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Bistable switches are widely used in synthetic biology to trigger cellular

functions in response to environmental signals. All bistable switches devel-

oped so far, however, control the expression of target genes without access

to other layers of the cellular machinery. Here, we propose a bistable switch

to control the rate at which cells take up a metabolite from the environment.

An uptake switch provides a new interface to command metabolic activity

from the extracellular space and has great potential as a building block in

more complex circuits that coordinate pathway activity across cell cultures,

allocate metabolic tasks among different strains or require cell-to-cell com-

munication with metabolic signals. Inspired by uptake systems found in

nature, we propose to couple metabolite import and utilization with a gen-

etic circuit under feedback regulation. Using mathematical models and

analysis, we determined the circuit architectures that produce bistability

and obtained their design space for bistability in terms of experimentally

tuneable parameters. We found an activation–repression architecture to be

the most robust switch because it displays bistability for the largest range

of design parameters and requires little fine-tuning of the promoters’

response curves. Our analytic results are based on on–off approximations

of promoter activity and are in excellent qualitative agreement with simu-

lations of more realistic models. With further analysis and simulation, we

established conditions to maximize the parameter design space and to pro-

duce bimodal phenotypes via hysteresis and cell-to-cell variability. Our

results highlight how mathematical analysis can drive the discovery of

new circuits for synthetic biology, as the proposed circuit has all the hall-

marks of a toggle switch and stands as a promising design to control

metabolic phenotypes across cell cultures.
1. Introduction
Bistable switches are ubiquitous components in natural and engineered biological

systems. They play a key role in controlling cellular decisions [1,2] and are

common building blocks in synthetic gene circuits [3–6]. The aim of all synthetic

switches developed so far has been to produce bistable expression of target genes.

One of the major goals in synthetic biology, however, is to scale up biomolecular

circuits to systems that interface gene expression with metabolic activity. These

have great potential to expand the functionality of biomolecular devices, for

example, to dynamically reroute flux through heterologous pathways [7] or to

design self-adaptive pathways in metabolic engineering [8–10].

The ‘metabolator’, a genetic circuit designed to generate an oscillatory meta-

bolic flux [11], showcased how complex responses could be engineered by

coupling the genetic and metabolic machinery. To date, however, little progress

has been made in engineering other metabolic phenotypes. A bistable uptake

switch has been particularly elusive, although it is a key building block for

more complex circuits that require metabolic control with extracellular metab-

olites. An uptake switch can be used to coordinate pathway activity in

multicellular systems, for example, by allocating metabolic tasks among several

strains [12] or by acting as a communication device via metabolic signals [13]. In

microbial consortia, an uptake switch can control the division of labour through

diversified phenotypes of slow and fast feeders. Bistable uptake can also serve
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Figure 1. Bistable switches for cellular uptake with a two-promoter circuit under feedback regulation. (a) Graded, ultrasensitive and bistable uptake. A bistable
system switches between slow and fast uptake, and displays hysteresis because of different switching points. (b) Circuit architecture for the uptake systems: a
transport enzyme (e1) imports a metabolite into the intracellular space. A second enzyme (e2) metabolizes the internalized metabolite (s). The circuit contains
two promoters (P1 and P2) that control enzyme expression through feedback from the intracellular metabolite, including four combinations of (A)ctivation and
(R)epression feedback loops; the main design parameters are the dynamic ranges m of both promoters, defined as the ratio between maximal and baseline
expression levels (see inset). (c) Schematics for the four uptake circuits. Each circuit has two interlinked positive and negative feedback loops (shown in
dashed lines); a faster utilization causes a decrease in the concentration of metabolite, and thus upregulation (downregulation) of the utilization enzyme corresponds
to negative ( positive) feedback. (Online version in colour.)
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as a mechanism to engineer bacterial bet-hedging that favours

survival in adverse environments [14,15] or as a research tool

to study cellular adaptation strategies [16], e.g. in competition

assays where subpopulations of switchers and non-switchers

adapt to limited carbon sources or fluctuations in nutrient

abundance.

Metabolic uptake is typically carried out by transport

enzymes in the cell membrane, but their kinetics do not natu-

rally display bistability (figure 1a). Although ultrasensitive

kinetics [17] can generate a switch-like response in the

uptake rate, or even generate bistability through covalent

modifications [18], tuneable implementations of such kinetic

mechanisms require protein engineering beyond our current

capabilities.

In this paper we propose a bistable switch to control the

rate at which cells take up a metabolite from the environment.

We identify a genetic–metabolic system that reversibly tog-

gles between slow and fast uptake in response to the

amount of metabolite in the extracellular space. Our design

relies on coupling enzyme activity with a gene regulatory cir-

cuit designed to shape the uptake response as a bistable

switch. We borrowed this strategy from two well-known

bistable uptake systems found in nature: the lactose operon

in Escherichia coli [19] and the galactose pathway in

Saccharomyces cerevisiae [14,20]. Both systems produce bi-

stability through an underlying gene regulatory network

that controls the expression of key enzymes.
We consider uptake circuits based on feedback regulation

of the expression of transport and utilization enzymes

(figure 1b). The circuit architecture requires two metabolite-

responsive promoters and includes four regulatory motifs

depending on whether the internalized metabolite activates

or represses enzyme expression (figure 1c). Two of these

motifs can be found in natural and engineered systems.

The activation–activation circuit (labelled AA in figure 1c)

has a similar architecture to the lactose operon [19], where an

intracellular metabolite (allolactose) upregulates a transporter

and a metabolic enzyme through binding to a transcriptional

repressor. A repression–activation circuit (labelled RA in

figure 1c), on the other hand, has been used to improve the pro-

duction of fatty acids by balancing the supply and

consumption of the intermediate malonyl-CoA [10].

From a general model for the uptake circuits, we ident-

ified those that produce bistability and determined analytic

conditions for bistability in terms of the promoters’ dynamic

ranges and transcriptional thresholds. Our approach com-

bines a qualitative on–off model for promoter activity

together with a separation of timescales [21]. This leads to a

reduced model based on piecewise affine differential

equations where bistability can be studied analytically [22].

The analysis revealed that the circuits have a rich diversity

of bistable regimes, i.e. qualitatively different combinations of

stable steady states that lead to a bistable uptake flux, all of

which can be linked to different design spaces for the promoter
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parameters. The multiple number of bistable regimes con-

trasts with, for example, the original genetic toggle switch

that has only one regime for bistability [3]. Our analysis

method relies on a coarse approximation of the true system

dynamics, but uncovers useful relationships between exper-

imentally tuneable parameters and the resulting metabolic

phenotypes. We used the derived conditions to compare

the bistable regimes in terms of the shape and size of their

design spaces [23]. With the size of the design space as a

proxy for robustness, we found that the AR circuit is the

best candidate for an uptake switch, as it displays bistability

for a large range of promoter dynamic ranges and, therefore,

it is likely to be more robust in face of cell-to-cell variability

and unreliable estimates for the enzyme kinetic parameters.

Further analyses of the AR system revealed analytic con-

ditions for hysteresis and design rules to maximize the

promoter design space with the transcriptional thresholds.

We validated our results and the performance of the AR cir-

cuit with extensive simulations of a more realistic,

continuous, model for promoter activity. Population-wide

simulations show that the circuit diversifies the uptake phe-

notypes by splitting a culture into two subpopulations with

slow and fast uptake.

Our study puts forward the AR circuit as a promising

design for an uptake switch in future synthetic biology appli-

cations that require metabolic control across cell cultures.

A key challenge in the implementation of the uptake switch

is the lack of intracellular sensors that interface metabolic sig-

nals with gene expression. This limitation is not specific to

our study and pervades all current efforts to engineer

genetic–metabolic circuits [24,25]. Successful implemen-

tations have relied on metabolite-responsive promoters

[8,10,11], but the design and construction of such sensing

mechanisms requires a substantial amount of experimental

work. Our study demonstrates how mathematical design

can be an effective tool to identify circuit architectures for a

new biological function and to single out the key design

parameters that need to be tuned, both of which can help

to focus and accelerate the experimental work in the field.
2. General model for synthetic uptake circuits
We consider uptake circuits composed of two enzymes and an

internalized metabolite (s) as illustrated in figure 1b. A trans-

port enzyme (e1) imports the extracellular metabolite (s0) into

the cell, which is then metabolized by different cellular pro-

cesses represented by a utilization enzyme (e2). The network

has two independent promoters that control the expression

of enzymes in response to the internalized metabolite, thus

forming two coupled feedback loops. We assume that the

extracellular metabolite concentration is constant so that the

circuits are thermodynamically open and sustain a non-zero

flux. We model the dynamics of the metabolite and enzymes as

ds
dt
¼ g1ðs0Þe1 � g2ðsÞe2, ð2:1Þ

de1

dt
¼ k0

1 þ k1
1s1ðsÞ � g1e1,

de2

dt
¼ k0

2 þ k1
2s2ðsÞ � g2e2,

ð2:2Þ

where (s, e1, e2) are the species concentrations, ðk0
i , k1

i Þ are the

baseline and induced enzyme expression rates, and gi is a
first-order kinetic rate that accounts for protein degradation

and dilution by cell growth.

The functions gi in equation (2.1) are the enzyme turnover

rates, i.e. the reaction rate per unit of enzyme, and describe

their kinetics for different substrate concentrations. We focus

our analysis on a broad class of kinetic rate functions

that includes the common Michaelis–Menten kinetics as a

special case. To this end, we assume that the turnover rates

are increasing functions of their substrate, so that

dgiðxÞ=dx . 0 with a saturation value gsat
i ¼ limx!1 giðxÞ ¼

sup gi. In the case of Michaelis–Menten kinetics, the turnover

rate is gðxÞ ¼ kcatx=ðKM þ xÞ and has a saturation value

gsat ¼ kcat .

The enzyme equations in (2.2) describe the balance

between protein synthesis and degradation. The functions

si(s) are lumped models for the promoter response curves

and describe the activation/repression of transcriptional

activity by the internalized metabolite. We assume that the

promoter response curves satisfy dsi/ds . 0, si(0) ¼ 0 and

si(1) ¼ 1 in case of activation (conversely, dsi/ds , 0,

si(0) ¼ 1 and si(1) ¼ 0 in case of repression). The promoters

therefore control the enzymes between a baseline (‘off’) and a

maximal concentration (‘on’):

Eoff
i ¼

k0
i

gi
and Eon

i ¼
k0

i þ k1
i

gi
: ð2:3Þ

Promoter strengths are key parameters in promoter engineer-

ing [26] and one of the most easily tuneable parameters in

synthetic circuits. Here, we quantify the strength of promo-

ters via their dynamic range (mi), i.e. the ratio between their

maximal and baseline activity levels

mi ¼
Eon

i

Eoff
i
¼ k0

i þ k1
i

k0
i

: ð2:4Þ

As we shall see in the next section, we found that bistability

depends critically on an additional design parameter, the rela-
tive dynamic range (m12):

m12 ¼
Eon

2

Eoff
1

¼ k0
2 þ k1

2

k0
1

g1

g2

, ð2:5Þ

which corresponds to the maximal level of the utilization

enzyme relative to the baseline level of the transport enzyme.

We note that because the functions si lump transcription and

translation together, our model can also account for the

strength of ribosomal binding sites, another common tuneable

parameter in gene circuits [27], via a linear scaling factor of

enzyme expression rates in equation (2.2).

As shown in figure 1c, the general circuit architecture

includes four uptake circuits, which we call AA, RR, AR

and RA depending on the particular combination of gene

(A)ctivation or (R)epression. Each network can be seen as

combinations of two interlinked positive and negative feed-

back loops. In particular, we can readily rule out bistability

in the RA network, because it does not contain any positive

feedback loops, a well-known necessary condition for bi-

stability [28]. In the next section, we determine conditions

under which the other three circuits in figure 1c display

two steady-state fluxes.
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3. Bistability in the synthetic uptake circuits
The steady-state uptake flux in the circuits is

J ¼ g1ðs0Þ�e1 ¼ g2ð�sÞ�e2, ð3:1Þ

where the bars denote steady-state concentrations. The steady-

state transport flux depends only on the concentration of the

transport enzyme (e1). The utilization reaction, by contrast,

depends on both the metabolite and enzyme, and therefore

different steady-state concentrations can lead to the same util-

ization flux. For example, in equation (3.1) a slow utilization

flux can be sustained by a lowly abundant metabolite and an

overexpressed utilization enzyme, or a highly abundant metab-

olite and an underexpressed utilization enzyme. These two

scenarios require promoters to operate at different activity

levels and lead to steady states that are qualitatively different.

Next we will show that a single uptake circuit can display a

number of bistable regimes, i.e. qualitatively different combi-

nations of steady-state concentrations that lead to a bistable

flux. We will then provide analytic conditions that describe

all combinations of promoter dynamic ranges that produce

bistability, which we will refer to as the promoter design space.
3.1. Identification of all bistable regimes
Using the model in (2.1) and (2.2), we can obtain an equation

for the steady-state metabolite concentration

g2ð�sÞ ¼ g1ðs0Þ
k0

1 þ k1
1s1ð�sÞ

k0
2 þ k1

2s2ð�sÞ

� �
g2

g1

, ð3:2Þ

from where both enzyme concentrations can be computed as

�ei ¼ ðk0
i þ k1

i sið�sÞÞ=gi. The ideal would be to have analytic sol-

utions of (3.2) that show how bistability depends on the

promoter dynamic ranges, potentially revealing structural

differences among the circuits. However, the steady-state

equation is analytically intractable because of the nonlinearities

in the enzyme kinetics (g2) and promoter response curves (si).

For some parameter combinations, the circuits may also lead to

unbounded accumulation of the metabolite due to saturation

of the utilization enzyme. This happens when the steady-state

equation does not have a solution because the right-hand side

of (3.2) is higher than the saturation value of g2.

In general, the number of steady states and their stability

depend intricately on the model parameters and the shape of

the nonlinearities. A common strategy to detect bistability is

to use phase plane analysis to identify the number of

steady-state solutions and their behaviour with respect to

model parameters. This approach becomes cumbersome in

highly nonlinear models and requires case-by-case analyses

for each uptake circuit. An alternative is to solve the steady-

state equation numerically for many parameter combinations

and use linear stability analysis in each solution, or to run

long model simulations for many initial conditions and

single out those that lead to two final states. It is generally dif-

ficult, however, to establish whether bistability properties

found with numerical search are structural features of the

model, or if instead they are a consequence of the form of

the nonlinearities and the specific choice for parameter values.

We can avoid the above difficulties with an analysis tech-

nique based on piecewise affine models for gene regulation

[22,29] and a separation of timescales [21,30]. This approach

leads to a reduced model in which we can study bistability

analytically. To obtain a tractable model, we assume that
promoters switch between ‘on’ and ‘off’ activity levels

depending on the amount of metabolite:

Activation Repression

siðsÞ ¼
0, s , ui
1, s . ui,

�
�siðsÞ ¼

1, s , ui
0, s . ui

� ð3:3Þ

where ui is a threshold for transcriptional activation or repres-

sion. Enzymatic catalysis occurs on a much faster timescale

than enzyme expression, with kinetic time constants typically

in the millisecond range [31] and gene expression in the order

of tens of minutes or longer. We incorporated this timescale

separation to obtain a reduced model that can be extensively

analysed in terms of its bistability properties.

Our analysis revealed that the uptake circuits can sustain

a rich variety of bistable regimes. The results, summarized in

figure 2 (details in appendix A.1 and the electronic sup-

plementary material), indicate a total of nine qualitatively

different regimes: one for the RR circuit, three for the AA

circuit and five for the AR circuit.

As shown in figure 2, each bistable regime requires the

promoters to operate at different activity levels depending

on the steady-state concentration of metabolite. Moreover, if

promoters respond at different regulatory thresholds, the

circuits can reach steady states with intermediate metabolite

concentrations (i.e. u1 , �s , u2). As a consequence, the

bistable regimes depend strongly on the promoter thresholds:

we observe three threshold-independent regimes (RR-0, AA-0

and AR-0 in figure 2) and six threshold-dependent regimes

that emerge depending on whether u1 , u2 or u1 . u2. The

threshold-dependent regimes vanish when both promoters

have similar thresholds. The results in figure 2 also uncover

several qualitative differences among the circuits:

— The RR circuit has only one bistable regime. The circuit

cannot reach an intermediate concentration of metabolite

because this would cause transport to be too fast to be

matched by a slow utilization (in the case u1 . u2), or

too slow to be matched by a fast utilization (in the case

u1 , u2). Such imbalance would ultimately lead to

accumulation or depletion of the internalized metabolite.

— The AA and AR circuits, by contrast, admit intermediate

steady-state metabolite concentration, and consequently

they can display two additional bistable regimes each

(AA-1 and AA-2, AR-1 and AR-3, respectively).

— The AR circuit has two extra bistable regimes (AR-2 and

AR-4) sustained by three stable steady states. We note

that in these regimes, the three stable steady-state concen-

trations translate into two stable uptake fluxes, because

the steady states have only two different concentrations

for the transporter (e1), which in turn determines the

uptake flux via the relation J ¼ g1ðs0Þe1 in equation (3.1).

3.2. Shape and size of the promoter design space
To decide which circuit is the best candidate for an uptake

switch, we determined the promoter design spaces and pro-

posed a measure to assess the robustness of each bistable

regime. With the simplified model in §3.1, we obtained ana-

lytic conditions for each bistable regime in terms of the

promoter dynamic ranges. The conditions are summarized

in figures 3 and 4, and the details on how to obtain them

are in appendix A.1 and the electronic supplementary
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material. In particular, the design spaces for the threshold-

independent regimes are

RR-0 regime:
b1m1 , m12 , b2m2, ð3:4aÞ
�bm2 , m12, ð3:4bÞ

AA-0 regime:
b1m2 , m12 , b2m1, ð3:5aÞ
�bm1 , m12, ð3:5bÞ

AR-0 regime:
b1 , m12 , b2m1m2, ð3:6aÞ
�bm1m2 , m12:

ð3:6bÞ

The above conditions, illustrated in figure 3, describe

all combinations of dynamic ranges that lead to a bistable
uptake flux. In all cases, the shape and size of the design

space depend on three parameters:

b1 ¼
g1ðs0Þ
g2ðu1Þ

, b2 ¼
g1ðs0Þ
g2ðu2Þ

and �b ¼ g1ðs0Þ
gsat

2

: ð3:7Þ

These parameters reflect how the interplay between enzyme

kinetics and gene regulation affects bistability. The bi par-

ameters correspond to the ratio of enzyme turnover rates at a

given concentration of extracellular metabolite and transcrip-

tional threshold. They take maximal or minimal values when

thresholds are far away from the Michaelis constant of the util-

ization enzyme (Km). The third parameter, b� describes the
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saturation level of the transport enzyme relative to the maximal

utilization rate.

The conditions in (3.4a)–(3.6b) assume that the thresholds

are ordered as u1 � u2 (and therefore that b1 � b2), but the con-

verse conditions for u1 . u2 can be obtained by swapping b1

and b2 in the inequalities. The conditions for bistability in

(3.4a)–(3.6b) have two parts: a-conditions guarantee two

stable steady states for the enzyme concentrations, while b-con-

ditions prevent the accumulation of metabolite in both steady

states. The b-conditions arise due to the saturation of the

enzyme kinetics: if not satisfied, then the uptake flux will be

higher than the saturation rate of the utilization reaction and

cause the metabolite to accumulate in the intracellular space.

As shown in figures 3 and 4, the shape and size of the

design spaces varies significantly across regimes. Bistability

in the RR-0 and AA-0 regimes is particularly constrained,

as it requires asymmetric designs where one promoter has

a much broader dynamic range than the other. The AR-0

regime, by contrast, is much more flexible as it produces bi-

stability for more combinations of promoter dynamic

ranges. We can compare the regimes using the size of their

design spaces as a metric for robustness:

Robustness ¼ Volbistable

Voltotal
� 100, ð3:8Þ

where Volbistable is the volume of the three-dimensional solid

defined by the design space, and Voltotal is the volume of the
full parameter space defined as a cube

1 , m1 , mmax
1 ,

1 , m2 , mmax
2

and mmin
12 , m12 , mmax

12 :

If we choose the same parameter cube for each circuit, the

relative volume provides an effective measure to compare

the design spaces. A robust circuit should ideally have a

large design space to ensure bistability without a laborious

fine-tuning of the promoters’ response curve. The design

space should also be symmetric with respect to m1 and m2

to allow for an independent design of both promoters. The

most robust bistable circuit would therefore have a 100%

relative volume (i.e. all parameter combinations lead to bi-

stability), while fragile designs would have a much smaller

volume. Because the design spaces depend strongly on the

transcriptional thresholds (through the bi parameters in

(3.7)), we numerically computed the relative volumes of the

bistable regimes for different combinations of regulatory

thresholds. The results, shown in figures 3 and 4, show that

most regimes are fragile, with only two (the AA-2 and AR-

0 regimes) standing out with a robustness index above 70%.

As observed in figure 2, however, the AA-2 regime requires

u1 , u2 while the AA-0 regime does not impose constraints

on the transcriptional thresholds. We therefore conclude
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that the AR-0 regime is the most robust design for a bistable

uptake switch.

The quality of the AR circuit as a bistable switch can be

intuitively understood from the interaction diagrams in

figure 1c. The AR circuit corresponds to two positive
feedback loops, where the internalized metabolite increases

its own abundance by speeding up its import and slowing

down its consumption. Interlinked positive feedback loops

are known to improve the bistability properties in a

number of natural networks [32–34] and there is evidence
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that nature favours bistability through interlinked regulation

[2]. In the next sections, we carry out a deeper analysis of the

AR circuit.
4. Further design criteria for the activation –
repression circuit

4.1. Optimization of the promoter design space
Here we use the derived conditions for bistability to learn

how to maximize the circuit’s design space with the tran-

scriptional thresholds. We focus on the AR circuit

designed to operate in the robust AR-0 regime, but ana-

lyses of the other regimes can be carried out analogously.

For this part, we further assume that both promoters

have equal baseline expression levels, i.e. Eoff
1 ¼ Eoff

2 and

thus m12 ¼ m2. Substituting m12 ¼ m2 in the conditions

in (3.6a) and (3.6b), we obtain simplified conditions for

bistability

AR-0 regime:

1

b2

, m1 ,
1

�b
,

m2 . b1:

ð4:1Þ

The conditions in (4.1) describe the design space as an open

box in a (m1, m2) parameter space, illustrated in figure 5. The

effect of the bi parameters on the conditions in (4.1) suggests

a trade-off between the transcriptional thresholds and the

size of the design space (figure 5): a low repression threshold

u2 (i.e. a larger b2 parameter) enlarges the design space for the

activating promoter (m1) and, conversely, a high activation

threshold u1 enlarges the design space for the repressing pro-

moter (m2). Further, we can derive criteria to maximize the

design space:

— The upper limit for m1 grows if �b�1. Recalling

that �b ¼ g1ðs0Þ=gsat
2 , we conclude that gsat

2 � gsat
1 is a suffi-

cient condition for �b� 1 for any concentration of

intermediate metabolite. In the case of Michaelis–

Menten kinetics, the condition is equivalent to

kcat 2 � kcat 1: ð4:2Þ
— If b1 ¼ b2 ¼ 1 we minimize the lower limits for the

dynamic ranges and get an optimal design space

Maximal design space:
1 , m1 ,

1

�b
,

m2 . 1:

ð4:3Þ

Using the definition of the bi parameters

bi ¼ g1ðs0Þ=g2ðuiÞ, we can impose the condition bi ¼ 1

to obtain an optimal threshold

uw ¼ g�1
2 ðg1ðs0ÞÞ, ð4:4Þ

where g�1
2 is the inverse function of g2. We therefore con-

clude that if the transcriptional thresholds are designed as

u1 � uw and u2 � uw, ð4:5Þ

then the AR circuit has a maximal design space for

bistability. Note that we state the conditions in (4.5) as

inequalities because, by definition, the dynamic ranges

are mi . 1 and consequently any combination of

thresholds that satisfies (4.5) leads to the same maximal

design space.

The conditions in (4.2) and (4.5) provide quantitative

criteria to design an AR circuit with maximal design space

for bistability. Condition (4.2) relaxes the upper limit for the

first promoter (dynamic range m1), but it is generally difficult

to satisfy because catalytic enzymes in the same pathway

tend to have similar kcat values. On the other hand, condition

(4.5), illustrated in figure 5, loosens the lower limit for the

promoter dynamic ranges, and therefore may prove useful

in implementations with weak promoters and tuneable

regulatory thresholds.

4.2. Conditions for hysteresis
So far we have focused on a bistable uptake flux under a fixed

amount of extracellular metabolite. A hallmark feature of bis-

table switches, however, is that they display hysteresis to

changes in the input stimulus. As shown in the bifurcation

diagram in figure 1a, hysteresis causes cells to switch between

slow and fast uptake at different metabolite concentrations.

This mechanism filters out spurious switching from
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extracellular fluctuations, and implements a form of memory

where the response of a cell to intermediate metabolite

concentrations depends on its previous exposure to it.

Because equal transcriptional thresholds enlarge the design

space (figure 3), we assumed a nominal threshold for both

promoters, u1 ¼ u2 ¼ u and obtained conditions for the AR

circuit to display hysteresis:

b1 , m12 , b2m1m2, ð4:6aÞ

Hysteresis:
�bm1m2 , m12, ð4:6bÞ
m12 , b̂ , ð4:6cÞ

bsatm1m2 , m12: ð4:6dÞ

The above conditions can be obtained by examining the effect

of the extracellular metabolite (s0) on the circuit’s steady

states through changes in the bi parameters (details in appen-

dix A.1 and the electronic supplementary material). The

conditions depend on two extra parameters

b̂ ¼ gsat
1

g2ðuÞ
and bsat ¼ gsat

1

gsat
2

, ð4:7Þ

which correspond to the original bi and �b parameters in (3.7)

under saturation of the transport enzyme. The conditions in

(4.6a) and (4.6b) are the same as the design space in (3.6),

while the conditions in (4.6c) and (4.6d ) add further

constraints to the design space. Condition (4.6c) guarantees

that uptake can be bidirectionally switched, i.e. from slow

to fast and vice versa (if not satisfied, the circuit can only be

switched off). Condition (4.6d ) ensures that the metabolite

steady-state �s exists for all concentrations of extracellular

metabolite. Note that condition (4.6d ) becomes less tight

under the kinetic condition in (4.2).
5. Activation – repression circuit with graded
promoters

5.1. Validation of the design criteria
In the previous sections, we obtained design criteria for the

AR circuit based on a coarse approximation for promoter

activity. The approximation assumes that promoters behave

in an on–off fashion, i.e. having either a maximal or baseline

activity without intermediate levels of expression. In practical

implementations, promoter sensitivities are severely con-

strained and therefore it is unclear whether the derived

design criteria are useful when using realistic promoters

with graded, low-sensitivity, response curves.

To test the utility of the AR circuit in a more realistic

model, we ran extensive simulations of the circuit with

sigmoidal models for promoter response curves [35]. We

modelled the promoter response curves as Hill functions

s1ðsÞ ¼
sh

u h þ s h
and s2ðsÞ ¼

u h

u h þ sh
, ð5:1Þ

where u is the regulatory threshold and h is the promoter sen-

sitivity (Hill coefficient). We computed the parameter regions

for bistability in the continuous model in (2.1) and (2.2) with

low, intermediate and high promoter sensitivities. The results

in figure 6a suggest that although the design spaces for the

continuous model are smaller than those predicted by our

approximation, they preserve the predicted qualitative prop-

erties (cf. figures 5 and 6a). We can distinguish among
designs that are monostable, bistable, or that do not have a

steady state. Optimization of the regulatory threshold,

i.e. according to the criterion in (4.5), effectively enlarges

the design space in the continuous model, even in the case

of low-sensitivity promoters (h ¼ 2). These results thus

suggest that the derived design criteria can guide the

design in more realistic models for promoter activities.

In figure 6b, we plot the domains of attraction for each

steady state in particular instances of AR circuits with

low-sensitivity promoters. The results suggest that domains

of attraction can depend strongly on the transcriptional

thresholds and, in particular, threshold optimization can

also help to equalize the domains of attraction and prevent

a bias towards one uptake flux more than the other.

The bifurcation diagrams in figure 6c indicate that the AR

circuit effectively functions as a bidirectional switch with

hysteresis, toggling between low/high states for enzyme

expression.
5.2. Emergence of bimodal phenotypes across cell
populations

Our results describe conditions under which single cells dis-

play a bistable uptake when exposed to the extracellular

metabolite. At a population level, however, each individual

cell will switch to slow or fast uptake depending on its intra-

cellular state before exposure to the metabolite. Owing to

numerous factors that affect the cellular composition, cell

populations can exhibit a large cell-to-cell variability. In the

case of synthetic gene circuits, variability can arise from,

e.g. fluctuations in plasmid copy numbers, variability in

transcriptional and translational resources (RNA poly-

merases, sigma factors and ribosomes), mutations in the

promoter sequences and stochastic fluctuations inherent to

gene expression [36].

We ran population-wide simulations of the AR circuit to

test how it would perform in bacterial cultures with signifi-

cant cell-to-cell variability. The domains of attraction in

figure 6b suggest that single cells switch to a slow or fast

uptake depending only on the abundance of enzymes and

not the intracellular metabolite. We therefore focused on

how variability in enzyme levels propagates to the flux

phenotypes produced by the uptake switch [37,38]. We

modelled variability in enzyme expression through determi-

nistic simulations for many cells in a culture with

randomized promoter dynamic ranges. The results, shown

in figure 7, indicate that the proposed AR circuit can effec-

tively toggle the uptake flux in a population. The resulting

population-wide histograms show the hysteretic response of

the uptake switch, with individual cells switching to a slow

or fast uptake depending on their previous exposure to

extracellular metabolite. As predicted by the bifurcation dia-

grams in figure 6c, the range for hysteresis grows with more

sensitive promoters and further, we found that the high-

flux state has a narrow distribution that is largely insensi-

tive to the Hill coefficient. This indicates that the AR

circuit tightly controls the uptake flux across a population

even for low-sensitivity promoters. As a consequence of

cell-to-cell variability, individual cells switch at different

extracellular concentrations of the metabolite, leading to

the observed bimodal phenotypes when the metabolite is

close to the switching threshold.
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6. Discussion
In this paper we proposed a bistable switch to control the rate

at which cells take up a metabolite from the environment. The

switch couples enzyme activity with a two-promoter gene

network under feedback regulation. We examined mathemat-

ical models for four candidate networks and obtained the

design spaces for promoter dynamic ranges that produce a

bistable uptake system. Using the size of the promoter

design space as a proxy for robustness, we singled out one

network, an AR circuit (AR in figure 1c), that is significantly

more robust than the others and is the best candidate for an

uptake switch.

The proposed AR circuit effectively toggles between slow

and fast uptake depending on the abundance of the extra-

cellular metabolite. The shape of its design space suggests

that both promoters can be tuned independently and we

found criteria to maximize the design space by tuning the

transcriptional thresholds. The large design space also
indicates that the switch is robust to variability in promoter

strengths and thus requires little fine-tuning of promoter

response curves. Population-wide simulations show the

emergence of bimodal phenotypes due to cell-to-cell variabil-

ity and hysteresis. The circuit thus works as a memory device

where individual cells lock into slow or fast uptake depend-

ing on their previous exposure to the extracellular metabolite,

while protecting them from spurious switching caused by

stochastic environmental fluctuations.

A key element in the proposed switch is the use of feed-

back regulation of enzyme expression levels. This strategy

was inspired by the regulation of the lactose operon in

E. coli [19] and the galactose pathway in S. cerevisiae [14],

two well-known uptake systems where bistability emerges

from the interplay between metabolism and gene regulation.

In the lactose operon, bistability emerges from a regulatory

architecture similar to the AA circuit studied here, but our

results indicate it is not as robust as the AR circuit because

it requires more careful fine-tuning of the design parameters.
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Natural systems may achieve such fine-tuning through evol-

ution, but this is extremely laborious in engineered systems.

In the galactose pathway, on the other hand, bistability

emerges from a more complex gene regulatory network

with multiple components and interactions that are difficult

to tease apart. Other bacterial systems that display switching

metabolic phenotypes, e.g. the carbon catabolite repression

system [41], the glycolytic–gluconeogenic switch [42] and

the central carbon metabolism [43], rely on even more intri-

cate regulation and are too complex to be used as templates

for design. Although other strategies to produce bistability

may exist, either using different genetic circuits or regulatory

mechanisms, the proposed AR circuit is a simple architecture
for a robust uptake switch, and thus a promising backbone

for future implementations.

The uptake switch provides an interface to control meta-

bolic activity from the extracellular space. This could be

useful, for example, in metabolic engineering applications

that need to regulate production with extracellular inducers

or to trigger pathways only when substrates reach an acti-

vation threshold. The hysteretic response of the switch can

help to control production in face of substrate variability or

heterogeneous bioreactor conditions. Another promising

application for a bistable uptake switch is the control and

coordination of metabolism in microbial consortia. Although

most synthetic cell-to-cell communication systems rely on

mechanisms drawn from quorum sensing or hormone signal-

ling, recent studies have also explored the use of metabolic

signals to coordinate pathways distributed among different

strains [44]. The field is in its early days, but it is becoming

increasingly clear that metabolites may not only provide a

new channel for synthetic communication between cells [12],

but also that consortia can outperform single-strain cultures

[13]. A plausible scenario for this is, for example, to split a

large synthetic pathway among different strains and thus alle-

viate the genetic burden caused by expression of multiple

heterologous proteins in a single strain [45]. The general prin-

ciple is to have a ‘sender’ strain that secretes a metabolite that

is then taken up by a ‘receiver’ strain. If the exchanged metab-

olite is a precursor for a target product in the receiver strain, an

uptake switch can serve as a mechanism to lock receivers in a

high uptake flux and, through hysteresis, insulate them from

extracellular fluctuations in the transmitted signal. Another

possibility is to use the uptake switch in receiver cells to diver-

sify their phenotypes. Upon command from sender cells,

receivers can split into slow and fast feeders, opening up the

possibility to use bet-hedging to control metabolic activity

upon changes in growth conditions, a well-known survival

strategy used by microbes [15]. Such synthetic systems could

also be used to study the evolution of social interactions in

microbes. A number of studies have successfully used syn-

thetic gene circuits to uncover how strains evolve their

phenotypes in different conditions, e.g. under competition

for shared carbon sources or cooperation through exchange

of nutrients and signalling molecules [16,46,47]. These diverse

applications suggest that bistable uptake switches will become

increasingly relevant as efforts to engineer synthetic consortia

intensify in the future.

Asserting whether a biochemical network is bistable is a

challenging mathematical and computational problem. For

specific classes of models, a number of approaches have

addressed bistability by, e.g. exploiting the structure of the

model’s Jacobian [28,48] or using notions from chemical reac-

tion network theory [49] (see table 3 in [50]) for a list of

existing approaches). Finding parameter regions for bistabil-

ity is even harder and, although promising approaches exist

for specific model types [51], for more general models,

the problem remains largely unsolved and we do not have

effective methods other than numerical exploration of the

parameter space.

We overcame the above limitations with an analysis tech-

nique that combines a piecewise affine model for gene

expression, a kinetic model for metabolic reactions and a sep-

aration of timescales between both [21]. This strategy proved

useful to single out networks that display bistability and to

identify the parameter design spaces analytically. A salient
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conclusion of our analysis is that the uptake systems display a

diverse range of bistable regimes. The AR circuit, in particu-

lar, displays five qualitatively different bistable regimes

depending on the promoter dynamic ranges and their tran-

scriptional thresholds. Our approach also offers a number

of other advantages: it requires minimal assumptions on

the enzyme kinetics, it accounts for the four regulatory cir-

cuits simultaneously without separate ad hoc analyses, and

it reveals the underlying geometry of the design space for

bistability in terms of experimentally accessible parameters.

The latter uncovers how the interplay between promoter

design and enzyme kinetics affects the shape and size of

the design space, giving a first idea of which design par-

ameters are most relevant to achieve a prescribed phenotype.

We point out that because our analysis relies on a coarse

on–off approximation of promoters, its predictions are not

guaranteed to hold in more realistic models for promoter

activity. Our simulation results show, however, that the

derived design criteria can effectively guide circuit design

in models with standard sigmoidal descriptions of promoter

response curves, even in the case of low Hill numbers, and

that the derived design spaces provide an excellent starting

point to search for bistability.

In this work we focused on the promoter dynamic ranges

as the main tuneable parameters of the circuits. Although

new technologies in DNA engineering are ever expanding

the number of tuneable ‘knobs’ in synthetic circuits [52,53],

promoter dynamic ranges are particularly flexible in that

they can be altered with many techniques, e.g. by random

mutagenesis [26], by manipulation of polymerase binding

sites [54] or by the addition of sequence repeats [55]. In its

current form, our model analysis can also be used to study

the effect of tuneable protein half-lives [56], the strength of

ribosomal binding sites [27], and in general, other genetic

modifications that can be modelled as a linear scaling of

protein expression rates. Other tuning strategies, e.g. affinity

of transcription factors or post-translational modifications,

however, cannot be directly included in our analysis and

require a more mechanistic model for gene expression

beyond the lumped model used here.

Our main goal in this paper has been to investigate the

mathematical design of an uptake switch. We sought to

draw analytic links between bistability and design par-

ameters, for which we studied a tractable model that retains

the typical nonlinearities encountered in enzyme kinetics

and gene regulation. The costs of this analytic treatment

were a number of model simplifications that should be

addressed in future molecular implementations of the

switch. First, the model should include the mechanistic

details for gene regulation. By including the detailed inter-

actions between the internalized metabolite and enzyme

expression, the model will predict the effect of the particular

strategy used to tune the circuit function. Second, the model

should be tailored to the specific metabolite and enzymes

employed, including features such as reversible transport or

regulatory mechanisms of kinetic activity. Third, the model

should account for the interactions between the uptake

switch and its host. These can significantly degrade the func-

tion of genetic circuits [57] and recent progress in models for

bacterial growth allows systematic incorporation of host–

circuit interactions into the circuit design [58]. This will be

particularly relevant for switches designed to take up

carbon sources or other essential nutrients, as these will
likely interfere with central metabolic functions of the host

and trigger some of its native regulatory mechanisms [59].

The molecular implementation of the proposed switch

remains a challenge because of the lack of mechanisms to

sense intracellular metabolites and control gene expression.

Natural systems have evolved a number of mechanisms to

sense intracellular metabolites, see e.g. the comprehensive

discussions in [59,60], but in general it is not easy to make

them respond to metabolites they have not evolved to sense

[25]. The lack of metabolite sensors is the most important

bottleneck in dynamic metabolic engineering [24] and limits

all current efforts to engineer synthetic gene circuits for

metabolism. In our study, we have assumed that the intra-

cellular metabolite controls enzyme expression by direct

activation or repression of the promoters, but in implemen-

tations the regulation will be mediated by a specific

molecular mechanism, e.g. natural metabolite-responsive

transcription factors [8] or hybrid promoter–regulator sys-

tems [61]. Although currently there are no modular

mechanisms to sense intracellular metabolites, recent pro-

gress in the field has led to novel sensors [25] and the

implementation of an RA circuit in E. coli [10], bringing us

increasingly close to building complex genetic–metabolic cir-

cuitry. This makes the role of mathematical design evermore

important, as it is a powerful tool to discover useful circuit

architectures that could be built once metabolite sensors are

available.

Competing interests. We have no competing interests.

Funding. D.A.O. was supported in part by Imperial College London
through a Junior Research Fellowship and the Human Frontier
Science Program through a Young Investigator Grant (RGY0076/
2015). M.C. was supported in part by projects GeMCo (ANR-2010-
BLAN-0201-01) and Labex Signalife (ANR-11-LABX-0028-01).

Acknowledgements. We thank Jordan Ang, John Heap, Andrea Weiße
and Fuzhong Zhang for helpful suggestions.
Appendix A
A.1. Analytic results

A.1.1. Identification of bistable regimes and parameter spaces for

bistability
The details on how to identify each bistable regime in

figure 2, together with their conditions for bistability (the

design spaces in figures 3 and 4), can be found in the elec-

tronic supplementary material. The general idea is to first

approximate the promoter response curves in model (2.1)

and (2.2) by step functions:

ds
dt
¼ g1ðs0Þe1 � g2ðsÞe2, ðA 1Þ

de1

dt
¼ k0

1 þ k1
1�s1ðsÞ � g1e1,

de2

dt
¼ k0

2 þ k1
2�s2ðsÞ � g2e2,

ðA 2Þ

where �si are the step functions in (3.3). Using the separation

of timescales, we reduce the model assuming the metabolite

to be in a quasi-steady state with respect to the evolution of

enzyme concentrations. Details on the technical conditions

for the separation of timescales can be found in [62]. We

take ds/dt � 0 in equation (A 1) to get an algebraic equation
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for the metabolite concentration

g2ðsÞ ¼ g1ðs0Þ
e1

e2
: ðA 3Þ

The key observation is that, since g2(s) is an increasing func-

tion of s, the condition s , ui implies that g2(s) , g2(ui), which

after substituting in (A 3) leads to the equivalences:

s , ui ,
e2

e1
. bi and s . ui ,

e2

e1
, bi, ðA 4Þ

where bi ¼ g1ðs0Þ=g2ðuiÞ are the parameters that appear in all

the conditions for bistability (figures 3 and 4). We can then

get a reduced model in the form of a two-dimensional discon-

tinuous differential equation

de
dt
¼ Gðf� eÞ, ðA 5Þ

where e ¼ [e1, e2] is the vector of enzyme concentrations and

the matrix G ¼ diagfg1, g2g contains the degradation rates.

The vector f is piecewise constant and is formed by different

combinations of baseline (Eoff
i ) and maximal (Eon

i ) enzyme

expression levels, depending on whether e1/e2 . bi or

e1/e2 , bi. The model in (A 5) is a piecewise affine differential

equation defined in conic domains (because conditions such

as e1/e2 . bi describe a cone in an (e1, e2) plane). We can

then identify its bistable regimes and the conditions for

bistability by examining the geometry of the partitioned state

space. The conditions for bistability arise naturally in terms

of Eoff
i and Eon

i concentrations, but we can convert them to con-

ditions on the promoter dynamic ranges with the following

equivalences (recall the definitions in (2.3)–(2.5)):

Eoff
1

Eoff
2

¼ m2

m12

,
Eon

1

Eon
2

¼ m1

m12

,

Eon
1

Eoff
2

¼ m1m2

m12

,
Eon

2

Eoff
1

¼ m12:

ðA 6Þ
A.1.2. Conditions for hysteresis in the activation – repression

circuit
We can obtain the conditions for hysteresis in the AR circuit

(the inequalities in (4.6a)–(4.6d )) by examining the model’s

bistability with the parameters bi ¼ g1ðs0Þ=g2ðuiÞ regarded

as functions of the extracellular metabolite (s0). The key

idea is to ensure that: for low s0 concentrations the model is

monostable with a slow uptake flux, for intermediate s0

concentrations the model is bistable, and for high s0 concen-

trations the model is monostable with a fast uptake flux.

These three conditions guarantee that the piecewise model

has two saddle-node-like bifurcations and thus displays hys-

teresis. Further details can be found in the electronic

supplementary material.
A.2. Model simulations
Simulations were done in Matlab with enzyme kinetic par-

ameters kcat1 ¼ 32 s21, kcat2 ¼ 320 s21, KM1 ¼ KM2 ¼ 4.7 mM,
and enzyme degradation rate constants g1 ¼ g2 ¼ 2 �
1024 s, corresponding to a half-life of approximately 1 h.
A.2.1. Size of promoter design spaces
To compute the volumes of the solids in figures 3 and 4, we com-

puted the convex hull of points satisfying the inequalities that

define each design space. The m1 and m2 axes contains 50 line-

arly spaced points each, with mmax
1 ¼ mmax

2 ¼ 25. The m12 axis

contains 50 log-spaced points with ðmmin
12 , mmax

12 Þ ¼ ð10�2, 102Þ.
A.2.2. Simulations of the continuous model
We determined the parameter regions for bistability

(figure 6a) from long simulations of the model in (2.1) and

(2.2) for 104 pairs of promoter dynamic ranges (m1, m2) and

m12 ¼ m2 sampled from a regular grid with increasing promo-

ter sensitivities (hi ¼ f2, 4, 8g for i ¼ 1, 2). We ran two

simulations for each (m1, m2) pair, initialized at the two

stable steady states predicted by the piecewise affine model.

We discriminated between monostability and bistability

using the Euclidean distance between the final time points

of each simulation. We determined the regions for metabolite

accumulation by checking the condition g2ð�sÞ , gsat
2 at the

final time points (in which case the steady-state equation in

(2.7) does not have a solution).

We computed the domains of attraction in figure 6b from

long simulations of (2.1) and (2.2) for 8 � 103 initial con-

ditions sampled from a uniform grid. The bifurcation

diagrams in figure 6c were computed with the MatCont

package for Matlab [63].
A.2.3. Population-wide simulations
We computed the histograms in figure 7 from simulations of

the deterministic model (2.1) and (2.2) with randomized par-

ameters. The top/bottom panels in figure 7 are simulations of

cells initialized at a low/high uptake fluxes in steady state,

respectively, and each simulation was run for 100 increas-

ing/decreasing concentrations of extracellular metabolite in

the range [0.1, 10] mM. For each metabolite concentration s0,

we sampled the baseline and maximal enzyme concen-

trations (Eoff
i and Eon

i for i ¼ 1,2) from Gamma distributions

with means kEoff
1 l ¼ kEoff

2 l ¼ 25 nM, kEon
1 l ¼ 150 nM and

kEon
2 l ¼ 125 nM, which correspond to dynamic ranges

(m1, m2) ¼ (6,5); these are the same parameters as in the bifur-

cation diagrams in figure 6c. We used a coefficient of variation

of 20%, representative of measured fluctuations in protein

abundance reported in the literature [40]. The gene

expression parameters were then computed as k0
i ¼ giEoff

i
and k1

i ¼ giðEon
i � Eoff

i Þ. The histograms were obtained from

simulations of 500 cells for each concentration s0; we dis-

carded and resampled all samples that led to metabolite

accumulation by checking the condition g2ð�sÞ , gsat
2 at the

final time points of the simulation.
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