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Diversity Arrays Technology (DArT) can detect and type DNA
variation at several hundred genomic loci in parallel without
relying on sequence information. Here we show that it can be
effectively applied to genetic mapping and diversity analyses of
barley, a species with a 5,000-Mbp genome. We tested several
complexity reduction methods and selected two that generated
the most polymorphic genomic representations. Arrays containing
individual fragments from these representations generated DArT
fingerprints with a genotype call rate of 98.0% and a scoring
reproducibility of at least 99.8%. The fingerprints grouped barley
lines according to known genetic relationships. To validate the
Mendelian behavior of DArT markers, we constructed a genetic
map for a cross between cultivars Steptoe and Morex. Nearly all
polymorphic array features could be incorporated into one of
seven linkage groups (98.8%). The resulting map comprised �385
unique DArT markers and spanned 1,137 centimorgans. A compar-
ison with the restriction fragment length polymorphism-based
framework map indicated that the quality of the DArT map was
equivalent, if not superior, to that of the framework map. These
results highlight the potential of DArT as a generic technique for
genome profiling in the context of molecular breeding and genomics.

A lthough 50 years have passed since the structure of DNA was
deciphered (1), the study of DNA variation emerged as a field

of scientific endeavor only in the last 25 years. Two groups of
technologies were developing in parallel from the very beginning:
DNA sequencing and molecular markers. DNA sequencing tech-
nology developed quickly from proof of concept (2, 3) to an
automated process (4), enabling the field of genomics. Molecular
marker technologies progressed rapidly as well. Based on the
Southern blot technique (5), Botstein et al. (6) developed the
restriction fragment length polymorphism (RFLP) technique as a
method for creating genetic linkage maps.

Development of the PCR technique spawned two important
molecular marker techniques: amplified fragment length poly-
morphism (AFLP) (7) and simple sequence repeats (8). Thou-
sands of studies using molecular markers in plants, including
hundreds in barley, have been published but are not referenced
because of space limitations.

DNA sequencing and molecular marker technologies started to
merge when the accumulated sequence data began to yield infor-
mation on sequence variation among different accessions of the
same species. It was soon noted that single-nucleotide polymor-
phism (SNP) is the most abundant marker type, promising nearly
unlimited supply of markers (9). Many alternatives were developed
for the SNP assay (primer extension, selective ligation) and the
platform to type assays in high throughput (DNA chip, printed and
self-assembling arrays, matrix-assisted laser desorption ionization�
time-of-flight mass spectroscopy) (10–14).

For humans and a limited number of model organisms, the
throughput of SNP assays has increased impressively, and assay
costs have decreased correspondingly. Yet discovering sequence
polymorphism in nonmodel species is difficult, which is partic-
ularly true for many crops with limited resources and often

complex, polyploid genomes. We have developed Diversity
Arrays Technology (DArT) to enable whole-genome profiling of
such crops without the need of sequence information. DArT is
based on microarray hybridizations that detect the presence
versus absence of individual fragments in genomic representa-
tions as described by Jaccoud et al. (15).

For our initial proof-of-concept study, we selected a species
with a simple genome (rice) and used AFLP-like complexity
reduction methods to generate genomic representations (15).
Here we apply a non-AFLP version of DArT to barley, a species
with a complex genome nearly twice as large as the human
genome and 13 times larger than that of rice (16). We show that
DArT can be used to effectively create a medium-density genetic
map, a result that points to its potential as a generic technique
for high-throughput genome profiling of plants.

Materials and Methods
DArT Protocol. Preparation of genomic representations. Genomic rep-
resentations were generated by cutting 100 ng of a mixture of
DNA samples from a group of barley cultivars (cvs.) with 2 units
of both PstI and one of the frequent cutters listed in Table 1
(NEB, Beverly, MA). A PstI adapter (5�-CAC GAT GGA TCC
AGT GCA-3� annealed with 5�-CTG GAT CCA TCG TGC
A-3�) was ligated with T4 DNA ligase (NEB). A 1-�l aliquot of
the ligation product was used as a template in 50-�l amplification
reactions with DArT-PstI primer (5�-GAT GGA TCC AGT
GCA G-3�) and a program applicable to all plant species tested
so far: 94°C for 1 min, followed by 30 cycles of 94°C for 20 sec,
58°C for 40 sec, 72°C for 1 min, and 72°C for 7 min.
Preparation of arrays. Libraries of genomic representations were
prepared essentially as by Jaccoud et al. (15). Individual clones were
grown in 384-well plates containing LB medium supplemented with
100 mg�liter�1 ampicillin and a ‘‘freezing mix’’ (unpublished obser-
vation). Small aliquots of the cultures were used as templates to
amplify inserts according to Jaccoud et al. (15).

We used two types of arrays for DArT fingerprinting: ‘‘dis-
covery arrays’’ and ‘‘polymorphism-enriched arrays.’’

Discovery arrays contained inserts amplified from random clones
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of DArT libraries. The amplification reactions were dried, dissolved
in diluted print buffer A (Vanderbilt University, South Nashville,
TN), and spotted in triplicate on Polysine (Menzel Gläser, Braun-
schweig, Germany) or SuperChip poly-L-lysine slides (Erie Mi-
croarray, Portsmouth, NH) by using a MicroGrid II arrayer (Bioro-
botics, Cambridge, U.K.). A single-replicate format was chosen for
large arrays. After being printed, slides were heated to 80°C for 2 h,
incubated in hot water (95°C) for 2 min, and dried by centrifugation.

A polymorphism-enriched PstI�BstNI array was produced
from 1,920 candidate polymorphic clones. They were printed
together with 1,152 control features derived from 64 nonpoly-
morphic (control) clones so that each group of spots printed by
a particular pin contained the same number of each of the 64
control clones (MicroGrid II arrayer). The two groups of clones
had been identified during a preliminary diversity analysis of
Australian barley varieties by using an array of 7,680 PstI�BstNI
clones from a library prepared from cvs. Alexis, Amaji Nijo,
Chebec, Clipper, Galleon, Harrington, Haruna Nijo, Sahara,
Sloop, and WI2585.
Naming of clones. Each clone (marker) was given a preliminary
name, which will be revised in the future with a more generally
applicable naming system. The name contains information on
array type (Bd and Br, PstI�BstNI discovery and rearrayed
libraries, respectively; Td, PstI�TaqI discovery library), plate
location (plate number and well position), source of the ‘‘1’’
allele (S, cv. Steptoe; M, cv. Morex), and the between-allele
variance in relative hybridization intensity as a percentage of the
total variance (see Image analysis and polymorphism scoring).
Fingerprinting of DNA samples. Genomic representations of individ-
ual barley lines were generated by using the same complexity
reduction method as the one used to generate the respective
array. Genomic representations were concentrated 10-fold by
precipitation with 1 vol of isopropanol, denatured and labeled
with 1 �l of 500 �M cy3-labeled random decamers and the exo�

Klenow fragment of Escherichia coli DNA polymerase I (NEB).
Labeled representations, called targets, were added to 50 �l of
a 50:5:1 mixture of ExpressHyb buffer (Clontech), 10 g�liter�1

herring sperm DNA, and the cy5-labeled polylinker fragment of
the plasmid used for library preparation (as a reference) (15).
The samples were denatured and hybridized to microarrays
overnight at 65°C. Slides were washed according to Jaccoud et al.

(15) and scanned on an Affymetrix 428 (Santa Clara, CA) or
Tecan LS300 (Grödig, Austria) confocal laser scanner.
Image analysis and polymorphism scoring. A typical experiment con-
sisted of 96 slides simultaneously hybridized with 96 genomic
representations from up to 96 barley lines. DARTSOFT, a software
package developed in-house, was used to both identify and score
the markers that were polymorphic within such an experiment (C.
Cayla, G. Uszynski, D.J., P.W., and A. Kilian, unpublished data).

DARTSOFT automatically localized the spots in all scanner
image pairs (cy3, cy5) generated in an experiment, rejected those
with weak reference signals, and computed and normalized
background-subtracted relative hybridization intensities (calcu-
lated as log[cy3target�cy5reference]). The software then com-
pared the relative intensity values for each individual clone
across slides by using a combination of fuzzy C-means clustering
at a ’’fuzziness‘‘ level of 1.5 (17) and ANOVA: If two clusters
(alleles) could be distinguished and the between-cluster variance
in relative intensity was at least 80% of the total variance, the
clone was called polymorphic and scored as 0 or 1. A clone was
incorporated into the 0�1 scoring table of a particular experi-
ment if it was scored with a probability of P � 0.95 in at least 90%
of the slides (scoring probabilities were estimated by the clus-
tering algorithm). Individual calls with P � 0.95 were scored as
missing. Slides with �90% of the identified polymorphic markers
scored at P � 0.95 were rejected (typically 5%).

Experiments Performed. Optimization of complexity reduction methods.
Nine 768-clone libraries of PstI fragments, each differing in the
frequent cutter used for codigestion, were produced from a mixture
of genomic DNA of cvs. Clipper and Sahara (18). Corresponding
targets, prepared from the two cvs. and 20 Clipper � Sahara
doubled haploid (DH) lines were hybridized to arrays containing
triplicate spots of clones from these libraries.

The number of unique clones in each of these libraries was
estimated based on an evaluation of redundancy levels within the
group of polymorphic clones. Potential replicates were identified
by comparing their segregation patterns in the group of DHs. A
truncated Poisson distribution was fitted to the redundancy
classes (19) to estimate the number of unique polymorphic
clones. The total number of unique clones was estimated by
extrapolating to all clones (nonpolymorphic � polymorphic)
based on the percentage of polymorphic clones within a library.
The resulting estimates were corrected by a factor that accounted
for tightly linked unique clones that cosegregated because of the
limited resolution provided by the 20 DHs. This factor (1.65) had
been measured for a subset of polymorphic clones by comparing
the estimated redundancy level with the actual redundancy level
(determined by fingerprinting the cloned inserts with a mixture
of MspI and Sau3AI).

The numbers of fragments in the nine genomic representa-
tions were estimated in silico by counting the number of PstI
fragments produced from a genomic input sequence, which fell
into the empirically observed amplifiable range of 0.4–1 kb and
lacked recognition sites for the codigesting enzyme (VECTOR NTI
and MATHCAD).
Analysis of genetic relationships among barley lines. PstI�BstNI repre-
sentations were prepared from a range of cvs., two landraces, and
two accessions of Hordeum spontaneum and were hybridized in
duplicate to the polymorphism-enriched PstI�BstNI array (see
Preparation of arrays above). Consistent 0�1 scores were used as
input for the RESTDIST and NEIGHBOR programs of the PHYLIP 3.6
software package to construct an Unweighted Pair Group
Method with Algorithmic Mean dendrogram based on Felsen-
stein’s modification of the Nei�Li restriction fragment distance
(20). Clade strength was tested by 1,000 bootstrap analyses
performed with the SEQBOOT program (21).
Creation of a DArT linkage map. PstI�BstNI and PstI�TaqI targets
were prepared from 94 DH lines derived from a cross between

Table 1. Number of unique clones and polymorphism levels in
PstI-based DArT libraries differing in the enzyme used
for codigestion

Codigesting
enzyme

Estimated no. of unique clones

Polymorphism
level, %‡Empirical* Rice†

Hordeum plus
Triticum†

AluI 3,100 12,000 18,000 7.0
ApoI 4,900 78,000 88,000 6.9
BanII 16,500 130,000 122,000 3.4
Bsp1286I 6,600 77,000 61,000 2.9
BstNI 5,800 80,000 61,000 10.0
HaeIII 2,000 46,000 27,000 3.5
MseI 4,100 42,000 36,000 4.0
RsaI 3,600 42,000 43,000 8.6
TaqI 3,000 50,000 52,000 10.4

*See Materials and Methods for a description of procedures.
†The numbers shown were obtained by in silico analysis (see Materials and
Methods) based on bacterial artificial chromosome (BAC) sequences extrap-
olated from a random set of 327 BAC clones of rice (39 Mbp in total) to the
whole genome or from a mixed set of Hordeum and Triticum BAC clones (1.6
Mbp in total) to the whole genome.

‡Percentage of clones polymorphic between cvs. Clipper and Sahara.
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cvs. Steptoe and Morex. A first set of PstI�BstNI targets were
hybridized to a corresponding discovery array containing trip-
licate spots of clones from a 3,840-clone library prepared from
a mixture of Steptoe and Morex DNA. A second set of PstI�
BstNI targets was hybridized to the polymorphism-enriched
PstI�BstNI array (see Preparation of arrays above). The PstI�TaqI
targets were hybridized in duplicate to arrays containing single
replicates of clones from an 8,448-clone PstI�TaqI library pre-
pared from cvs. Alexis, Amaji Nijo, Chebec, Clipper, Galleon,
Harrington, Haruna Nijo, Morex, Sahara, Sloop, Steptoe, and
WI2585. Scoring data from the three sets of hybridizations were
combined to construct a linkage map with MAP MANAGER QTXB19
and a linkage criterion of P � 10�5 (22).

Results and Discussion
Optimization of Complexity Reduction Methods. DArT detects DNA
polymorphism by comparing the composition of genomic repre-
sentations of different genotypes through hybridizations to microar-
rays (15). Fig. 3, which is published as supporting information on the
PNAS web site, gives a graphical representation of the procedure.
We addressed several key issues to develop a robust technology.

The first was the exact type of complexity reduction method
to use to maximize the number of polymorphic clones in DArT
libraries. We produced nine 768-clone PstI libraries from two
genetically distant cvs. (Clipper and Sahara) (18), each of them
prepared by amplifying PstI fragments digested with a different
frequent cutter (AluI, ApoI, BanII, Bsp1286I, BstNI, HaeIII,
MseI, RsaI, or TaqI). The libraries were evaluated for the
frequency of polymorphisms between the two cvs. as well as the
number of unique clones (Table 1).

The polymorphism rates varied more than 3-fold among the
libraries tested (2.9–10.4%, average 6.3%; P � 0.01 as determined
by a �2 test) and were weakly negatively correlated with the
estimated numbers of unique clones in the libraries (r2 � �0.37;
Table 1).

In silico estimates of the number of unique clone, although closely
correlated with the empirical estimates (r2 � 0.86), were approxi-
mately 10� larger (Table 1). This was expected because each of the
recognition sites at the two ends of PstI fragments contains two
CWG motifs (W � A or T). If symmetrically methylated at the
cytosine residue, each of these motifs prevents PstI cutting. Assum-
ing that methylated CWG motifs are randomly distributed in the
genome, a 10-fold lower-than-predicted number of PstI fragments
would suggest that 44% of these motifs were methylated [(1 �
0.44)4 � 0.1]. This value is not far from the 53% estimate obtained
from the probably hypermethylated 5S rRNA clusters of diploid rye
(23), but is significantly lower than the �80% measured for
hexaploid wheat (24). Both ploidy level and nonrandom distribution
of methylated CWG motifs could account for these differences. We
assumed the empirical estimates were sufficiently accurate for the
purpose of this study and expanded the two libraries with the
highest polymorphism levels (PstI�TaqI and PstI�BstNI). Together,
the libraries were expected to contain �900 clones polymorphic
between the two genetically distant cvs. (Table 1).

In parallel, we measured the scoring reproducibility for clones
from one of the selected libraries. From a single cv., we generated
duplicate PstI�TaqI fingerprints of 27 DNA extracts sampled at
three growth stages and three environmental conditions. The
genotype call rate was 99% (similar to the average rate for this
report, which was 98.0% 	 1.3%). The scoring reproducibility,
computed from the 27 duplicate analyses, was 99.9% (Table 2,
which is published as supporting information on the PNAS web
site). The vast majority of markers (97%) scored identical for all
DNA preparations; the remaining 3% gave consistently different
results for different DNA samples, perhaps reflecting developmen-
tally regulated changes in DNA methylation (Table 2; see also
Stability of Methylation Patterns). Such markers would typically not
be included in a properly formatted genotyping array.

This data suggested that the robustness of scoring would be
sufficient to accurately evaluate genetic relationships among
lines and to build a high-quality genetic map.

DArT Fingerprints Reflect Genetic Relationships. We analyzed DNA
from 33 barley cvs. and two accessions of wild barley (H.
spontaneum) on DArT arrays containing a selection of 1,920
candidate PstI�BstNI polymorphisms and 1,158 control features.
A total of 383 polymorphic clones were identified. The scoring
table is available as Table 3, which is published as supporting
information on the PNAS web site. None of these polymor-
phisms came from the group of the 1,158 control features, a
result that underscored the reproducibility of DArT assays and
validated our procedure of selecting polymorphisms.

Polymorphism information content (PIC) values of the 383
identified polymorphic markers ranged from 0.04 to 0.50, with a
median value of 0.42 (average 0.38), fairly high for randomly
selected biallelic loci (Fig. 1) (25).

The dendrogram in Fig. 1 displays the genetic relationships
among the genotypes analyzed. Although the diversity analysis
presented here serves primarily as an example of DArT perfor-
mance, a few observations can be made from the dendrogram.
As expected, the two H. spontaneum accessions and the two
landraces from South East Asia (Ohichi and Kairo Ogara) were
fairly distant from most of the cvs. The scores of these four

Fig. 1. Genetic relationships among a group of barley cvs. and two accessions
of wild barley (H. spontaneum). (a) Cumulative distribution function of the PIC
values of the 383 PstI�BstNI markers identified (25). (b) Unweighted Pair
Group Method with Algorithmic Mean dendrogram constructed from 383
PstI�BstNI markers based on the modified Nei�Li restriction fragment distance
matrix (20, 21). A single DNA sample of cv. Clipper was assayed several times
at various dilutions. Bootstrap support values (1,000 replicates) are shown if
�50%. Superscript numbers correspond to suppliers of DNA samples. DNA
samples were provided by (1) Peter Langridge, University of Adelaide, Ad-
elaide, Australia; (2) Tony Brown (Commonwealth Scientific and Industrial
Research Organisation, Canberra, Australia), (3) David Poulsen (Queensland
Department of Primary Industries, Brisbane, Australia), (4) Mehmet Cakir
(Murdoch University, Perth, Australia), (5) Harsh Raman (NSW Agricul-
ture, Orange, Australia), (6) Haobing Li (University of Tasmania, Hobart,
Australia), and (7) Evans Lagudah (Commonwealth Scientific and Industrial
Research Organisation).
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genotypes were biased toward ‘‘0’’ (P � 0.05, computed based on
the distribution of the percentage of 0 scores across genotypes),
indicating that their alleles were underrepresented on the array.
Not surprisingly, the genotypes clustered together. Incorpora-
tion of clones from these genotypes into the array would increase
its resolution power for this kind of germplasm.

All other lines had statistically indistinguishable percentages
of 0 scores, suggesting the genetic diversity sampled during
DArT library preparation was sufficient to resolve genetic
relationships among the cultivated varieties. The four Japanese
cvs. clustered together, with cvs. Haruna Nijo and Naso Nijo
being the most similar among all genotypes analyzed. Another
group in the dendrogram contained cvs. that have cv. Triumph
in their pedigree (cvs. Alexis, Fitzgerald, Franklin, Lindwall,
Gairdner, Baudin, and Tallon). We conclude that DArT markers
tend to group together the expected lines.

In the same experiment we reevaluated more thoroughly the
two aspects of DArT data consistency investigated in the pre-
vious subchapter. Consistency of the platform itself was tested
through duplicate analysis of all DNA samples. We obtained 35
pairs of conflicting scores among 16,739 individual comparisons,
indicating a scoring reproducibility of 99.8%: a very good result,
particularly because we typed DNA samples from seven different
sources of various levels of quality and concentration.

To evaluate more precisely how the amount of DNA per assay
affects data quality, we fingerprinted a series of 4-fold dilutions of
a single DNA sample of cv. Clipper (100 to 1.5 ng per assay). The
fact that we obtained identical scores for all markers suggested that
the DArT platform tolerates well differences in DNA quantity.
Even very small amounts, equivalent to �1,000 barley cells, were
sufficient for the highly multiplexed DArT assay.

The second aspect of data consistency reevaluated was the
reproducibility of DArT fingerprints obtained from different
DNA preparations of the same cv. We obtained six pairs of DNA
samples, each from two different individuals of the same cv. Two
of these pairs were identical for all 383 markers (cvs. Patty and
Sloop). Very few differences were observed among the other
pairs of DNA samples: from 2�383 (0.5%), in the case of cv.
Gairdner, to 5�383 (1.3%) for cv. VBg104. This is a high level of
‘‘biological’’ reproducibility, bearing in mind that the average
difference between pairs of different cvs. was 41% of all poly-
morphisms, with a range of 15–63%.

We suspect that the differences observed between DNA
samples from the same cv. were mainly due to genetic hetero-
geneity within those cvs., although instability of allelic states of
DArT markers in plants grown in different environments could
not be excluded as an additional source of variation (see previous
subchapter). For example, cv. Tilga, for which four markers
scored differently in the above comparison, is known for its
phenotypic heterogeneity (H. Raman, personal communica-
tion). Heterogeneity has been observed at the molecular level in
many barley cvs. by using marker technologies, such as RFLP,
which evaluated fewer loci than DArT (26).

Assembly of a DArT Linkage Map. We selected a DH population from
a cross between two six-row barleys, cvs. Steptoe and Morex, to map
DArT markers and validate their Mendelian behavior. This cross
had previously been used to create a comprehensive molecular
linkage map of barley (27) and currently has 953 markers.

By using the quality thresholds specified in Materials and Meth-
ods, we identified 969 segregating polymorphisms of a total of
�20,000 PstI�BstNI and PstI�TaqI clones. A comparison with
estimates of the number of unique clones (Table 1) indicated that
we assayed DArT markers with roughly 2.5-fold redundancy. This
redundancy level not only enabled us to identify and type most of
the clones polymorphic between Steptoe and Morex but also
created a stringent test for the platform’s performance: map

expansion as a result of occasional miss-scores would be easier to
detect if each marker was assayed repeatedly.

A linkage analysis of the 969 DArT markers plus three RFLP
markers from the framework (FW) map to bridge gaps �28
centimorgans (cM), created seven linkage groups containing 90–
170 markers each. The groups were 138–198 cM long and spanned
a total of 1,137 cM. Twelve markers (1.2%) failed to incorporate
and were removed from the data set. The remaining 957 markers
fell into 279 segregation patterns (Table 4, which is published as
supporting information on the PNAS web site). Fifty-three of these
segregation patterns comprised both maternal and paternal mark-
ers (Table 5, which is published as supporting information on the
PNAS web site). There should have been a similar number of cases
in which different markers from the same parent cosegregated. We
therefore estimated the total number of unique markers to be in the
vicinity of 279 � (2 � 53) � 385.

Map Quality. To benchmark the performance of DArT markers
we compared the DArT map with the existing Steptoe � Morex
RFLP FW map, from which we removed 18 RFLP markers that
were uninformative for our set of DHs (http:��wheat.pw.usda.
gov�ggpages�SxM�smbasev2.map). For the remaining 204
markers we only retained the scores for the 94 DHs used in our
mapping experiment, which resulted in 199 unique segregation
patterns (Table 6, which is published as supporting information
on the PNAS web site). We assembled the FW map under
identical conditions as those used for DArT markers. The
resulting map had seven linkage groups spanning 1,195 cM, 5%
longer than the DArT map. The length of the DArT map,
therefore, indicated a low level of scoring errors.

We compared the frequency of double crossovers (DCO) in each
of the two data sets. For this analysis we removed markers with
redundant segregation patterns (not knowing whether they were
identical or just cosegregating) because, otherwise, DCO adjacent
to blocks of identically scored markers would have been undetect-
able. We then calculated for both maps the percentage of unique
markers that introduced DCO. In the DArT map, 13.2% of the
estimated 385 unique markers introduced DCO (2.9% created two
or three DCO). In the FW set, 20.6% (42�204) of the markers
introduced DCO (5.4% created two to four DCO). We conclude
that automatically scored DArT markers appear to introduce less
DCO than manually scored RFLP markers.

Having independently evaluated the two sets of markers, we
merged the two datasets to assemble a joint map. We obtained 416
unique segregation patterns in seven linkage groups, each contain-
ing both DArT and FW markers. There were 65 loci with a DArT
marker(s) cosegregating with FW markers. The size of the linkage
groups obtained varied slightly depending on the parameters used
for map assembly, but the shortest combined map was just �1,400
cM. There was virtually no difference between the two marker sets
in logarithm of odds score statistics (Table 7, which is published as
supporting information on the PNAS web site).

For this report, we incorporated only the most distal (telo-
meric) and two centromeric FW markers of each chromosome
into the DArT map. The resulting map was 1,182 cM long (Fig.
2). It had fewer 10- to 20 cM-long gaps than the FW map (2.7 	
1.4 per chromosome versus 3.7 	 1.6 for the FW map), and a
similar number of gaps �20 cM (�1 per chromosome; these
numbers were derived after removing the three gap-bridging FW
markers from the DArT map).

To evaluate genome coverage provided by the DArT map we
analyzed the locations of the most distal DArT markers in
relationship to the most distal FW markers and a set of telomeric
markers, mapped either for Steptoe � Morex or Harrington �
TR306 (28). For nine of 10 chromosome arms with telomeric
markers identified, the most distal DArT marker was either
cosegregating or within 2 cM. The telomeric marker for the long
arm of chromosome 4H was 4 cM distal to the most distal group

9918 � www.pnas.org�cgi�doi�10.1073�pnas.0401076101 Wenzl et al.



Fig. 2. DArT linkage map for a Steptoe � Morex DH population displaying markers with unique segregation patterns. Approximate centromere locations are
shown as black dots. Telomeric and centromeric FW markers that were added to the DArT map are highlighted in larger font; telomeric markers are also
designated by arrows. Also highlighted in larger fonts are three additional FW markers on chromosomes 4H and 5H that were retained to facilitate map
construction. Chromosome numbers according to the old nomenclature are given in brackets.
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of DArT markers. The remaining four chromosome arms had
DArT markers within 2 cM from the most distal RFLP marker,
except for 3HL, in which ABC172 was 12 cM distal to a DArT
(or any other RFLP) marker.

Based on the above comparative analyses of map length, DCO
events, logarithm of odds scores, and genome coverage, we
conclude that the quality of the DArT map was equivalent, if not
superior, to that of the RFLP-based FW map.

Stability of Methylation Patterns. The vast majority of DArT mark-
ers (98.8%) could be solidly incorporated into a genetic linkage
map (Fig. 2 and Table 7). However, 12 DArT markers (1.2%), could
not be incorporated and �1.1% of the DArT markers introduced
multiple (two or three) apparent DCO events. Given the high level
of scoring reproducibility of DArT (see Optimization of complexity
reduction methods) it is unlikely that the occurrence of these DCO
events was due to scoring errors. We suspect that unstable cytosine
methylation caused non-Mendelian behavior of a small percentage
of the markers, although we could not rule out a contribution of
gene conversion events (29). Although a few reports indicate some
level of instability of methylation patterns (30, 31), most indicate
that they are stable, both in dicots and monocots (32–35). In barley,
Mendelian behavior of de novo created methylation polymorphism
was observed over several generations (P. Devaux, personal com-
munication). We expect that some of the Mendelian-type DArT
markers may be due to stable methylation polymorphisms.

Extensive use of the methylation-sensitive PstI enzyme in AFLP
technology, especially for species with large genomes, underscores
its value for genetic mapping and diversity studies (31, 34, 36–38).
PstI-based AFLP markers tend to cluster less and have higher PIC
values than those generated with methylation-insensitive enzymes
(34, 38, 39). Consistent with these findings, PstI-based DArT
markers did not cluster significantly, and their average PIC value
was identical to that of PstI-based AFLP markers (40).

DArT Versus Other Microarray-Based Genotyping Techniques. Apart
from DArT, solid phase-based genotyping appears to be re-
stricted to a few model species with sequenced genomes. The
high-density gene chip designed to type SNPs in genomic
representations of human DNA, for example, is based on
comprehensive sequence information (12). Oligonucleotide ar-
rays revealing single feature polymorphisms in whole-genome
hybridizations of yeast and Arabidopsis (41, 42) are also based on

comprehensive sequence information. Large and polyploid ge-
nomes may not be amenable to the whole-genome hybridization
approach. It also remains to be seen whether the development
of sequence-based arrays could become affordable for a broad
range of agricultural species.

By contrast, DArT is independent of investment in genome
sequencing and can be fine-tuned to detect polymorphism in
genomes of virtually any size, including the 16,000 Mbp genome of
hexaploid wheat as ongoing work in our laboratory has shown.
DArT is flexible enough to design genotyping arrays for a variety
of applications; it is by no means restricted to PstI-based or even
restriction enzyme-based complexity reduction methods. We have
successfully tested methods to enrich for different classes of
genomic sequences or distinct types of DNA variation (SNP�
insertion–deletion or methylation variation). In addition, markers
from different complexity reduction methods (for example, the two
used in this report) can be typed simultaneously, either by mixing
genomic representations before labeling or by multicolor detection.

Concluding Remarks. We conclude that DArT can be used to
create medium-density genetic maps for plants with complex
genomes and no sequence information available. By using a
properly formatted genotyping array, the generation of a linkage
map would typically take only 3 days. This throughput enables
routine use of DArT in plant breeding programs; e.g., for
exhaustive fingerprinting of germplasm, quantitative trait locus
identification, genome background screening, simultaneous
marker-assisted selection of several loci, or accelerated intro-
gression of selected genomic regions. Integration of DArT maps
would be straightforward provided they are developed with the
same array. High-density maps for map-based cloning and
chromosome-landing approaches (43) could be rapidly built by
pyramiding data from a limited number of independent arrays.
We suggest that DArT opens significant opportunities for plant
breeding to benefit from whole-genome profiling, particularly in
the context of improving traits with complex inheritance.
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