinical measures such as blood pressure can be categorized as below the lower limit of 

the normal range (if applicable), one or more categories covering values within the normal 

range (e.g. lower third, middle third and upper third of the normal range), one or more 

categories above the upper limit of the normal range (if applicable). Such categorizations 

assure that results can be communicated more easily to clinicians and may be more likely to 

validate externally.

Our algorithm can be extended in several possible ways. We can modify the splitting 

criterion to consider a different type of outcome (e.g. continuous, survival) or to focus on 

identification of subgroups with enhanced treatment effect rather than subgroups with 

differential treatment effects (e.g. like the approach of Lipkovich and Dmitrienko [18]). An 

interactive version of the algorithm can also be programmed so that the investigator can 

override automatic choices of splitting variables and/or cutoffs based on substantive 

considerations. As we have previously shown [12], selecting variables and cutoffs based on 

practical and clinical considerations in addition to statistical considerations may validate 

externally better than trees based on purely statistical considerations. A useful extension of 

the approach will be to construct deterministic or random forests and develop variable 

importance measures so the best potential moderator effects in a data set can be identified 

for further testing.

While tree-based methods can accommodate a large number of potential splitting variables, 

our simulations suggest that adding variables that are known a priori not to influence the 

relationship between treatment and response increases the signal-to-noise ratio and 

potentially lowers the probability of identifying the “true” moderators. Therefore, predictor 

variables should be chosen carefully based on assessment of their potential for identifying 

subgroups with differential treatment effect and their practical utility. However, when there 
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is no prior knowledge of the moderator effect of a potential variable, it is better to include 

this variable in the tree-building procedure rather than run the risk of missing a potentially 

important effect.

In conclusion, the proposed simple and efficient statistical tool can be used to inform clinical 

decision making and personalized treatment for patients based on their characteristics. 

Extensions of the algorithm to construction of forests, incorporation of clinical and practical 

considerations in variable and cutoff selection, and development of variable importance 

measures can further increase its utility.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX A. DERIVATION OF THE PROPOSED PRUNING APPROACH

Let ORL and ORR denote the odds ratio obtained from a left (right) daughter node. Also, let 

δL = ORL − 1 and δR = ORR − 1. We consider the following hypothesis:

Let θL = log ORL and θR = log ORR. Then

and the asymptotic distribution of  is given by

where

and
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Let g(t) be a differentiable function and let ϕi = ∂g/∂θi, i = L, R, denote ∂g/∂ti evaluated at t = 

θ. By the delta method,

where ϕ′ = (ϕL ϕR), g(θ) = (eθL − 1) (eθR − 1) and the asymptotic variance is

Since ϕL = ∂g(θ)/∂θL = eθL (eθR − 1) and ϕR = ∂g(θ)/∂θR = eθR (eθL − 1), the asymptotic 

variance is given by

Thus we obtain

where

and

Hence, the test statistic is given by

where
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Since  or  can equal zero or ∞ if one of the cells in Table 1 is zero, following [10] and 

[24], we modify the estimators of θL and θR by adding 0.5 to each cell:
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Figure 1. 
a. Tree structure for the scenario with sizeable treatment-covariate interactions. Within each 

node, the top number represents a total number of subjects in treatment group A:B and the 

bottom number stands for a percentage of subjects in A:B who have a response. The 

splitting variable is shown underneath each internal node. The splitting value or category is 

shown above the solid line connecting the parent node to the left or right daughter node.

b. Tree structure for the scenario with small treatment-covariate interactions. Within each 

node, the top number represents a total number of subjects in treatment group A:B and the 
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bottom number stands for a percentage of subjects in A:B who have a response. The 

splitting variable is shown underneath each internal node. The splitting value or category is 

shown above the solid line connecting the parent node to the left or right daughter node.
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Figure 2. 
a. Constructed tree using the proposed algorithm in the scenario with sizeable treatment-

covariate interactions and many noise variables.

b. Constructed tree using the proposed algorithm based on the scenario with small treatment-

covariate interactions and no noise variables.
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Figure 3. 
a. Constructed tree using the proposed algorithm based on the training sample from the 

COMBINE study. Within each node, the top number on the left: right side represents the 

total number of patients in the acamprosate: naltrexone group, and the bottom number stands 

for a percentage of subjects with no heavy drinking in the acamprosate: naltrexone group.

b. Constructed tree from training sample (Figure 3a) evaluated on the validation sample 

from the COMBINE study. Within each node, the top number on the left: right side 

represents the total number of patients in the acamprosate: naltrexone group, and the bottom 
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number stands for a percentage of subjects with no heavy drinking in the acamprosate: 

naltrexone group.
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Table 1

Contingency tables and odds ratios obtained from the paired daughter nodes (tL, tR)

Paired daughter nodes

Left daughter node (tL) Right daughter node (tR)

Outcome (Y) Outcome (Y)

Trt 0 1 0 1

A

B
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