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Competition for resources is thought to play a critical role in both the origins

and maintenance of biodiversity. Although numerous laboratory evolution

experiments have confirmed that competition can be a key driver of adap-

tive diversification, few have demonstrated its role in the maintenance of the

resulting diversity. We investigate the conditions that favour the origin and

maintenance of alternative generalist and specialist resource-use phenotypes

within the same population. Previously, we confirmed that competition for

hosts among w6 bacteriophage in a mixed novel (non-permissive) and ancestral

(permissive) host microcosm triggered the evolution of a generalist phenotype

capable of infecting both hosts. However, because the newly evolved general-

ists tended to competitively exclude the ancestral specialists, coexistence

between the two phenotypes was rare. Here, we show that reducing the relative

abundance of the novel host slowed the increase in frequency of the generalist

phenotype, allowing sufficient time for the specialist to further adapt to the

ancestral host. This adaptation resulted in ‘evolutionary rescue’ of the special-

ists, preventing their competitive exclusion by the generalists. Thus, our results

suggest that competition promotes both the origin and maintenance of bio-

diversity when it is strong enough to favour a novel resource-use phenotype,

but weak enough to allow adaptation of both the novel and ancestral

phenotypes to their respective niches.
1. Background
Resource competition has long been viewed as an important agent of diversifying

selection [1,2]. When competition for a preferred resource is strong, competitively

mediated selection will tend to favour individuals that can exploit underused

resources, even if these resources are novel, poor or toxic [3]. Consequently, com-

petition drives phenotypes apart in niche space, thereby decreasing competition

between them [1–6]. If the diverging phenotypes coexist, then the end result is a

resource polymorphism [6]. Resource polymorphisms have long fascinated evol-

utionary biologists, primarily because their evolution is thought by some to

represent a critical early stage in the origin of novel resource-use traits and pos-

sibly even new species [2,6,7]. Thus, identifying the conditions under which

resource polymorphism evolves is critical for understanding the origins and

maintenance of biodiversity.

A growing number of laboratory experiments have demonstrated that compe-

tition can indeed promote the evolution of resource polymorphism. For example,

competition for food drives toxic cadmium tolerance in Drosophila melanogaster
[3], competition for glucose favours evolution of glucose–acetate generalists in

Escherichia coli [8–11], competition for oxygen promotes the evolution of different

strategies for colonizing the air–liquid interface in Pseudomonas fluorescens [12],

and competition for bacterial hosts drives the evolution of host generalists in

the bacteriophage w6 [13]. Yet only some of these studies demonstrated stable

maintenance of the evolved resource polymorphism. Among this subset, all
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demonstrated a role of antagonistic pleiotropy, in which adap-

tation to one resource resulted in a cost on the alternative

resource [14–17].

Here, we investigate whether stable maintenance of

evolved resource polymorphisms is possible even when

antagonistic pleiotropy is absent. We build on our previous

experiment [13] in which competition for hosts in the bac-

teriophage w6 readily promoted the evolution of a novel

host generalist but rarely resulted in stable coexistence of

the new generalist and the ancestral specialist. The absence

of antagonistic pleiotropy in the generalist phage [13] prob-

ably contributed to this outcome. However, we hypothesize

that the strength of competition and the consequent speed

of competitive exclusion also played a major role. Our reason-

ing is that trade-offs, arising from a variety of mechanisms

including (but not limited to) antagonistic pleiotropy, are

expected to emerge as alternative resource-use phenotypes

adapt to their respective niches [18,19]. This niche-specific

adaptation should stabilize the evolved resource polymorph-

ism, but only if it transpires quickly relative to competitive

exclusion [20,21].

The prediction that adaptation can enable persistence in the

face of environmental change, recently termed ‘evolutionary

rescue’, is well grounded in theory [20,22–25] and experiment

[26–31]. However, this prior work has tended to focus on

abiotic change (but see [25]). By contrast, our focus is on the

appearance of a biotic change—the evolution of a novel host

generalist—that threatens the persistence of an ancestral host

specialist. Additionally, our use of the term ‘evolutionary

rescue’ to describe rescue of a phenotype from competitive

exclusion differs from its conventional use to describe rescue

of a population from extinction. Nonetheless, the same prin-

ciples should apply. Extending the principles of evolutionary

rescue to our experimental system, we predict that for a host-

use polymorphism to arise and persist, competition should

be strong enough to selectively favour the new host generalist

phenotype, but not so strong that it promotes competitive

exclusion of the ancestral host specialist phenotype before it

evolves adaptations that permit coexistence [21]. Essentially,

competition should be sufficiently weak to allow time for evol-

utionary rescue to occur. In this way, evolutionary rescue

might play a critical role in the origin and maintenance of

resource polymorphism.

Here, we test this prediction by building on a previous

experiment in which competition for hosts in experimental

populations of the bacteriophage w6 readily promoted the

evolution of a novel host generalist that rapidly competitively

excluded the ancestral host specialist. In this experiment, we

increased the ratio of standard to novel hosts from 1 : 1 to 9 : 1

to reduce the selective advantage of the generalist and slow

the competitive exclusion of the specialist. We tested the pre-

diction that these slower dynamics would increase the

opportunity for evolutionary rescue of the specialist by moni-

toring the evolution of w6 populations in liquid culture

containing a 9 : 1 ratio of standard : novel hosts. Host general-

ists again evolved in response to competition but, in contrast

to the previous experiment, the ancestral specialist coexisted

stably with the new generalists for the duration of the exper-

iment, approximately 300 phage generations. We used a series

of competition assays in different environments to confirm

that the long-term stability of this polymorphism depended cri-

tically on adaptation of the specialists to the ancestral host. Our

results confirmed our a priori expectations regarding the
conditions that favour the origin and maintenance of resource

polymorphism, namely that competition should be strong

enough to selectively favour a new resource-use phenotype

but weak enough to allow sufficient time for evolutionary

rescue to occur.
2. Methods
(a) Strains
The RNA bacteriophagew6 used in this study is a laboratory strain

descended from the original isolate [32]. The ‘wild-type’ phage

used to found all experimental populations readily infects the stan-

dard laboratory host bacterium Pseudomonas syringae pathovar

phaseolicola (hereafter Ps phaseolicola) strain HB10Y [33,34], but

cannot infect the novel host bacterium P. pseudoalcaligenes pathovar

ERA [33] (hereafter Pp ERA).
(b) Culture conditions
All phage and bacteria were grown in LC medium (5 g l21 yeast

extract, 10 g l21 bactotryptone, 5 g l21 NaCl) at 258C. Plate media

contained 1.5% (bottom) or 0.5% (top) agar. Evolved phage

was archived for later analysis at 2208C in LC medium plus

20% v/v glycerol.

We monitored the evolution of generalist phenotypes by plat-

ing phage population samples on bacterial lawns composed of

200 ml of an overnight culture of the standard host Ps phaseoli-

cola and 2 ml of the novel host Pp ERA. Generalist phage that

gained the ability to use the novel host produced clear plaques,

whereas specialist phage produced turbid plaques.
(c) Experimental evolution of host-use polymorphism
Phage populations were evolved using serial transfer into fresh

bacterial cultures containing a mixture of the standard labora-

tory host and a novel (non-permissive) host at a total density

of 2 � 108 cells ml21 (diagrammed in figure 1). These evolution

experiments were performed in the exact same manner as the

populations under strong competition described in our earlier

study [13] with one exception: the host ratio was changed from

a 1 : 1 ratio of standard to novel hosts to a 9 : 1 ratio (figure 1).

By increasing the density of standard hosts and decreasing the

density of novel hosts, we reduced both intraspecific competition

for the standard host and the ecological opportunity (i.e. the

underused resource [35]) represented by the novel host. Prior

to the start of each serial transfer, fresh bacterial hosts were

grown to an OD600 corresponding to a density of 2 �
108 cells ml21 (Ps phaseolicola OD600 ¼ 0.33 and Pp ERA

OD600 ¼ 0.12) and mixed together at a ratio of 9 : 1 Ps phaseoli-

cola : Pp ERA. Individual populations were propagated by

initiating each transfer at a multiplicity of infection (MOI or

ratio of phage to hosts) of 0.1. As in our earlier study [13], we

adjusted total culture volume to 10, 100 or 1000 ml to achieve a

constant initial host density and MOI across phage transfer

population size treatments of n ¼ 105, 106 or 107 phage, respect-

ively. We used these population sizes in the previous experiment

[13] to test the effect of mutation supply on generalist evolution.

Although we detected no significant effect of population size in

that experiment [13], we used the same population sizes here to

replicate the experimental design as closely as possible. Cultures

were incubated shaking at 258C for 6 h (approx. three phage gen-

erations) before filtering to remove host cells. A sample of 105,

106 or 107 of the resulting phage was used to initiate the next

transfer cycle, and the remainder were archived at 2208C for

later analysis. We measured the total number of phage and the

frequency of generalists at the end of every transfer. This protocol
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Figure 1. Experimental design. Our experiment monitored the evolution and maintenance of host-use polymorphism during serial transfer into fresh cultures
containing different ratios of the standard and novel hosts. (a) Our previous experiment [13] imposed a 1 : 1 ratio of standard (blue) to novel (yellow) hosts.
(b) The current experiment imposes a 9 : 1 host ratio. Although the phage population bottleneck at the start of each transfer varied from N ¼ 105 to 107,
total culture volume was adjusted accordingly so that all transfers were initiated at MOI ¼ 1021. Populations were evolved for 20 transfers under the 1 : 1
host ratio or 100 transfers under the 9 : 1 host ratio.
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was repeated for 20 transfers in six replicate populations. Three

of the six replicates were extended for a total of 100 transfers.
(d) Competition assays
We used competition experiments to assess the relative fitness of

generalists and specialists in mixed and pure host environments.

Generalist and specialist phage clones were isolated from popu-

lations of interest by plating a sample of the population on a

mixed lawn of the standard and novel hosts, and randomly har-

vesting a single generalist (clear plaque) and specialist (turbid

plaque). Generalist and specialist clones were then combined to

achieve mixtures containing 10%, 50% or 90% generalists, depend-

ing on the experiment. These mixtures were incubated with either

the standard host Ps phaseolicola only or both hosts under con-

ditions that exactly mimicked the evolution experiments. In

particular, initial total host density was held at 2 � 108 cells ml21

and initial total phage density at 108 phage ml21, and the resulting

culture was incubated shaking for 6 h at 258C. The frequency of the

generalist and specialist phage was determined by plating on

mixed lawns at the beginning (t ¼ 0 h) and end (t ¼ 6 h) of each

incubation. The fitness of the generalist relative to the specialist

phage was calculated as W ¼ R6/R0, where Rt is the ratio of

generalists to specialists at time t hours.
(e) Estimating fitness
In the populations evolved in the 1 : 1 host ratio in which general-

ists reached fixation (achieved a frequency fgen ¼ 1.0) by transfer

20, we could not measure the fitness of generalists relative to

specialists using competition assays. Instead, we used logistic

regression to estimate fitness from the counts of generalists and

specialists we obtained by sampling the evolving population. To

ensure we obtained estimates of generalist fitness when

common, we used counts only from transfers in which the general-

ist was at a high frequency but not yet fixed: 0.8 , fgen , 0.97.

Logistic regression models are of the form

logit( tÞ ¼ lnðRtÞ ¼ b0 þ b1t, ð2:1Þ

where b1 is the expectation of lnW. We estimated lnW ¼ b1 using

the generalized linear model function (glm) and obtained standard

errors of the estimate using the confidence interval function

(confint) in the R v. 3.1.2 statistical package. This method differs

from the competition assays only in that replication was achieved

by using multiple transfers in series (logistic regression) or in par-

allel (competition assays), and therefore the initial frequency of
generalists was slightly more variable in the logistic regression

method. The experimental conditions were identical, and the

estimated fitness metrics (W ) were equivalent.

( f ) Adsorption rate assays
About 2000 phage in 1 ml of LC were mixed with 1 ml of

approximately 2 � 108 exponentially growing host cells and incu-

bated shaking at 258C. Initially and after 40 min, 500 ml of this

mixture was centrifuged for more than 1 min at 6600 r.p.m. to

pellet the cells, and 200 ml of supernatant was plated on a lawn

of the standard host Ps phaseolicola to obtain a count of the

free phage. The adsorption rate constant was calculated as

k ¼ 2ln(P40/P0)/N, where N is the concentration of host cells

and Pt is the concentration of free phage at time t, determined

by colony and plaque assays, respectively.

(g) Statistical analysis
Statistical analyses were conducted in R v. 3.1.2. We conducted

tests for experimental treatment effects by estimating linear-

mixed models using the lme function from the nlme package.

Experimental lineage was treated as a random effect in all

models. Host ratio, population size, transfer number and initial

generalist frequency were treated as fixed effects. We also used

the lme function to test whether ln relative fitness (lnW ) differed

significantly from zero. In cases where we a priori decided to test

if lnW , 0 (e.g. when we tested for the presence of trade-offs), we

used one-tailed tests.
3. Results and discussion
Using the bacteriophagew6, we sought to experimentally evalu-

ate the conditions that favour the origin and maintenance of

alternative generalist and specialist resource-use phenotypes

within the same population. We specifically predicted that

reducing the relative abundance of a novel host would slow

the increase in frequency of the generalist phenotype, allowing

sufficient time for the specialist to further adapt to the ancestral

host (i.e. to undergo evolutionary rescue), thereby enabling

coexistence of the two phenotypes. We found that experimental

w6 populations subjected to weaker competition in a high 9 : 1

ratio of standard : novel hosts nonetheless evolved a new gener-

alist phenotype capable of infecting the novel host (figure 2a,
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cool colours). As predicted, generalists increased in frequency

more slowly in the 9 : 1 host ratio than in the lower 1 : 1 host

ratio (figure 2a, warm colours) [13]. In addition, the ultimate

outcome of evolution differed dramatically between the host

ratio treatments. Whereas generalists tended to competitively

exclude specialists in the 1 : 1 host ratio within 20 transfers,

the two phenotypes coexisted for the 100-transfer duration

of our 9 : 1 host ratio experiment in all replicate lineages.

Moreover, the trajectory of generalist frequency over time exhib-

ited the (inverted) U shape (figure 2a; analysis in electronic

supplementary material, figure S1) that is expected [20] if evol-

utionary rescue of the specialists enabled their persistence in the

9 : 1 host ratio treatment. Because the population recovery indi-

cated by the U shape is also consistent with other evolutionary

and ecological processes, we provide more rigorous tests of

evolutionary rescue below.

We examined the stability of coexistence between general-

ists and specialists in the 9 : 1 host ratio populations by testing

for negative frequency-dependent selection. As generalists

were able to invade, and therefore had an advantage when

rare, we measured only the relative fitness of generalist phage

when the generalist was common (figure 2b). Coexistence was

confirmed only if generalists exhibited a fitness disadvantage

(lnW , 0) when assayed at a high initial frequency (fgen ¼

0.9). As expected from the persistence of the polymorphism in

the 9 : 1 host ratio experiment, generalists exhibited significant

average disadvantages when common at transfer 20

(figure 2b) and for the remainder of the experiment (electronic

supplementary material, figure S2b; mean lnW � 20.470 at

each of transfers 20, 40, 60, 80 and 100; p , 0.05 for each of trans-

fers 20, 60, 80 and 100 by a linear-mixed-effect model specifying

replicate population as a random factor). These data confirm

that the resource polymorphism was stable in the 9 : 1 host

ratio experiment as early as transfer 20. Moreover, these results

stand in sharp contrast to the average fitness advantages exhib-

ited by generalists evolved in our previous 1 : 1 host ratio

experiment (figure 2b; mean lnW+ s.e.m.¼ 0.269+0.201,

d.f.¼ 15, t ¼ 1.338, p ¼ 0.2007).
The higher stability of the resource polymorphism in the 9 : 1

host ratio experiment (figure 2), combined with the apparent

absence of trade-offs observed previously in the 1 : 1 host ratio

experiment [13], led us to predict that the coexistence of general-

ists and specialists in the 9 : 1 host ratio experiment must be

underpinned by a trade-off that evolved over the course of

the experiment. In the 9 : 1 host ratio experiment, the only

reasonable explanation for the reduced relative fitness of the

generalists when common is that the rare specialist phage

have a competitive advantage on the standard host. To con-

firm this explanation, we used competition assays to compare

the fitness of generalists relative to specialists when grown

on the standard host only. On average, generalists exhibited

a fitness disadvantage (lnW , 0) relative to evolved specia-

lists (their contemporaries) at both transfers 20 (figure 3a;

mean lnW+ s.e.m. ¼ 20.456+ 0.199, d.f. ¼ 12, t ¼ 2.292,

p ¼ 0.0204) and 100 (figure 3a; mean lnW+ s.e.m.¼ 20.311+
0.158, d.f.¼ 12, t ¼ 1.970, p ¼ 0.0362), confirming the presence

of a trade-off in performance on the standard host at both early

and late transfers.

Next, we asked whether the trade-off resulted from an

evolutionary response in the generalist phage, the specialist

phage or both. To determine whether antagonistic pleiotropy

in the generalists contributed to the observed trade-offs, we

measured the fitness of evolved generalists relative to the

ancestral specialists (from transfer 0), again on the standard

host only. On average, evolved generalists at transfer 20 did

exhibit a fitness disadvantage relative to the ancestral special-

ist (figure 3b; mean lnW+ s.e.m. ¼ 20.615+0.183, d.f. ¼ 12,

t ¼ 3.349, p ¼ 0.0029), confirming that generalist adaptation

at this early transfer was characterized by antagonistic pleio-

tropy (i.e. mutations that increased fitness on the novel host

also decreased fitness on the standard host). However, by

transfer 100, the generalists’ average disadvantage relative

to the ancestral specialist disappeared (mean lnW+
s.e.m. ¼ 0.143+ 0.219, d.f. ¼ 12, t ¼ 0.6541, p ¼ 0.2627),

and antagonistic pleiotropy was entirely ameliorated in two

out of three populations (figure 3b). Consistent with this



−1.0

−0.5

0

0.5

trade-offs(a) (b)

transfer

ge
ne

ra
lis

t f
itn

es
s

(r
el

at
iv

e 
to

 th
e 

ev
ol

ve
d 

sp
ec

ia
lis

t)

20 100

−1.0

−0.5

0

0.5

antagonistic pleiotropy

transfer

ge
ne

ra
lis

t f
itn

es
s

(r
el

at
iv

e 
to

 th
e 

an
ce

st
ra

l s
pe

ci
al

is
t)

20 100

Figure 3. Trade-offs on the standard host. The fitness of evolved generalist clones was determined from competition assays on the standard host only. (a) We first
tested for a trade-off in the fitness of the generalist relative to a contemporary evolved specialist. (b) We then tested if that trade-off could be attributed to
antagonistic pleiotropy by testing if generalists performed more poorly on the standard host relative to the ancestral specialist. Data are mean ln(fitness)+
s.e.m. of generalists relative to specialists obtained from five replicate competition assays initiated at initial generalists frequencies of fgen ¼ 0.5.

−1.0

−0.5

0

0.5

1.0

transfer

sp
ec

ia
lis

t a
da

pt
at

io
n

20 100

Figure 4. Adaptation to the standard host. The fitness of evolved and ances-
tral specialist clones was determined from competition assays on the standard
host only, using an evolved generalist clone as a common competitor. Pairs
of evolved generalist and specialist clones were isolated randomly from
each transfer 20 and transfer 100 population. Data are lnW t – lnW0,
where lnW0 and lnW t are the means of five log fitness measures of special-
ists isolated from transfer 0 and transfer t, respectively, relative to generalists
isolated from transfer t. Error bars correspond to standard errors of
the difference.

rspb.royalsocietypublishing.org
Proc.R.Soc.B

282:20151932

5

observation, between transfers 20 and 100 generalists evol-

ved higher adsorption (binding) rates to the standard host

(electronic supplementary material, figure S3; F1,7 ¼ 9.726,

p ¼ 0.0169), but not to the novel host (electronic supplementary

material, figure S3; F1,7 ¼ 2.97326, p ¼ 0.1283).

To determine whether adaptation of the specialists

contributed to the observed trade-offs, we compared the relative

fitness of evolved and ancestral specialist phage when grown on

the standard host only, using an evolved generalist as a common

competitor. We repeated this comparison for evolved phages iso-

lated from transfer 20 and transfer 100. We found that evolved

specialists exhibited higher fitness than the ancestral specialist

at transfer 100 (figure 4; mean+ s.e.d. of lnW100 2 lnW0 ¼

0.454+0.125, t ¼ 3.628, d.f.¼ 26, p ¼ 0.0012), confirming

adaptation of the specialists over the course of the experiment.

Such adaptation was not apparent at transfer 20 (figure 4;

mean+ s.e.d. of lnW100 2 lnW0 ¼ 20.159+0.155, t¼ 21.025,

d.f. ¼ 26, p ¼ 0.3147). In sum, antagonistic pleiotropy may

have been sufficient to explain the coexistence of generalists

and specialists during the early transfers, but adaptation of

the specialists was required to explain the persistence of the

trade-off, and therefore of coexistence for the duration of

the experiment.

These results, together with those from our earlier study

[13], indicate that competition readily drives the origin of

resource polymorphism. They also highlight the critical role

that the nature and strength of trade-offs play in the stability

of that polymorphism. The contribution of antagonistic

pleiotropy to trade-offs in our experiments was modest: we

detected significant antagonistic pleiotropy only in the 9 : 1

host ratio experiment and only early in that experiment. This

modest contribution of antagonistic pleiotropy probably

explains why competition favoured the initial emergence of

generalists even when novel hosts were at a low density in the

environment (in the 9 : 1 host ratio), and why generalists compe-

titively excluded specialists when novel hosts were at a high

density (in the 1 : 1 host ratio). Both these outcomes emerge

from resource ratio theory [36–38] when trade-offs are weak.

Moreover, the transient nature of the antagonistic pleiotropy

we did observe suggests that antagonistic pleiotropy could

not, by itself, ensure the long-term stability of the resource poly-

morphism at either host ratio. Instead, stable maintenance of the
resource polymorphism depended critically on whether trade-

offs could be generated by adaptation of the specialists before

the specialists were competitively excluded. Because antagon-

istic pleiotropy is often weak or non-existent [18,39,40], our

data illustrate that the evolutionary rescue framework may

often be relevant for predicting whether ancestral pheno-

types win the evolutionary race against competitive exclusion

following the emergence of a resource polymorphism.

One unanticipated consequence of achieving a stable

resource polymorphism through evolutionary rescue was

that the stringency of the ecological requirements for main-

taining the polymorphism was relaxed once stability was

achieved. We tested whether the polymorphisms that evolved

in the 9 : 1 ratio of standard : novel hosts were stable if we

shifted the ratio to 1 : 1. We measured fitness when

common of generalists evolved in the 9 : 1 ratio of standard
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: novel hosts, this time altering the host ratio used in the com-

petition assay to 1 : 1. We found that, unlike generalists

evolved in the 1 : 1 host ratio (figure 2b), generalists evolved

in the 9 : 1 host ratio exhibited disadvantages when

common in the 1 : 1 host ratio (figure 5; transfer 20: grand

mean lnW ¼ 20.361, t ¼ 22.34, d.f. ¼ 5, p ¼ 0.0333; transfer

100: grand mean lnW 20.58, t ¼ 21.84, d.f. ¼ 2, p ¼ 0.104

by one-tailed t-tests conducted on the population means).

Thus, although stable resource polymorphisms were unlikely

to evolve in the 1 : 1 host ratio environment, they could be

maintained in that environment after evolutionary rescue

established a stable polymorphism in the 9 : 1 host ratio

environment. This result suggests an optimistic perspective

on the likelihood of coexistence between generalists and

specialists. Whereas theory [41–44] and some previous exper-

iments [13,15] indicate that the ecological requirements for

coexistence are stringent, our results indicate that evolution

can eventually ensure that the ecological requirements are

met by increasing the strength of the performance trade-off

among resources. This relaxation in the stringency of ecologi-

cal requirements for coexistence over time seems likely to

characterize any population in which both alternative
resource-use phenotypes are able to adapt on a time scale

relevant to their changing environment.
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