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Genome-wide association studies (GWAS) have identified several common variants associated with bipolar disorder (BD), but the
biological meaning of these findings remains unclear. Integrative genomics—the integration of GWAS signals with gene expression
data—may illuminate genes and gene networks that have key roles in the pathogenesis of BD. We applied weighted gene co-expression
network analysis (WGCNA), which exploits patterns of co-expression among genes, to brain transcriptome data obtained by sequencing
of poly-A RNA derived from postmortem dorsolateral prefrontal cortex from people with BD, along with age- and sex-matched controls.
WGCNA identified 33 gene modules. Many of the modules corresponded closely to those previously reported in human cortex. Three
modules were associated with BD, enriched for genes differentially expressed in BD, and also enriched for signals in prior GWAS of BD.
Functional analysis of genes within these modules revealed significant enrichment of several functionally related sets of genes, especially
those involved in the postsynaptic density (PSD). These results provide convergent support for the hypothesis that dysregulation of genes
involved in the PSD is a key factor in the pathogenesis of BD. If replicated in larger samples, these findings could point toward new
therapeutic targets for BD.
Neuropsychopharmacology (2016) 41, 886–895; doi:10.1038/npp.2015.218; published online 11 November 2015
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INTRODUCTION

Bipolar disorder (BD) is a debilitating and highly heritable
psychiatric disorder whose genetic etiology is largely
unknown. Candidate gene, genome-wide association
(GWAS), and gene expression studies have all implicated a
variety of genes, but a coherent theory of pathogenesis has
not yet emerged. Multiple variants in many genes often come
together into several gene networks and fewer biological
pathways. This points to the powerful strategy, known as
‘integrative genomics’ (Schadt, 2006), to address the extreme
genetic heterogeneity seen in many common illnesses. This
strategy has proven to be of value in interpreting the
multigenic signals that have been observed in GWAS, copy
number variation, and de novo mutation studies of many
common neuropsychiatric diseases (Walsh et al, 2008; Choi
et al, 2011; Fromer et al, 2014) but has so far been little
studied in BD.

Many of the common genetic variants identified by GWAS
lie in the regulatory regions, where they can affect the
expression of nearby genes (Maurano et al, 2012). Much of
the impact of genetic variation on gene expression is tissue-
dependent (Andersson et al, 2014). Non-protein-coding
genes that produce regulatory RNAs also appear to have an
important role in fine-tuning of gene expression over
development and in response to environmental stressors
(Barry, 2014). It has also become clear that most genes,
especially those expressed in brain, produce a number of
distinct messenger RNA molecules, or transcripts, owing
to alternative splicing, differential exon usage, and other
posttranscriptional modifications (Barry, 2014).
Thus, the integration of GWAS signals with gene

expression data requires a sensitive, tissue-specific approach
that can assess differences in transcript abundance, non-
coding RNAs, and posttranscriptional modification. Next-
generation sequencing of RNA, known as RNA sequencing
(RNA-seq), addresses many of these needs better than
traditional gene expression microarrays, providing a more
complete picture of the ‘transcriptome’ (McGettigan, 2013).
As a first step toward an integrative genomics strategy in

BD, we sequenced RNA derived from postmortem brain
obtained from individuals with BD and matched controls.
Our initial analysis of these data detected many differentially
expressed (DE) genes in BD. These genes have important
roles in neuroplasticity, circadian rhythms, and GTPase
binding (Akula et al, 2014). When we integrated these data
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with the results from previous GWAS of BD, we found
that DE genes in the GTPase pathway were also enriched
for single nucleotide polymorphisms (SNPs) that were
associated with BD. This suggested that differential expres-
sion of these genes was not just a consequence of BD or its
treatment, but also reflected inherited genetic variation
associated with disease risk. However, that study was limited
by analysis methods that focused on individual genes and
transcripts, without regard to their correlated patterns of
expression.
Here, we performed a complete re-analysis of the same

RNA-seq data using methods that exploit the correlated
patterns of expression among groups of genes. We used
weighted gene correlation network analysis (WGCNA)
(Langfelder and Horvath, 2008), a widely used method that
finds modules of highly correlated genes, relates these
modules to one another, and tests the influence of sample
phenotypes on gene expression correlations. WGCNA has
been widely used to identify co-expressed gene networks in
various human brain regions (Oldham et al, 2008), animals
(Fuller et al, 2007; Langfelder et al, 2012), and in human
phenotypes, including schizophrenia (Torkamani et al,
2010), autism (Voineagu et al, 2011), cancer (Clarke et al,
2013), aggressive behavior (Malki et al, 2014), BD (Chen
et al, 2013a), and psoriasis (Li et al, 2014). However, aside
from one study of a few gene networks (Hong et al, 2013),
WGCNA has not yet been applied to the complete brain
transcriptome in BD as revealed by RNA-seq.
WGCNA detected a number of robust gene expression

modules, several of which were enriched for GWAS signals.
Functional analysis of genes within one of these modules
revealed significant enrichment of several functionally
related sets of genes, especially those involved in the
postsynaptic density (PSD). These results provide convergent
support for the hypothesis that dysregulation of genes
involved in the PSD is a key factor in the pathogenesis of
BD. If replicated in larger samples, these findings could point
toward new therapeutic targets for BD.

MATERIALS AND METHODS

Samples and RNA-Seq

RNA extracted from the dorsolateral prefrontal cortex of
postmortem brains of 11 BD cases and 11 age- and
sex-matched controls obtained from the Stanley Medical
Research Institute and NIMH Brain Bank was sequenced at
the National Institutes of Health Sequencing Center (NISC)
using Poly-A selection. Sequencing was performed in two
batches: 5 BD cases and 5 controls (NISC1), and 6 cases and
6 controls (NISC2). Owing to technical issues, one BD
sample in NISC1 was excluded after initial quality control.
Details about sample phenotypes, RNA-seq methods, and
extensive quality control procedures are published elsewhere
(Akula et al, 2014), and so will only be briefly summarized
here. NISC1 and NISC2 cases and controls were randomized
within each batch across lanes and sequenced from both
ends (paired-end) on Illumina GA-IIx or HiSeq systems,
respectively (Illumina Inc, San Diego, CA). Sequencing of
cases and controls within each batch was performed in the
same run in order to avoid batch-run effects.

TopHat (TopHat version2.0.4; http://tophat.cbcb.umd.
edu/) (Trapnell et al, 2009) was used to map the reads to
the reference human genome (hg19). A total of 2.3 billion
mapped reads from NISC1 and 4.3 billion mapped reads
from NISC2 were included in the downstream analyses.
HTSeq (http://www-huber.embl.de/users/anders/HTSeq/
doc/overview.html) was used to obtain the read counts per
gene based on Ensemble gene annotation (http://ftp.ensembl.
org/pub/release-67/gtf/homo_sapiens/).

Gene Selection for Co-Expression Analysis

A total of 17 296 genes and 16 919 genes were selected after
QC in NISC1 and NISC2, respectively. Of these, 16 571 genes
were common to both these datasets and were thus included
in the downstream co-expression analysis. Read counts were
normalized using DESeq (Anders and Huber, 2010), and the
resulting variance-stabilized transformed data were used
in the downstream analysis. Weighted gene co-expression
network analysis (WGCNA) was used to identify the
co-expression modules (sub-networks) in BD (http://labs.
genetics.ucla.edu/horvath/CoexpressionNetwork/Rpackages/
WGCNA/). The co-expression analysis pipeline is shown is
Supplementary Figure S1.

Weighted Gene Co-Expression Network Analysis
(WGCNA)

In WGCNA networks, genes are represented as nodes and
edges represent the correlation in expression (edge-weight)
between gene pairs. The connection strength (adjacency)
between two genes is calculated by raising the correlation to a
specific power, β, which must be estimated with each dataset.
Supplementary Figure S2 shows the relationship between the
β and scale free topology fitting index in NISC1 and NISC2.
At β= 12, networks created by WGNCA showed 475% scale
free topology in both datasets, so a value of 12 was used
in this study. We used biweight correlation instead of
the default Pearson correlation, because it is robust and
resistant to outliers (Gaiteri et al, 2014). WGCNA identifies
co-expressed genes and puts them into networks or modules.
Minimum module size was set to 50 genes per module. Here,
we used the terms co-expressed networks and co-expressed
modules interchangeably, but we recognize that these terms
are sometimes considered distinct (Dong and Horvath,
2007). Genes that did not belong to any module were
assigned to a ‘grey’ module; this was excluded from further
analysis.
First, we identified the modules that were observed in both

the NISC1 and NISC2 samples. These are referred to as
‘consensus modules’. Then, we tested whether the connec-
tivity in consensus modules was preserved across both
datasets (Langfelder and Horvath, 2007; Langfelder et al,
2011). Default parameters were used when identifying
consensus and preserved modules. The R code, along with
the data files used in this analysis, can be downloaded from
http://intramural.nimh.nih.gov/humangenetics/data.html.
WGCNA calculates a module eigengene value, the first

principal component of that module, for every sample. These
module eigengene values were tested for correlation (Pearson
correlation) with diagnosis of BD; a Student t-test (df= n− 2)
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was used to estimate the statistical significance of the
correlation coefficients.
Case and control samples were matched on age and sex.

To test for potential impacts of unmatched factors, we used
linear regression and ANOVA to test for association between
module eigengene values and known biological (smoking
and cause of death) and technical (RNA-integrity number
and sequencing) variables.
As NISC1 and NISC2 samples were sequenced separately

on different platforms, the results were calculated within
each sample, and then combined by meta-analysis. Fisher’s
Chi-square method was used to combine the p-values of
preserved modules in NISC1 and NISC2, which generated a
meta-p-value under a chi-square distribution with two
degrees of freedom. We used the Benjamini false discovery
rate for multiple test correction (http://www.sdmproject.
com/utilities/?show= FDR). Only preserved modules with
Zsummary410 (Langfelder and Horvath, 2007; Langfelder
et al, 2011) whose eigengene was correlated in the same
direction with BD in both the NISC1 and NISC2 samples
were used in the downstream analysis.

DE Genes in RNA-seq Data

To test which of the modules were significantly enriched
with genes that are DE in BD, we compared the genes in each
of the modules with the 1225 DE genes reported in our
earlier study (gene-level p-valueo0.05 in Akula et al, 2014).
A hypergeometric p-value was calculated to test the
significance of overlap.

GWAS Enrichment Analysis

Postmortem gene expression data alone cannot distinguish
between genes whose expression changes are the result of an
illness or its treatment and genes that have a role in etiology.
As inherited DNA variation is not influenced by illness or
treatment, genes that carry inherited variants associated with
illness are more likely to lie within causal pathways. Thus, we
performed GWAS enrichment analysis in order to help
differentiate between ‘causal’ and ‘non-causal’ gene modules.
(Detailed methods can be found in Akula et al, 2014). In
short, quasi-independent (r2o0.5) SNPs included in each of
two published meta-analysis studies (Psychiatric GWAS
Consortium Bipolar Disorder Working Group, 2011; Chen
et al, 2013b) were assigned to their closest genes. We
calculated the total number of SNPs (N) with p-valueo0.05
in all the genes (Noriginal) in a functional category. We then
randomly selected N number of SNPs 10 000 times (Nrandom).
Lastly, we calculated the number of times Nrandom⩽Noriginal

and divided by 10 000 to obtain an empirical GWAS
enrichment p-value. The minor allele frequency distributions
for the test and random sets were almost identical. This
approach accounts for any bias that might be introduced by
variable patterns of inter-SNP linkage disequilibrium, minor
allele frequency, or gene length. We further validated our
GWAS enrichment results by another gene set enrichment
analysis program, MAGENTA (nPermutations= 10 000)
(Segre et al, 2010) which also accounts for gene length bias.

Functional Enrichment Analysis

WGCNA calculates an eigengene-based connectivity
(kME or module membership) score for each gene in a
module, which is the Pearson correlation between that gene’s
expression and its corresponding eigengene. Genes with
consistent kME values (o0 or 40) in both NISC1 and
NISC2 were subjected to functional enrichment analysis by
use of the Database for Annotation, Visualization and
Integrated Discovery (DAVID) (Huang et al, 2009a, b).
The genes represented in the entire transcriptome dataset
(n= 16 571) were used as background. We used medium to
high stringency. Gene ontology (GO) terms with Benjamini
qo0.05 were declared significant.

Co-Expression Networks from Microarray Studies

We compared our co-expression modules from RNA-seq
with those generated in two previous studies that used
microarray data (Oldham et al, 2008; Chen et al, 2013a). We
tested the significance of gene overlap between modules by a
hypergeometric test, with universe values equal to the
number of genes passing QC in both studies. Universe
values of 8395 and 13 514 were used for comparisons with
the Oldham et al (2008) and Chen et al (2013a) studies,
respectively. Comparisons with the Oldham et al (2008)
results were limited to modules generated in human cortex.
As there is no one-to-one relationship of modules between
the microarray and RNA-seq studies, we did not attempt to
replicate the findings in Chen et al (2013a), but instead
report overlapping modules and their association with BD in
both studies.

Cell-Type Enrichment of Co-Expression Networks

Oldham et al (2008) also report gene expression signatures
typical of particular cell types in human brain. Their results
indicate modules enriched for oligodendrocytes, astrocytes,
neurons, and synapses. In order to test whether any of our
21 modules were enriched for gene expression signatures
reflecting these cell types, we compared our modules to those
from Oldham et al (2008) using a hypergeometric test.

RESULTS

Gene Co-Expression Networks

A total of 33 consensus co-expression modules were detected
(Supplementary Figure S3). All 33 modules were highly
preserved in both the NISC1 and NISC2 data sets
(Zsummary410; Supplementary Figure S4). The number of
genes in each module varied from 74 to 2766, with an
average of 446 (Supplementary Table S1). Comparison with
previously published data (Oldham et al, 2008) showed good
agreement between these modules and those detected in
microarray data from human cortex in individuals without
psychiatric illness (Supplementary Table S2). Twenty-nine of
33 modules significantly overlapped with modules identified
in the Oldham et al (2008) study. This demonstrates that
WGCNA can detect robust modules of co-expressed genes
across a range of data types and individuals.
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Association with BD

Of the 33 preserved modules, 21 were selected for down-
stream analysis because their eigengene values were
correlated with BD in the same direction in both NISC1
and NISC2 (Table 1; Supplementary Table S3 contains the
module membership (kME) values for all genes in these
21 modules). The observed association with BD was not
explained by differences in age or sex, because samples were
matched on these variables. The observed associations were
also not explained by differences in known biological
(smoking and cause of death) or technical (RNA-integrity
number and sequencing depth) covariates (Supplementary
Table S4).
Eleven of the 21 modules were associated with BD at false

discovery rate o0.05 (Table 1). The eigengene values for
each of these 11 modules are depicted in Figure 1 as a
heatmap. This shows that most of the genes within each of
five modules (dark turquoise, green, turquoise, dark orange,
and red) were downregulated in most of the BD cases we
studied, compared with controls. Most of the genes in the
remaining six modules (royal blue, sky blue, light yellow,
dark grey, purple, and yellow) were upregulated in BD. The
module assignments for all genes in the 11 BD-associated
modules are depicted in Supplementary Figures S5 and S6.

Overlap with DE Genes in RNA-seq Data

To assess whether the results of the WGCNA analysis agreed
with those of our previous study, we assessed overlap among

genes within each of the 21 differentially co-expressed
modules identified by WGCNA with genes found to be DE
in our previous RNA-seq study (Akula et al, 2014). There
was a significant overlap in 10 modules (hypergeometric
p-value o0.05), and only 1 module contained no genes
previously identified as DE (Table 1). This shows that the
WGCNA analysis largely agrees with single gene expression
analysis but also identifies additional genes.

Modules Enriched with GWAS Genes (GWAS
Enrichment)

In order to distinguish modules containing genes that may
have a causal role in BD from those whose differential
co-expression may be a consequence of BD or its treatment,
we tested genes within each of the 21 modules for evidence
of association with BD in previous GWAS. Eight modules
were significantly enriched for GWAS-implicated genes
(permutation p-valueo0.05; Table 1), consistent with a
causal role in BD. The remaining modules showed no
evidence of GWAS enrichment.
As GWAS enrichment analyses can be biased by gene size,

we repeated the analyses with MAGENTA (Segre et al, 2010),
which takes gene-length bias into account. Similar results
were obtained (Supplementary Table S5). The red and green
modules were significantly enriched, and the purple module
showed a trend toward enrichment (po0.1), while the dark
turquoise module was not significant in the MAGENTA
analysis.

Table 1 Twenty-one Gene Co-Expression Modules that Showed Consistent Correlation with Bipolar Disorder (BD)

Module BD correlation in
NISC1/NISC2

BD association
p-value

BD association FDR Enrichment of differentially
expressed genes

GWAS enrichment

Yellow +/+ 1.94E-03 0.017 2.20E-16 ns

Light yellow +/+ 2.52E-03 0.017 ns ns

Sky blue +/+ 2.76E-03 0.017 1.66E-05 ns

Dark turquoise − /− 3.58E-03 0.017 ns 3.00E-04

Dark grey +/+ 3.66E-03 0.017 3.53E-09 ns

Purple +/+ 0.005 0.018 2.20E-16 9.00E-04

Dark orange − /− 0.008 0.024 0.031 ns

Royal blue +/+ 0.012 0.032 0.024 ns

Red − /− 0.015 0.035 2.54E-05 8.30E-03

Green − /− 0.024 0.050 2.20E-16 5.80E-03

Turquoise − /− 0.026 0.050 1.79E-06 ns

Light cyan +/+ 0.036 ns ns 5.30E-03

White +/+ 0.049 ns ns ns

Saddle brown +/+ ns ns ns 9.10E-03

Dark olive green +/+ ns ns ns ns

Salmon − /− ns ns ns 0.034

Pale turquoise − /− ns ns 0.033 ns

Blue − /− ns ns ns ns

Dark green − /− ns ns ns 0.016

Dark red +/+ ns ns No overlap ns

Midnight blue − /− ns ns ns ns

Abbreviation: ns, not significant.
‘+’ and ‘− ’ represent increased and decreased gene expression in bipolar disorder, respectively.
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Functional Gene Set Enrichment Analysis

A critical question in this study concerns the potential
functional relationships among the implicated genes. In
order to explore this question, we performed gene set
enrichment analysis in each of the eight gene modules that
were consistent with causal involvement in BD. Three of the
eight ‘causal’ modules (green, red, and salmon) yielded
several significantly enriched GO terms, including: cell-cell
signaling, PSD, ion transport, synapse, regulation of
transcription, and passive transmembrane transporter
activity (Table 2). A few specific GO terms, such as PSD,
synapse, cation channel activity, and ribosomal subunit were
strikingly (42.5-fold) enriched, whereas most of the other
GO terms showed ~ twofold enrichment. (Gene significance
and module membership values for all the genes in the green
module are shown in Supplementary Figures S7 and S8.) Of
the remaining 13 modules that were not enriched for GWAS
signals, 7 modules (blue, dark olive green, dark red, pale
turquoise, royal blue, turquoise, and yellow) yielded

significant enrichment for particular GO terms. These
included zinc ion binding, defense response, immune system
development, response to wounding, proteolysis, and
carboxylic acid binding, among others. Most of the
immune-related GO terms showed 4fivefold enrichment.
The enriched GO terms, along with the genes and their
respective p-values, are given in Supplementary Table S6.
The top 25 genes in each of the modules that yielded
significant functional enrichment results are shown in
Figure 2.

RNA-seq Co-Expression Networks Agree with Those
Implicated in a Published Microarray-Based WGCNA
Analysis

Chen et al (2013a) found 23 co-expression modules that were
associated with BD in multiple microarray datasets. We
calculated the extent of overlap between these modules and
those we found in the RNA-seq data. There was a highly
significant overlap between the co-expressed modules in
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both studies (Supplementary Table S7). Several modules
had corrected hypergeometric p-valueso0.05, indicating the
high reproducibility of the co-expressed gene network
structure, even though fewer genes can be detected by
microarray.

BD-Associated Co-Expression Networks do not Show
Expression Signatures for Specific Cell Types

Comparison with the Oldham et al (2008) data found
evidence of significant gene overlap between several modules
and genes characteristic of oligodendrocytes, astrocytes,
microglia, neurons, glutamatergic neurons, and synaptic
proteins (Supplementary Table S2). The strongest gene
overlaps (450%) were observed for modules characteristic
of oligodendrocytes.

DISCUSSION

To our knowledge, this is the first study to perform WCGNA
analysis on RNA-seq data of the complete brain transcriptome
in BD cases. These results provide a high-resolution account of

the interacting gene networks in brain that are involved in BD.
By incorporating the GWAS signals, we have attempted to
distinguish gene modules that have a causal role from those
that appear to be a consequence of BD or its treatment.
The preserved, differentially co-expressed, GWAS-enriched
modules point toward a number of biological pathways as
important factors in the pathogenesis of BD. Three modules
were associated with BD and enriched for DE genes and BD
GWAS signals. Of these, the green module showed a striking
(4.6-fold) enrichment for genes involved in the PSD (Figure 3).
This finding is noteworthy in light of the several prior studies
that have implicated the PSD in BD and other neuropsychia-
tric disorders (el-Mallakh and Wyatt, 1995; Kristiansen and
Meador-Woodruff, 2005; Beneyto and Meador-Woodruff,
2008; Pennington et al, 2008; Network and Pathway Analysis
Subgroup of Psychiatric Genomics Consortium, 2015). Our
results provide independent support for those findings and
suggest that genes involved in the PSD are a key factor in the
pathogenesis of BD. If replicated in larger samples, our results
could point toward new therapeutic targets for BD among the
numerous proteins active in the PSD (Feng and Zhang, 2009).
This study has several limitations. The sample size was

relatively small compared with the samples used in previous

Table 2 Functional Enrichment of Genes in Co-Expressed Modulesa

Category Module Term Fold enrichment P value Benjamini Q value

Causal Green GO:0014069~ postsynaptic density 4.6 1.09E-04 3.30E-03

GO:0045211~ postsynaptic membrane 3.9 1.27E-05 4.83E-04

GO:0045202~ synapse 3.1 5.61E-09 8.49E-07

GO:0030425~ dendrite 2.8 8.05E-04 2.01E-02

GO:0022803~ passive transmembrane transporter activity 2.8 1.84E-06 4.94E-04

GO:0005261~ cation channel activity 2.6 3.87E-04 1.87E-02

Red GO:0006396~RNA processing 2.9 9.68E-06 1.02E-02

Salmon GO:0045449~ regulation of transcription 2.3 1.31E-05 9.09E-03

Consequential Blue GO:0003735~ structural constituent of ribosome 2.8 9.97E-06 8.14E-03

Dark olive green GO:0045449~ regulation of transcription 3.6 9.45E-04 2.18E-02

GO:0008270~ zinc ion binding 3.2 6.38E-03 4.99E-02

GO:0033279~ ribosomal subunit 16.5 1.41E-03 4.06E-02

Dark red GO:0044445~ cytosolic part 7.7 2.53E-04 1.31E-02

GO:0030529~ ribonucleoprotein complex 3.8 2.22E-04 1.72E-02

Pale turquoise GO:0002684~ positive regulation of immune system process 17.0 5.11E-10 1.36E-07

GO:0045321~ leukocyte activation 16.4 9.17E-12 4.88E-09

GO:0001817~ regulation of cytokines 12.9 1.34E-05 6.48E-04

GO:0002520~ immune system development 10.1 4.08E-07 3.62E-05

GO:0006952~ defense response 8.0 1.58E-07 1.69E-05

GO:0009611~ response to wounding 6.5 1.56E-05 7.24E-04

GO:0009967~ positive regulation of signal transduction 6.4 6.65E-04 2.12E-02

GO:0010033~ response to organic substance 4.0 2.81E-04 1.03E-02

Royal blue GO:0043167~ ion binding 2.1 5.66E-05 6.66E-03

Turquoise GO:0016879~ ligase activity, forming carbon-nitrogen bonds 2.0 6.99E-06 3.73E-03

Yellow GO:0046395~ carboxylic acid catabolic process 3.7 8.19E-05 2.66E-02

GO:0016042~ lipid catabolic process 3.3 5.02E-05 2.29E-02

GO:0031406~ carboxylic acid binding 3.1 1.90E-04 3.33E-02

GO:0006631~ fatty acid metabolic process 3.0 3.56E-05 4.02E-02

aFor modules with multiple GO terms, only those with fold change 42.5 are presented in this table. See Supplementary Table S6 for full details.
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microarray studies. Nevertheless, we were able to successfully
replicate many of the published findings and extend
those findings to non-coding genes and previously
undiscovered functional gene networks. This reflects the
precision and wide dynamic range of high-depth, RNA-seq-
based transcriptome data (Iancu et al, 2012, 2014; Zhang
et al, 2014). Given the small sample size, subtle biological
or technical biases cannot be ruled out. As is inherent in
‘omics’ studies where the number of variables far exceeds
the number of subjects, the results should be cautiously
interpreted until replicated in a larger dataset (Bild et al,
2014). Some of the gene modules that were associated
with BD in this study did not reveal recognized functional
pathways. This may reflect the limitations inherent in
analyses that depend on known relationships between genes
in the published literature. This limitation will diminish as
more empirical gene–gene relationships are revealed. Other
limitations of this study include the focus on only one brain
region and lack of cellular resolution. However, a compar-
ison with published cell-specific gene expression signatures
(Oldham et al, 2008) suggests that several cell types
contribute to these results.

The major strength of this study is the ability to integrate
expression data in groups of genes with risk allele data from
GWAS. We identified 11 modules that were associated with
BD, 4 of which were significantly enriched with GWAS
variants. The results for GWAS enrichment were further
validated using MAGENTA (Segre et al, 2010), which
supported significant GWAS enrichment among genes in
the green and red modules. A significant enrichment of miR-
137 targets among genes in the red module was observed. A
potential causal role for the remaining modules cannot be
ruled out, however, because genes in those modules might
harbor rare single nucleotide or copy number variants that
would not be detectable by GWAS.
As this study relies on the observed co-expression of both

protein-coding and non-protein-coding genes in the brain,
rather than on genetic relationships apparent in the
published literature, it offers a more unbiased account of
genetic relationships in the brain. For example, the analysis
was able to detect several non-protein-coding genes, such as
lncRNAs, that so far are not well understood in the context
of brain function but seem to have a key role in tying
together otherwise disparate sets of genes involved in BD.
Recent research has shown that lncRNAs are highly

Figure 2 Gene co-expression networks in bipolar disorder. The top 25 genes in each of the 10 modules correlated with bipolar disorder are illustrated.
Thickness of the grey lines are proportional to (absolute) magnitude of the observed gene-gene correlations. Colors correspond to those in Table 2.
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conserved and have an essential role in synapse formation
(Bernard et al, 2010; He et al, 2014) and other key aspects of
brain development.
The ‘salmon’ module deserves special mention because it

contains three replicated GWAS hits for BD: TRANK1,
SYNE1, and CACNA1C (Psychiatric GWAS Consortium
Bipolar Disorder Working Group, 2011; Chen et al, 2013b;
Muhleisen et al, 2014). Contingency table analysis (detailed
in Supplementary Table S8) shows that it is highly unlikely
that these three genes would fall into the same module
by chance (Fisher exact p= 0.01). As WGCNA relies on
observed co-expression, rather than reports in the literature,
it was able to pull together genes like CACNA1C, that are
relatively well-studied, with the other genes that are still
relatively understudied in the published literature. However,
we did not detect differential co-expression of the ‘salmon’
module in BD in this sample. This might reflect limited
statistical power, the particular anatomical brain region we
chose to study, or reliance of the GWAS enrichment strategy
on existing studies with limited statistical power.
Several hub genes present in the 11 BD-associated modules

overlap with those implicated in other neuropsychiatric
disorders. For example, over 100 genes overlap with those
within the 108 loci implicated in a recent GWAS of
schizophrenia (Supplementary Table S9) (Schizophrenia

Working Group of the Psychiatric Genomics Consortium,
2014). Eighteen genes overlap with those implicated in
autism (Poultney et al, 2014; Supplementary Table S10). BD,
schizophrenia, and autism are all brain disorders, so
overlapping findings are perhaps not surprising, but they
reaffirm the considerable genetic overlap among these
clinically distinct neuropsychiatric disorders.
The strong evidence of immunological enrichment among

genes in the modules showing no GWAS enrichment points
toward immunological events as a consequence of BD or its
treatment. The results suggest that the most genes in the
immunologically enriched modules are downregulated in
BD, in contrast to the finding of increased expression of
immune-related genes reported in an earlier WGCNA
analysis in autism (Voineagu et al, 2011). However, the
results resonate broadly with a recent report of abnormal
activation of peripheral blood monocytes and lymphocytes in
BD (Gumieiro et al, 2010).
This study has produced results that are overall consistent

with the prior findings, but also implicate novel genes and
biological pathways that may contribute to the risk for BD.
The integration of RNA-seq-based gene expression data with
GWAS data highlights potentially important differences in
gene co-expression networks that contain genes harboring
risk alleles and those that do not. The current findings may

Figure 3 Post-synaptic and ion channel genes in the green module. The postsynaptic density figure has been adapted from Feng and Zhang (2009). Proteins
enclosed in red circles are encoded by one or more genes assigned to the ‘green’ module in the present study. CaCh: CACNA1E, CACNA1G, CACNB1,
CACNG3; CAMK: CAMK2A, CAMK4; N-cadherin: CDH12, CDH8; PSD95: DLGAP3, DLGAP4; Ephrin: EFNB3, EPHA4, EPHA6; AMPAR: GRIA1, GRIA2,
GRIA3; NMDAR: GRIN2B; Homer: HOMER1; Kalirin: KALRN; KCh: KCNA4, KCNB2, KCNC3, KCNG1, KCNH5, KCNIP3, KCNQ2, KCNQ4, KCTD1;
Densin-180: LRRC7; PDZ: PDZD2; Ras signaling: RAP2B; SH3: SH3KBP1, SH3PXD2A; Shank: SHANK1, SHANK2.
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also be valuable for helping to interpret the results of future
studies of rare variation in BD. Integration of GWAS
with gene co-expression data is a promising approach to
better understand the mechanisms of highly genetically
heterogeneous neuropsychiatric disorders.
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