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The hearts of lower vertebrates such as fish and salamanders display scarless

regeneration following injury, although this feature is lost in adult mammals.

The remarkable capacity of the neonatal mammalian heart to regenerate

suggests that the underlying machinery required for the regenerative process

is evolutionarily retained. Recent studies highlight the epicardial covering of

the heart as an important source of the signalling factors required for the

repair process. The developing epicardium is also a major source of cardiac

fibroblasts, smooth muscle, endothelial cells and stem cells. Here, we examine

animal models that are capable of scarless regeneration, the role of the epicar-

dium as a source of cells, signalling mechanisms implicated in the regenerative

process and how these mechanisms influence cardiomyocyte proliferation.

We also discuss recent advances in cardiac stem cell research and potential

therapeutic targets arising from these studies.
1. Introduction
An emerging concept in cardiovascular biology is that the mammalian myo-

cardium has the potential to regenerate; however, the repair processes are

insufficient to address the extensive damage caused by a cardiac insult such as

myocardial infarction (MI). MI culminates in severe ischaemic damage to the sur-

rounding tissue with, in some cases, the loss of up to a billion cardiomyocytes

(CMs) [1,2]. This results in invasion of immune cells and myofibroblasts promot-

ing scar formation [3,4]. With many advances in medical treatment, the mortality

rate post-MI has decreased [5,6]; however, this has resulted in a rise in the number

of patients that now present with heart failure [7–9]. For these reasons, research

is now focused on enhancing the existing repair processes to improve cardiac

function and to prevent the advent of heart failure. One approach is to study

animal models that undergo full cardiac regeneration and extrapolate these

observations to the adult human heart.
2. Models of cardiac regeneration
The zebrafish, a member of the teleost family, is noted for its cardiac regenerative

capacity, and as a result is exploited throughout the field. Structurally, the zebra-

fish heart differs from that of mammals insofar as it is a two chamber organ,

consisting of one atrium and one ventricle [10,11]. As the zebrafish heart consists

of numerous small vessels for oxygen uptake rather than the large coronary vas-

culature typical of mammalian hearts, methods for inducing cardiac injury are

limited to apex resection, cryoprobe injury or genetic ablation [12–14]. Following

resection, a fibrin clot forms, providing a platform for proliferating CMs [15,16].

Remarkably, as demonstrated using a transgenic model which is deficient in ven-

tricular myoctes, atrial CMs undergo transdifferentiation and replace lost

ventricle CMs, although it should be noted that this mechanism is lost by the

age of four months [17]. Interestingly, the medaka, a close relative of the zebrafish,

lacks the ability to regenerate following resection. Injured medaka hearts present
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with persistent collagen deposition, lack of vascularization and

a limited number of proliferating CMs [18], demonstrating the

variation in evolutionary conservation of regeneration even

within closely related species.

Similar to zebrafish, axolotls are also capable of replacing

tissue following apical amputation [19,20]. Here again the

repair process begins with the formation of a blood clot

followed by CM cell cycle re-entry. The newt also retains

the ability to regenerate the heart post-resection; however,

not all CMs re-enter the cell cycle [21,22]. Moreover, replen-

ishment of CMs in the newt is initiated by tenascin-C, a

component of the extracellular matrix (ECM) [23], rather

than infiltration of resident progenitor cell populations such

as is the case with other models of regeneration. For this

reason, the newt heart is an attractive model for understand-

ing the mechanism(s) involved in CM proliferation and, more

importantly, inhibitors of this process.

Recent studies on the ability of the neonatal murine heart

to regenerate following injury would suggest that the mam-

malian heart does in fact harbour regenerative capabilities,

albeit limited to immature stages: murine hearts undergo

full regeneration post-MI from post-natal day 1 (P1), with

loss of regenerative capacity evident by P7 [24,25]. Irrespec-

tive of species differences, a common thread between the

aforementioned in vivo models is their ability to maintain

CM proliferation throughout adulthood. This mechanism is

largely lost in adult mammalian hearts, and while there are

reports of proliferating CMs [26–28], there are too few to

make any impact on the repair process.
3. Epicardial signalling
A common theme with successful models of regeneration is

their ability to facilitate CM proliferation and the perfusion of

injured tissue via neovascularization, of which the epicardium

plays a central role. The epicardium contributes to heart devel-

opment through secretion of a number of factors and controlled

expression of developmental genes that have been shown to

be instrumental to normal heart development. Collectively,

these epicardial makers identify a cell population that is

capable of giving rise to cell lineages that are deemed to be epi-

cardially derived and therefore of mesothelial descent, which

goes to explain how once activated and under optimum con-

ditions the epicardium can give rise to fibroblasts, smooth

muscle cells and endothelial cells. In addition, the epicardium

has been described as a source-pool for cardiac stem cells

(CSCs) [29–32]. These unique features of the epicardium and

their respective signalling mediators will be discussed in the

following paragraphs.

(a) Wilms tumour gene
Wilms tumour gene 1 (Wt1) is a transcription factor that is

expressed in many tissues, including the urogenital system,

spleen, brain, spinal cord, mesothelial organs, diaphragm,

limb, proliferating coelomic epithelium, epicardium and subepi-

cardial mesenchyme, during development [33,34]. Disruption

of Wt1 activity results in developmental abnormalities, and

Wt12/– mice are embryonic lethal at embryonic day 12.5

(E12.5), with heart failure being one of the contributing factors

to their early demise [33]. In the adult mammalian heart, Wt1

is reactivated following MI [35,36], although the specificity of

Wt1þ cells epicardial origin has been questioned. Wagner et al.
identified Wt1þ endothelial and vascular smooth muscle cells

in the infarct and border zone, and attributed observed de

novo neogenesis to Wt1þcells activated by hypoxia [35].

In addition, Duim et al. have recently identified a population

of Wt1þ endothelial cells that undergo proliferation in a

hypoxic environment both in vitro and in vivo following MI

[37]. In contrast, Zhou et al. attribute the beneficial impact of

Wt1þ cells in infarcted hearts to paracrine signalling and

secretion of proangiogenic factors, rather than to a rise in Wt1þ

endothelial cells [36]. Despite these conflicting reports, there is

substantial evidence to show that Wt1 is activated following

injury and, once activated, contributes to angiogenesis. Fate

mapping studies have revealed Wt1 is expressed in endothelial

cells, which points to its unsuitability as an exclusive epicardial

marker. Although initially hampered by the lack of a definitive

lineage trace model [38], collectively these in vivo studies demon-

strate the beneficial impact of reactivating Wt1 in the adult

epicardium, and establish a link between Wt1 expression and

vascular formation.
(b) Thymosin b4
The G-actin sequestering peptide thymosin b4 regulates

actin-cytoskeletal organization necessary for cell motility,

organogenesis and other cell functions. Following MI, thymo-

sin b4 has been shown to induce epicardially derived cells

(EPDCs) to form vascular precursors and prompt neo-

vasculogenesis [39,40]. Rossdeutsch et al. identified thymosin

b4 expression in embryonic endothelium, and demonstrated

that it promotes mural cell maturation and differentiation,

and embryos lacking thymosin b4 were subjected to severe

haemorrhaging (which in some cases proved to be lethal)

[39]. A follow up study by Smart et al. has demonstrated that

the addition of exogenous thymosin b4 can enhance cardiac

repair by directing Wt1þ cells to undergo cardiomyogenesis

[41], confirming earlier findings [42]. The proangiogenic effects

of thymosin b4 in the adult heart were confirmed in a study

by Shrivastava et al. [43] where mice were given a systemic

injection of thymosin b4 immediately following MI injury,

resulting in an increase in vessel density at the border zone

and remote zone, and demonstrating the global effects of

thymosin b4. In vitro data from the same study attributed the

proangiogenic effects of thymosin b4 to protein kinase C sig-

nalling and confirmed that thymosin b4 can reactivate

epicardial embryonic genes, including Wt1 and Tbx18 [43].

In addition, Rui et al. [44] have extended the cardiac

regenerative capacity of neonatal mice by pre-treatment

with thymosin b4. Here, neonatal mice were subjected to

daily intraperitoneal injections of thymosin b4 from P1 to

P7; apical resection was performed at P7, and 19 days post-

injury neonatal hearts displayed complete regeneration,

which was attributed to an increase of WT1þ cells. Notably,

post-injury mice continued to receive intraperitoneal injec-

tions of thymosin b4 on alternate days until the study was

terminated, potentially affecting the validity of the claimed

extension of the neonatal window.

Conversely, a report by Banerjee et al. failed to document any

effect of thymosin b4 on mural cell migration, angiogenesis or

embryo development. In this study, thymosin b4 knockout

models were not embryonic lethal and a lack of thymosin b4

had no impact on vascular development [45]. These contrasting

results have been attributed to variation of environment or

genetic background, resulting in differing compensatory
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mechanisms in response to the loss of thymosin b4 between

strains [46]. Contrasting data on mural cell activity has also been

attributed to the different time points at which mural cell activity

was assessed between these studies. Since thymosin b4 seems to

have a global impact on the heart, particularly in response to

injury, teasing out a specific role for this molecule is likely to gen-

erate a number of contrasting views. Future investigations into the

role of cardiac thymosin b4 are eagerly anticipated.

(c) Follistatin-like-1
A recent study has demonstrated the potential clinical

application of follistatin-like-1 (Fstl1) as a catalyst for CM replen-

ishment [47]. Fstl1 is a secreted glycoprotein and has been

described as a cardiokine (cardiac secreted protein that can be

used as a biomarker of cardiac dysfunction). Fstl1 belongs to

the follistatin protein family, which mediate their effects by

binding to transforming growth factor b (TGFb) [48]. It is

expressed in the developing heart and in the epicardium of

the adult heart. Following either MI or ischaemic reperfusion,

Fstl1 is upregulated in murine models [49]. In addition, Fstl1

has been detected in circulation in patients with acute coronary

syndrome and protein levels are increased in failing hearts,

hence its suitability as a biomarker of cardiac dysfunction

[50,51]. The cardioprotective effects of Fstl1 have been associ-

ated with suppression of apoptosis and inflammation [49,52].

Fstl1 activates AMPK signalling, which decreases expression

of proinflammatory genes in both macrophages and CMs

in vitro, and administration of Fstl1 to damaged myocardium

reduces the expression of proinflammatory mediators in areas

of ischaemic damage in vivo [52].

In an exciting extension of these observations, epicardial

patches seeded with Fstl1 were sutured onto the mouse epicar-

dium immediately following MI injury, which resulted in

CM cell cycle re-entry and division of existing CMs [47]. Only

epicardially derived FStl1 could initiate cell division of CMs,

whereas myocardial Fstl1 did not evoke CM cell division. This

effect was specific to naive CMs (i.e. adult ventricular CMs did

not undergo cell division in response to Fstl1). Intriguingly,

this study shows that the source of Fstl1 determines its regenera-

tive (epicardial) versus cardioprotective (myocardial) potential.

Taken together, these studies shift the focus from Fstl1

as a biomarker to a viable therapeutic that is ripe for

clinical exploration.

(d) T-box genes
Several T-box family transcription factor genes have been

implicated in cardiac regeneration. Studies have demonstrated

that epicardially derived Tbx18þ cells give rise to CMs [53,54],

although it should be noted that these findings were later dis-

puted as Tbx18 was subsequently detected in the myocardium

[55]. Thus claims that new CMs solely originate from the epicar-

dium cannot be substantiated. Nevertheless, Tbx18 has been

shown to be upregulated following MI with a similar expres-

sion pattern to Wt1 [36]. Moreover, Tbx18 has been shown to

be upregulated following priming with thymosin b4 [41].

Interestingly, Tbx20 has been identified in cardiac fibro-

blasts as a key regulator of myofibroblast differentiation

[56]. Moreover, Tbx20 has been shown to regulate scar for-

mation following MI; in vivo models devoid of fibroblasts

expressing Tbx20 develop thicker scars [56]. This study high-

lights a unique role for cardiac fibroblasts in managing scar

formation following MI.
(e) C/EBP
A study by Huang et al. has identified the C/EBP transcription

factor family to be key for neutrophil-mediated activation of the

epicardium following MI [57]. Disruption of C/EBP signalling

in the epicardium blunted the inflammatory response following

ischaemic reperfusion injury, resulting in inhibition of invading

neutrophils, the net result of which was reduced scar formation.

This study offers key insights into myocardial scar and epicar-

dial communication, highlighting the fine balance between

inflammation and repair, and defining a novel role for the epi-

cardium as a modulator of the inflammatory response: an

interesting hypothesis worthy of further investigation.

( f ) Hypoxia-inducing factor
Hypoxia-inducing factor-1a (HIF-1a) is upregulated following

MI and increases vascular endothelial growth factor (VEGF)

expression in ischaemic tissues [58,59]. Furthermore, myocar-

dial overexpression of HIF-1a increases vascular density,

reduces scar formation and improves cardiac function [60]. Fol-

lowing MI, HIFs are expressed by numerous cell types,

including CMs, interstitial cells and endothelial cells [61]. Nota-

bly, HIFs have been shown to occupy distinct sites within the

epicardium that correspond with coronary vasculogenic pat-

terning [62]; this may be in conjunction with HIF-mediated

expression of Wt1 [63]. Furthermore, constituent expression

of HIF-1a in avian epicardium via a viral vector showed that

although EPDC epithelial mesenchymal transition (EMT) was

enhanced, migration of EPDCs into the myocardium was

impaired [64]. Thus, while HIF-1a may be important for driv-

ing vasculogenesis, it can also serve as a negative regulator of

EPDC migration.

(g) Retinoic acid
Epicardially derived retinoic acid (RA) synthesizing enzyme 2

(Raldh 2) is responsible for CM proliferation and differentiation,

as well as ventricular maturation and angiogenesis [65]. Further-

more, Raldh 2 plays an important role in cardiac development;

indeed, mice lacking retinoid X receptors die mid-gestation due

to detachment of the epicardium [66,67]. In adult zebrafish,

endocardial Raldh 2 has been shown to be intrinsic to repair

of the heart following resection [68]. Inhibition of RA receptors

or RA-degrading enzyme blocked the regenerative response of

the zebrafish heart [68]. Furthermore, a lack of Raldh 2

expression in the endocardium of the medaka is suggested as

a key factor for their inability to regenerate [18]. In murine

hearts, RA signalling is reactivated following MI, and may

play an important role in the repair and remodelling processes

post-ischaemic injury due to its anti-proliferative effects on car-

diac fibroblasts [69]. The use of RA as an anti-proliferative

treatment following MI is an exciting prospect for future thera-

peutic interventions; indeed, RA derivatives have been used to

suppress proliferative diseases such as prostate, lung, breast,

skin, ovarian, bladder and oral cancer [70]. Further investi-

gations are warranted to elucidate the contribution of RA

signalling to repair of the mammalian heart.

(h) Growth factors
Migration of EPDCs to the myocardium is key to regenerating

damaged myocardial tissue; therefore manipulation of myo-

cardial fibroblast growth factor (FGF) to epicardial FGF

receptor 1 (FGFR1) presents an interesting model for
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myocardial mediated self-repair. Epicardial FGFR1 is up-

regulated following activation of myocardial FGF [71]. In

addition, overexpression of myocardial FGF results in

increased EPDC expression of FGFR [72]. Furthermore, the

FGF family has also been implicated in regeneration of the zeb-

rafish adult heart. Here, FGF 17b has been localized to the

myocardium, while FGFR2 and FGFR4 were found in the epi-

cardium [73]. These studies suggest that the expression of

FGF in the myocardium can regulate FGFR expression in the

epicardium—the result of which is epicardial cells undergoing

EMT [72,73]. Interestingly, studies on explant hearts show

that activation of FGFR is important for the migration of

proepicardial cells to the subepicardium and myocardium [72].

Similarly, there is evidence to support involvement of

growth factors such as platelet-derived growth factor

(PDGF) and TGFb and VEGF in myocardial to epicardial

communication. As with FGFs, PDGF and VEGF factors pro-

mote EMT and favour the fate of vasculogenesis [74,75],

while TGFb favours smooth muscle cell differentiation [76].

The other major invading cell type following MI are

macrophages, which are an abundant source of cytokines, che-

mokines and growth factors including insulin-like growth

factor 1 (IGF-1). Several studies have demonstrated the ben-

eficial impact IGF-1 has on the heart following MI [77–79];

forced cardiac-specific overexpression of IGF-1 improves car-

diac function and reduces scar formation post-MI [77].

Macrophages also secrete proangiogenic factors including

VEGF and TGFb, and have been shown to contribute to angio-

genesis post-injury [80–82]. Increasingly, macrophages are

being recognized for more than their ability to invade and pha-

gocytose debris, and indeed their ability to secrete cytokines

and chemokines at injured sites makes them an attractive pro-

spect for clinical interventions. Recently, macrophages have

been implicated in the neonatal regenerative response [83].

Although there are difficulties in determining which popu-

lations are contributing to the repair process (resident versus

circulatory), their role in the repair of the mammalian heart

merits further investigation.
4. Epicardial signalling: clinical application
Providing an adequate vascular supply that can meet the meta-

bolic demands of CMs and facilitate clearing of the debris from

the immune response is a critical step towards restoring cardiac

function. Therefore, the ability to initiate angiogenesis is key to

the repair/regenerative processes. EPDCs have the ability to

differentiate to coronary lineages and the majority of paracrine

signalling from the epicardium is proangiogenic (figure 1).

Given that endogenous repair mechanism(s) in the adult

favour angiogenesis, methods to improve reperfusion should

be a primary focus of regenerative medicine, as replacement of

CMs will not be successful without the necessary infrastructure

to meet the demands of these highly metabolic cells.

To this end, the use of biomaterials such as hydrogels or

patches could have a significant impact. Here, cells are incor-

porated within a gel or patch which can then be injected or

applied to the epicardium [84–87]. In theory, cells can migrate

to the injured myocardium-secreting paracrine factors to

enhance the repair process. This approach may also have the

additive effect of activating the epicardium to secrete key fac-

tors such as Wt1, RALDH, thymosin b4 or Fstl1. Indeed, a

recent study using an IGF-1-loaded fibrin patch post-MI in a
porcine model reported improved cardiac function [88].

The use of cardiac patches also has the added benefit of provid-

ing mechanical support to the weakened epicardium post-

ischaemic injury [89]. Although this approach is still in its

infancy, and considerations such as the immune response

and potential rejection of these materials need to be fully

assessed, it does seem an intriguing therapeutic avenue.
5. Cardiac stem cells
The heart contains a number of distinct CSC populations;

EPDC, stem cell antigen-1 (Sca-1), c-Kit, cardiosphere-forming

CSCs and side population (SP) progenitors. Although a variety

of CSCs exist, they all share a common feature: their reported

ability to give rise to all cardiac lineages. Here, the epicardium

again plays a significant role. The epicardium itself is derived

from mesothelial cells, thus it is reasonable to assume that it

can give rise to progenitor cell types [29,42,54,90,91]. Further-

more, the reactivation of embryonic cell markers post-MI

such as Wt1 demonstrates that the epicardium retains signa-

ture gene expression patterns that are intrinsic to fetal growth

and development, and therefore potentially maintains the

necessary machinery for repair. Moreover, studies have

shown that EPDCs are capable of undergoing EMT in adult

hearts giving rise to smooth muscle cells [90].

One CSC population that has divided opinion within the

field is that of cKitþ cells, with recent investigations disputing

earlier findings that demonstrated cKitþ cells give rise to CMs.

Orlic et al. first reported that bone marrow-derived cKitþ cells

regenerate the myocardium following MI and reported cKitþ

cells as CSCs [92]. This was later disputed by Murry et al.,
who showed that cKitþ cells do not give rise to CMs [1].

Later studies confirmed these observations and went on to

claim that CMs are derived from pre-existing CMs [27]. How-

ever, a study by Ellison et al. [32] argued that cKitþ cells are

not only necessary but are sufficient to mediate repair to the

damaged myocardium. Conclusively, a thorough investigation

using genetic lineage-tracing models demonstrated that cKitþ

cells do indeed give rise to CMs in both uninjured and injured

tissue, but at a much lower rate than previously reported [93].

With this question outstanding, the field currently errs on the

side of caution with regard to the potential of cKitþ cells as a

pool of CM precursors.

Irrespective of these discrepancies, ongoing studies are

investigating cardiospheres, essentially clusters of proliferating

mesenchymal/stromal cells that express cKit. This unique cluster

formation is thought to enhance ‘stemness’ [94]. Interestingly, as

cardiospheres diverge to a monolayer, they lose their cKit

expression. Given that cluster formation recapitulates a stem

cell-like microenvironment, it is not unreasonable to assume

that cKit plays a role in this structure formation. Post-MI, cardio-

sphere injection has been shown to be more effective in improving

cardiac function than injections of monolayer cells [95]. The thera-

peutic benefits of cardiospheres over cell monolayers is attributed

to enhanced expression of ECM and adhesion molecules, as post-

MI these clusters are retained at the site of injury with greater

potency than injection of cells from a monolayer [94]. Thus, injec-

tion of multicellular spheres may prove to be the way forward for

successful stem cell treatment.

Other CSCs have been identified based on their expression of

Sca-1. Sca-1 is a ubiquitous stem cell marker associated

with haematopoietic stem cell lineages. In the heart, Sca-1
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expression is used to distinguish CSCs from differentiated cells.

The Sca-1þ population was first observed in endothelial cells

that also expressed cardiac transcription factors such as myocyte

enhancer factor 2 (Mef 2) and GATA 4 [96]. Moreover, these cells

were shown to give rise to CMs in vitro and in vivo [96,97]. Other

studies have reported that Sca-1þ cells can give rise to CMs, endo-

thelial cells and fibroblast cells [31,98]. Recent studies have

identified a Sca-1 population derived from endothelial lineage

that can migrate and give rise to CMs [99]. Notably, a Sca-1

gene analogue has yet to be found in the human genome and

therefore caution should be taken when extrapolating these find-

ings to the human heart. However, the murine Sca-1 antibody

has been used to isolate Sca-1þ cells from the human heart, pre-

sumably cross-reacting with a related peptide, and these

populations were also found to express GATA 4 and Mef 2 [100].

Further studies have led to the discovery of another

progenitor population, referred to as SP. These cells are charac-

terized by their unique ability to exclude Hoechst dye via the

ATP-binding cassette transporter [101]. The cardiac SP popu-

lation which is Sca-1þ and CD312 has been shown to be

immunophenotypically distinct from bone marrow-derived

SP population, and is capable of self-renewal and giving rise

to functionally mature CMs [102].

A recent study has demonstrated that PDGRa is necessary

for the clonogenicity of SP cells and proposes that SP cells

may be isolated based on PDGRa expression [103]. SP express

cardiac transcription factors such as GATA 4 [102], thereby

demonstrating their tendency towards cardiac-specific lineages.

Post-MI, SP cells are initially depleted but are restored again by

day 7, evidenced by a rise in the proliferation marker Ki67 [104].

This would suggest that SP cells contribute to the repair process

following MI; however, their marked depletion at the critical

24 h period could have a profound effect on the course of the
repair process. Perhaps if the SP population is somehow main-

tained following the initial injury, then the loss of CMs may

be more readily appeased as the resident progenitor pools can

readily replace lost CMs (figure 1).
6. Clinical application
While the evidence supports the existence of CSCs in the adult

heart, these endogenous populations are often insufficient

to repair the heart following MI. It is likely that the primary

function of these populations is to support homeostatic main-

tenance under normal physiological conditions as opposed

to mediating repair following severe injury such as MI.

Nonetheless, if it were possible to sustain these populations,

particularly 24 h post-MI, then such a repair process could

positively contribute in the face of such significant CM

depletion post-MI. Certainly, the capacity of CSCs to give rise

to various cardiac lineages is certainly a feature that needs to

be exploited. Accordingly, the method by which CSCs are

delivered to the site of injury appears to be a major influence

on their regenerative effect.

There have been many studies that demonstrate the regen-

erative effects from intramyocardial injection of stem cells

(generally bone marrow-derived) following MI [105–107].

However, translating this approach to the clinic is hampered

first by the difficulty in stem cell isolation and expansion. As

previously discussed, many parameters are used to define

CSCs, and isolating these cells is often a laborious task, with

great care needed to ensure a pure population is obtained,

although it has been demonstrated that SP cells can be effec-

tively isolated based on PDGFRa expression as opposed to

the current dye exclusion methods [103]. Second, the number
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of cells that are successfully engrafted is often much lower than

those administered, so the mechanism by which stem cells exert

their effects remains unclear, with varying reports of a paracrine

effect [108,109], a result of fusion with endogenous cells [110] or

transdifferentiation [111]. Third, recent data from clinical trials

point to the ineffectiveness of stem cells, particularly bone

marrow-derived stem cells, in treatment of cardiovascular dis-

ease, with many of these trials describing a positive outcome

that was later found to be flawed by inaccurate reporting [112].

These setbacks in the clinical application of CSCs serve to

reinforce the necessity for caution when interpreting results.

However, recent clinical revelations should not impede pre-

clinical advancements being made with CSCs. Initial studies

with allogeneic cardiospheres using rodent models noted

improved cardiac function, reduced scar formation and

overall less damage to the myocardium [95]. The CADUCEUS

(cardiosphere-derived autologous stem cells to reverse ventri-

cular dysfunction) clinical trial reported similar findings and

further clinical trials are being considered [113].

Given the diverse populations that make up the heart, per-

haps a combination approach, such as that as demonstrated by

Ye et al. [88] may prove to be a more worthwhile intervention

to assist the repair process. Here, a trilineage engraftment con-

sisting of CMs, ECs and SMCs derived from human-induced

pluripotent stem cells (hiPSCs) was supported by pre-appli-

cation of an IGF-1-loaded fibrin patch. The overall result was

improved cardiac function with a greater engraftment rate

than previously reported. This study was terminated four

weeks post-cell injection; therefore, it is difficult to determine

the long-term benefits. However, it does set a precedent for

future in vivo approaches.
7. Conclusion
While cardiac regeneration appears to be easily achieved by

lower vertebrates and amphibians, the adult mammalian

heart struggles to function and mediate repair simultaneously.

Until recently, the epicardium has been overlooked as being a

key player in the repair/regenerative process. Today it is the

focus of intense research, with many studies concentrating

on the stem cell potential of this region of the heart. Although

resident CSCs have been identified, the insufficiencies of

endogenous stem cell populations to alleviate acute and chronic

damage to mammalian cardiac tissue remain to be overcome.

Therapeutically speaking, identifying methods to sustain stem

cell populations during ischaemic damage may also prove fruit-

ful in terms of replenishing lost CMs. Moreover, combination

approaches exploiting the use of biomaterials and cell-based

therapies are making remarkable advances. In addition, there

have been various studies examining epicardial development,

and these have aided our understanding of the adult mamma-

lian heart injury response. Evidently, the epicardium is key to

mediating repair; as a signalling powerhouse and cell reservoir,

it is certainly equipped to do so. However, cardiac repair

requires a speedy and robust approach, and although advances

are being made we are still far from contriving an ‘off the shelf’

cure for the masses affected by heart failure.
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