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The viscoelastic behaviour of a biological material is central to its function-

ing and is an indicator of its health. The Fung quasi-linear viscoelastic

(QLV) model, a standard tool for characterizing biological materials, pro-

vides excellent fits to most stress–relaxation data by imposing a simple

form upon a material’s temporal relaxation spectrum. However, model

identification is challenging because the Fung QLV model’s ‘box’-shaped

relaxation spectrum, predominant in biomechanics applications, can provide

an excellent fit even when it is not a reasonable representation of a material’s

relaxation spectrum. Here, we present a robust and simple discrete approach

for identifying a material’s temporal relaxation spectrum from stress–

relaxation data in an unbiased way. Our ‘discrete QLV’ (DQLV) approach

identifies ranges of time constants over which the Fung QLV model’s typical

box spectrum provides an accurate representation of a particular material’s

temporal relaxation spectrum, and is effective at providing a fit to this

model. The DQLV spectrum also reveals when other forms or discrete

time constants are more suitable than a box spectrum. After validating

the approach against idealized and noisy data, we applied the methods to

analyse medial collateral ligament stress–relaxation data and identify the

strengths and weaknesses of an optimal Fung QLV fit.
1. Introduction
The Fung quasi-linear viscoelastic (QLV) model is a standard tool for represent-

ing the nonlinear history- and time-dependent soft-tissue viscoelasticity

of biological tissues [1–4]. The QLV model provides a simple fit to stress–

relaxation tests, which are preferred over standard rotational rheometry for

biological tissues due to issues of gripping and anisotropy. These tests involve

stretching a specimen a prescribed amount and then analysing the relaxation

over time of the force needed to sustain this level of stretch. However, the con-

fidence interval for estimation of the parameters of the ‘box’-shaped temporal

relaxation function that Fung suggested in his book [1] are typically large [5],

which complicates comparison of materials. Further, the usual box form of

the temporal relaxation function is sufficiently restrictive that many have

found the need to apply different relaxation functions [6–8] or apply different

QLV representations altogether [9]. Finally, identifying when the box spectrum

is too restrictive to describe a specific biological material’s time-dependent

mechanical responses is a challenge [3,10–17] because, with this box spectrum,

the Fung QLV model can fit relaxation data even for materials whose responses

to dynamic loading it would fail to predict [18,19].

We present here a simple technique to overcome these challenges. The core of

the technique is a finite series that, under special conditions, reduces to Fung’s box

spectrum relaxation function.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2015.0707&domain=pdf&date_stamp=2015-11-25
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Figure 1. Characterization of a viscoelastic material through a standard ramp-and-hold test. (a) In a ramp-and-hold relaxation test, uniaxial strain is increased at a constant
rate _1 over a time tp then held at an isometric level _1tp until time tf. (b) In response, the stress varies with time, rising to a peak value sp and then relaxing to a value sf.
(c) For biological tissues, such data are often interpreted using Fung’s QLV theory, involving a box-shaped relaxation spectrum of height C. (d ) The parameters describing this
box spectrum can be rearranged to predict the ‘reduced relaxation function’ that appears in the Fung QLV constitutive law. (Online version in colour.)
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In this article, we show that application of our discrete QLV

(DQLV) form of the Fung QLV model is a simple and effective

way to identify material relaxation spectra in an unbiased

manner from stress–relaxation data. The approach identifies

ranges of time constants over which Fung’s continuous box

relaxation spectrum is appropriate, and is effective at fitting

this box relaxation spectrum. It also identifies when discrete

time constants are more appropriate than the box relaxation

spectrum for representing damping responses. After presenting

the DQLV model, we apply it to correctly identify spectra at

particular strain levels from simple relaxation tests, and then

demonstrate its utility on determining the quasi-viscoelastic

response of the rabbit medial collateral ligament (MCL).
2. Background
We begin with an overview of the integral form of linear and

QLV models with the goal of setting the stage for the specific

discrete relaxation function we present in §3.

2.1. Integral form of linear viscoelasticity
The behaviour of a linear viscoelastic material in one dimension

can be represented by the following convolution integral [20,21]:

sðtÞ ¼
ðt

�1

cðt, uÞ @1
@u

du, ð2:1Þ

where c(t, u) is a material modulus function, t is time, s is

engineering stress and 1 is linearized strain. For hereditary or

non-ageing materials, this reduces to

sðtÞ ¼
ðt

�1

wðt� uÞ @1
@u

du, ð2:2Þ
where the relaxation function w(t) describes the mechanical

character of a material, ranging from an elastic solid (w ¼

const.) to a Newtonian fluid (w(t) ¼ hd(t), where h is a coeffi-

cient of viscosity and d(t) is Dirac’s delta function. For a

material with both elastic and viscous properties, w(t) must

be a generalized function that defines the whole spectrum of

material behaviour. Here w(t) is determined in general by fit-

ting to data from an experiment such as a stress–relaxation

test, in which a sample is subjected to a linear ramp at strain

rate _1 over time 0 � t � tp, followed by an isometric relaxation

phase over tp � t � tf (figure 1a,b).
2.2. Fung’s quasi-linear viscoelastic model
In a biological material, w(t) is typically inadequate because

the relaxation function depends upon the degree to which

the material is strained. Fung’s QLV model, reviewed

extensively and in more detail by others [7,8,12,14,15,18,

22–27], provides a simple strain-dependent extension of

(2.2) in which the temporal decay of stress is independent

of strain:

Kð1, tÞ ¼ GðtÞ sðeÞð1Þ, ð2:3Þ

where G(t) is a normalized function of time so that lim
t!1

G ¼ Gti

(time-independent component of G) and lim
t!0

G ¼ 1 (figure 1d);

K(1,t) represents stress and s(e)(1) represents the elastic

response. Based upon the concave-up force–displacement

curves common to collagenous tissues, Fung proposed using

an exponential relationship that he attributes to Kenedi et al.
[1,28], for the elastic stress component:

sðeÞð1Þ ¼ AðeB1 � 1Þ: ð2:4Þ
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Figure 2. Schematic of the Fung box spectrum model. (a) The box spectrum
model can be represented schematically by a continuous series of nonlinear visco-
elastic elements, each associated with a time constant between the limits t1 and
t2 of the box relaxation spectrum, and with the height C of the box relaxation
spectrum (cf. figure 1). (b) In another representation, with a different type of
nonlinear spring, the time-independent and -dependent stress responses can
be separated as in equation (2.12). (Online version in colour.)
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The stress responses to a small strain increment, applied at

time u, G(t 2 u) (@s(e)(1))/(@1) d1(u), can be summed using

the Boltzmann superposition principle, so that the stress for

t � 0 can be written as

sð1, tÞ ¼
ðt

0

Gðt� uÞ @s
ðeÞð1Þ
@1

@1ðuÞ
@u

du: ð2:5Þ

where G(t) is a monotonically decreasing function [21]; as in

the fading memory model, the recent strain history determines

material response. Fung termed G(t) the ‘reduced relaxation

function’ and suggested the form

GðtÞ ¼
1þ

Ð1

0 SðtÞe�t=tdt

1þ
Ð1

0 SðtÞdt
, ð2:6Þ

where S(t) is the following function, first proposed

independently by others including Neubert [29]:

SðtÞ ¼
C
t

, t1 , t , t2

0, otherwise

8<
: ð2:7Þ

in which C, t1 and t2 are material constants to be determined

experimentally (figure 1c). Substituting, one arrives at the

form that is ubiquitous in the biomechanics literature:

GðtÞ ¼
1þ

Ð t2

t1
ðC=tÞ e�t=t dt

1þ
Ð t2

t1
ðC=tÞdt

¼ 1þ CðE1ðt=t2Þ � E1ðt=t1ÞÞ
1þ C ln( t2=t1Þ

, ð2:8Þ

where E1ðtÞ ¼
Ð1

t ðe�t=tÞdt is the exponential integral function.

This version of the Fung QLV model is predicated upon the

requirements of equations (2.3), (2.4) and (2.7). Although the

typical implementation focuses on small strain applications,

straightforward extensions of the Fung QLV model to finite

strain exist [30–32]. However, the suitability of the assumption

of equation (2.3) must be checked carefully for any material to

which these extensions are applied.

In §3, we present a simple tool to identify whether the

relaxation response S(t) follows the box spectrum of equation

(2.7), and whether this response is independent of strain (cf.

equation (2.3)). We further propose a simple technique for

modelling a material if these requirements prove unsuitable.

2.3. Schematic of the Fung quasi-linear
viscoelastic model

Two graphical representations of the Fung QLV model should

be mentioned. These provide a foundation for interpreting the

fitting and model identification tools presented in §3.

2.3.1. Standard linear solid models in series
The Fung QLV model can be represented as an infinite number

of standard linear solid elements in series, modified so that

linear springs are replaced by nonlinear springs (figure 2a).

S(t) for each of those elements varies between two constants:

S(t2) , C/t , S(t1). Noting that the stress in each element is

equal, a relationship can be written between the first and the
last elements:

1þ ðC=t1Þe�t=t1

1þ ðC=t1Þ
AðeB11 � 1Þ

¼ 1þ ðC=t2Þe�t=t2

1þ ðC=t2Þ
AðeB12 � 1Þ, ð2:9Þ

where A, B, C, t1 and t2 are the five QLV parameters to be fit. The

first element (S ¼ C/t1) has the highest strain, 11, while the last

(S¼ C/t2) has the smallest, 12. Equation (2.9) shows a major

difference between the QLV and generalized Maxwell models

[33]. Because the viscoelastic elements in the QLV model are in

series, changing t1 or t2 changes the stress in all of the individual

models (figure 2a). Thus, in contrast to the generalized Maxwell

model, t1 and t2 are not the fastest and slowest viscoelastic time

constants, respectively. Rather, they are time-domain parameters

whose values affect the entire stress–relaxation curve.

2.3.2. Temporal quasi-linear viscoelastic decomposition
A second useful schematic depiction of the Fung QLV model

involves decomposition into time-independent and -depen-

dent parts. This decomposition is instructive and useful,

because it introduces a constraint upon the five QLV par-

ameters. Following a ramp to a sustained level of isometric

stretch (cf. figure 1a), the relaxation function, G(t), (t . tp) is

GðtÞ ¼ Gti þ GtdðtÞ

¼ 1

1þ C ln( t2=t1Þ
þ CðE1ðt=t2Þ � E1ðt=t1ÞÞ

1þ C ln( t2=t1Þ
: ð2:10Þ

where Gti represents the time-independent and Gtd the

time-dependent parts of the reduced relaxation function.

The stress can likewise be separated into time-independent

and -dependent parts (figure 2b).

For example, for a specimen that is fully relaxed at time

t ¼ 0 and is stretched at a constant strain rate _1 from t ¼ 0

to tp then held isometrically until t ¼ tf (figure 1a),
sðtÞ ¼

AðeB1 � 1Þ
1þ C ln( t2=t1Þ

þ AB _1

ðt

0

CðE1ððt� uÞ=t2Þ � E1ððt� uÞ=t1Þ
1þ C ln( t2=t1Þ

eB _1udu ð0 � t � tpÞ,

AðeB1p � 1Þ
1þ C lnt2=t1Þ

þ AB _1

ðtp

0

CðE1ððt� uÞ=t2Þ � E1ððt� uÞ=t1Þ
1þ C ln( t2=t1Þ

eB _1udu ðtp � t � tf Þ,
ð2:11Þ

8>>><
>>>:
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Figure 3. Schematic of the discretization of the continuous function h(t). A
partition of an interval [l1, lnþ1] is a finite sequence of n subintervals on a
logarithmic x-axis. [li, liþ1] is the width and Hi is the height of the ith
rectangle and ti time constant corresponding to Hi.
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or

sðtÞ ¼ stið1Þ þ stdðtÞ ð0 � t � tpÞ:
stið1pÞ þ stdðtÞ ðtp � t � tf Þ:

�
ð2:12Þ

Schematically, the first term on the right-hand side of these

equations represents the stress in a nonlinear time-independent

(strain-dependent) spring, and the second term represents a

nonlinear spring, with linear viscous damping, which is time-

dependent (figure 2b). After sufficient relaxation, the second

term on the right-hand side of equation (2.11) or equation

(2.12) approaches 0, and s(t) approaches a steady state:

sð1Þ ¼ stið1pÞ ¼
AðeB1p � 1Þ

1þ C ln( t2=t1Þ
, ð2:13Þ

where 1p ¼ _1tp: Thus, a way to ensure that the five QLV parame-

ters are estimated correctly from a dataset is to compare the stress

asymptote in the data to AðeB1p � 1Þ=ð1þ C lnðt2=t1ÞÞ from

equation (2.13) (figure 1b), assuming the isometric portion of

the experiment was sufficiently long to provide an accurate

estimate of s(1).

3. Methods
3.1. Continuous quasi-linear viscoelastic spectrum
To analyse a material’s relaxation spectrum without any specific

pre-assumption for S(t), suppose S(t) is

SðtÞ ¼
hðtÞ
t

, tmin , t , tmax

0, otherwise,

8<
: ð3:1Þ

where, for h(t) ¼ C, equation (3.1) reduces to the Fung QLV
model (cf. equation (2.7)). Plugging equation (3.1) into equation

(2.6), the relaxation function can be written as

GðtÞ ¼
1þ

Ð1

0 SðtÞe�t=tdt

1þ
Ð1

0 SðtÞdt
¼

1þ
Ð tmax

tmin
hðtÞe�t=t=tdt

1þ
Ð tmax

tmin
hðtÞ=tdt

: ð3:2Þ

Then, for a fully relaxed specimen stretched at a constant

strain rate _1 over the time interval 0 to tp and held isometrically

until time tf, the stress history can be written as
sðtÞ ¼

AðeB1 � 1Þ
1þ

Ð tmax

tmin
hðtÞ=t dt

þ AB _1

ðt

0

1þ
Ð tmax

tmin
hðtÞe�ðt�uÞ=t=t dt

1þ
Ð tmax

tmin
hðtÞ=t dt

eB _1udu ð0 � t � tpÞ

AðeB1p � 1Þ
1þ

Ð tmax

tmin
hðtÞ=t dt

þ AB _1

ðtp

0

1þ
Ð tmax

tmin
hðtÞe�ðt�uÞ=t=t dt

1þ
Ð tmax

tmin
hðtÞ=t dt

eB _1udu ðtp � t � tf Þ:

ð3:3Þ

8>>>>><
>>>>>:
In the above equations, A, B, h(t), tmin and tmax are

unknowns that should be estimated by fitting s(t) to experimen-

tal stress–relaxation data. This, unfortunately, is an ill-posed

problem. However, a broad range of techniques exists to find a

solution [21,34–36] that is suitable and repeatable, if not unique.

3.2. Discrete quasi-linear viscoelastic spectrum
A discretization technique simplifies this ill-posed problem.

Although several approaches exist for discretizing viscoelastic

responses, including the Prony series approach, our specific

objective is to arrive at an approach that yields a graphical rep-

resentation to easily identify the suitability of the Fung box

spectrum over a particular range of loading conditions.

The approach we take begins with a discrete form of the inte-

gral
Ð lnþ1

l1
hðtÞ=t dt, with the interval (l1, lnþ1) divided into n

equidistant logarithmic subintervals
ðlnþ1

l1

hðtÞ
t

dt¼
ðlnþ1

l1

hðtÞdðlnðtÞÞ

¼
Xn

i¼1

ðliþ1

li

hðtÞd( lnðtÞÞ¼
Xn

i¼1

ln
liþ1

li

� �
Hi: ð3:4Þ

For the case of li distributed equidistantly over the range

l1 � li � ln, one can further simplify to write

ðlnþ1

l1

hðtÞ
t

dt ¼ T
Xn

i¼1

Hi, ð3:5Þ
where the constant T ¼ lnðliþ1=liÞ ¼ lnðl2=l1Þ, and Hi is the

height of the ith rectangle and ti is the corresponding time con-

stant (figure 3). The spectrum Hi(ti) represents a tool for model

identification, which we term a ‘DQLV’ spectrum, which simpli-

fies to the continuous Fung box spectrum when appropriate.

Throughout, we use the superscript DQLV to distinguish par-

ameters arising from a DQLV fitting from those arising from a

box spectrum fitting. The discrete form of equation (3.2) is

GðDQLVÞðtÞ ¼ 1þ T
Pn

i¼1 Hi e�t=ti

1þ T
Pn

i¼1 Hi
, ð3:6Þ

and that of equation (3.1) is

SðDQLVÞðtiÞ ¼
Hi

ti
, t1 � ti � tn

0, otherwise ,

8<
: ð3:7Þ

where Hi are parameters to be fit and t1 and tn, as described below,

are chosen to encompass a range broader than that needed

to describe a material. In contrast to the Neubert [29] and Fung

box spectrum models [1], the values of Hi need not be identical.

Schematically, the DQLV model is analogous to the box spectrum

model, except with a finite number of elements, Hi, that represent

the relaxation spectrum (figure 4). For materials that are not well fit

by the box spectrum model, the insertion of equation (3.7) into

equation (2.6) provides for a simple extension of the QLV model.
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Figure 4. The DQLV model differs from the Fung box spectrum model in that it
has a finite number n of elements analogous to those in figure 2a, each with a
discrete time constant ti and with a potentially different height Hi. (b) The time-
independent and -dependent stress responses can be separated as in figure 2b.
(Online version in colour.)
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We note that, although the DQLV spectrum reduces to a box spec-

trum, it is different in that the values of Hi need not be constant.

Further, although this physical meaning of t1 and tn is analogous

to these constants within a Prony series, we note that the DQLV

spectrum reduces to a box spectrum when a box spectrum is

indeed the correct representation of a material’s relaxation

response. The model does not reduce to the spectral representation

that would be obtained using the generalized Maxwell model [37].
3.3. Numerical fitting algorithms
As in equation (2.10), we can split G(DQLV)(t) into time-independent

and -dependent parts:

GðDQLVÞðtÞ ¼ GðDQLVÞ
ti þ GðDQLVÞ

td ðtÞ

¼ 1

1þ T
Pn

i¼1 Hi
þ T

Pn
i¼1 Hi e�t=ti

1þ T
Pn

i¼1 Hi
: ð3:8Þ

Because of the nature of ill-posed problems, we expect predic-

tions to show some deviation from a Fung box spectrum even for

artificial data generated from the Fung model [36,38–40]. Thus,

we used a simple regularizing criterion, which acted as a penalty

against unwanted states and ensured that the fitting algorithm

did not become trapped in local minima. In this approach, Hi

were smoothed by a regularization function and were identified

by minimizing

Xf

j¼1

(s
ðexpÞ
j � s

ðDQLVÞ
j )2 þ a

Xn�1

i¼2

ðHi�1 þ 2Hi �Hiþ1Þ2, ð3:9Þ

where f is the number of data points, s
ðexpÞ
j are known stress data

or a calculable relationship and a is a regulating factor. Parameters

were determined using a non-negative least-squares regression [41].

For anya of the order of 1, the parameter estimates were insensitive

to the specific choice of a. a ¼ 1 was used in the model validation

studies below. s
ðDQLVÞ
j are DQLV estimates of s

ðexpÞ
j :

s
(DQLV)
j ¼

AðeB _1tj � 1Þ
1þ T

Pn
i¼1 Hi

þ AB _1

ðtj

0

T
Pn

i¼1 Hi e�ðtj�uÞ=ti

1þ T
Pn

i¼1 Hi
eB _1udu

ðj ¼ 1, 2, . . . , pÞ,

AðeB _1tp � 1Þ
1þ T

Pn
i¼1 Hi

þ AB _1

ðtp

0

T
Pn

i¼1 Hi e�ðtj�uÞ=ti

1þ T
Pn

i¼1 Hi
eB _1udu

ðj ¼ p, pþ 1, . . . , fÞ,

8>>>>>>>>>><
>>>>>>>>>>:

ð3:10Þ

where p and f are the number of data points in ramp and relaxation

intervals, respectively.
3.4. Validation of software to estimate discrete
quasi-linear viscoelastic spectra

A code to obtain the DQLV spectrum of a material from stress

versus time data in a relaxation test was generated in the

Matlab environment. The code is available from the authors.

Because the DQLV model represents an approximation of the

real spectrum of a material [36], it was important to validate

the model and check the reproducibility of the approximation.

Validations were performed by using the DQLV model to fit

stress–relaxation data generated using either the Fung QLV

model with a box spectrum or using the generalized Maxwell

model, the latter having three time constants (including the

infinite time constant; e.g. [42,43]).

The stability of the model with respect to noise was then

studied. Random noise was added to the simulated Fung QLV

stress–relaxation data to evaluate how noise affects DQLV analy-

sis results. We superimposed upon the data noise chosen from a

uniform distribution with amplitudes of 5, 10, 15, 20 or 25% of

the steady-state stress. Fifty noisy datasets were generated (10

sets for each noise percentage). Relaxation spectra, H(t), for

these new datasets were estimated using the DQLV approach.

The sensitivity to noise level was then quantified by the mean

square error (MSE) of the predicted stress–relaxation compared

to the underlying input stress–relaxation data.

3.5. Characterization of medial collateral ligament
relaxation

As an example of DQLV characterization of an orthopedic tissue,

we studied either the left or the right MCL from N ¼ 6 skeletally

mature female New Zealand white rabbits. Prior to dissection,

knees were wrapped in saline-soaked gauze and then sealed in

plastic bags and fresh frozen at 2208C [44]. On the day of testing,

knees were thawed to room temperature and MCLs were dissected

and cut free at the insertion sites [45,46]. The geometry was stan-

dardized by cutting the ligaments into dog bone shapes with a

length-to-width ratio of 6.8+0.8 (width 1.6+0.2 mm). The

tissue samples were fixed in custom-made soft-tissue clamps, and

the cross-sectional area was determined with a laser micrometer

system (1.0+0.3 mm2) [44,47]. Measurements were taken in

three locations along the length of the tissue sample and averaged

for stress calculations. The tissue sample–clamp construct was then

mounted to a tensile testing machine (Enduratec Elf 3200, Bose

Corporation, Framingham, MA, USA). Reflective markers were

placed on the tissue sample to track strain using an optical

system (VP110, Motion Analysis, Santa Rosa, CA, USA). A saline

drip was used to hydrate the tissue sample and maintain tempera-

ture at a constant 378C. The tissue sample was aligned along the

loading axis using an x–y table and then was left unloaded for

30 min to acclimate. Specimens were elongated to strain levels of

1.25, 2.5 and 5% and held isometrically at each level for 35 min to

reach equilibrium [48]. Force data were acquired at 3 Hz through-

out the ramp and 35 min relaxation intervals. The ramp time for

all three samples was approximately 9.2 s; thus, the specimens’

strain rates were approximately 0.135% s–1, approximately

0.271% s–1 and approximately 0.543% s–1, respectively. The exper-

imental data were fit using both the DQLV and Fung box spectrum

models [5].
4. Results and discussion
4.1. Fitting of simulated data
In the first validation study, stress–relaxation data were calcu-

lated for a Fung QLV material whose relaxation response

followed a box spectrum, and the DQLV model was applied

to estimate the parameters used to generate these data. The
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Table 1. Constants describing the parameters of reduced relaxation function, the instantaneous elastic response and the strain profile for goat MCL [5].

A (MPa) B C t1 (s) t2 (s) tp (s) tf (s) _1 ðs�1Þ

32.86 13.5 0.05 0.51 2786 18.4 3618.4 0.0015
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parameters chosen were those reported by Abramowitch et al.
[5] for a goat MCL that was strained to 2.76% over 18.4 s and

then held isometrically for 3600 s (figure 5a,b and table 1).

The DQLV model was applied using equation (3.10), which

constrains the DQLV model to fit stress–relaxation data.

A spectrum that approximated a box spectrum was predicted,

indicating that the material would be well modelled by a box

spectrum representation. Several sets of time constants and

different regularization parameters a were evaluated to

ensure that the DQLV spectrum was repeatable. The predicted

spectra were insensitive to the choice of a for a of the order of 1,

and a ¼ 1 was adopted for all subsequent analyses. The

spectrum shown in figure 5c had n ¼ 100 time constants.

Increasing n provided a better quantitative fit to the stress–

relaxation data, but did not change the qualitative nature of

the predicted DQLV spectrum.

An interesting feature of the DQLV analysis is that the pre-

dicted DQLV spectrum, despite its deviation from a box shape,

yielded error of less than 0.01% of the peak stress when predict-

ing stress–relaxation data generated using a flat box spectrum.

Indeed, the Fung box spectrum and DQLV fits were both indis-

tinguishable from the input relaxation data (figure 5c). The

logical course of action for a DQLV spectrum such as this

would thus be to adopt the simpler box spectrum fitting for

subsequent analysis of this material.

We next studied whether the DQLV model could identify

when stress–relaxation data should not be represented by a

Fung box spectrum. The input data in this case were generated
using a generalized Maxwell model [33] including two Max-

well elements in addition to a linear spring, all acting in

parallel. The data chosen were those reported by Shen et al.
[49] for fitting the response of a sea cucumber (Cucumaria
frondosa) collagen fibril following a 20 s ramp to a strain of

20% and a subsequent 520 s isometric hold (figure 6a,b and

table 2). The DQLV fitting recovered a Maxwell-type spectrum

with two distinct peaks at the two non-infinite time constants

used to generate the input data (figure 6c).

However, the box spectrum fitting (figure 6c), also

yielded an excellent fit to the stress–relaxation data. The fit-

ting error, as observed in the plot of the residuals (inset of

figure 6b), was only slightly higher than that of the DQLV fit-

ting. This very small difference in residual error highlights

the peril of fitting a Fung QLV box spectrum in the absence

of a spectral evaluation such as that which the DQLV

model provides: although the box spectrum model captured

the relaxation data very well, this prediction captures the fre-

quency dependence of the material response very poorly at

the extremes of the range of time constants [18,19]. As we

emphasize in the sequel to this article, the errors become sub-

stantial when attempting to predict material response under

dynamic loading.

Finally, the fittings were remarkably robust against Gaus-

sian random noise for both the DQLV (figure 7a) and box

spectrum (figure 7b) models. MSEs increased with noise,

but were less than 2 MPa for 25% noise in both models,

compared to a peak stress of about 13 MPa.
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Table 2. Constants describing the elastic moduli, the relaxation time constants and the strain profile for isolated collagen fibrils of Cucumaria frondosa [42].

E0 (MPa) E1 (MPa) E2 (MPa) t1 (s) t2 (s) tp (s) tf (s) _1 ðs�1Þ

83 � 106 19 � 106 14 � 106 6 100 20 520 0.0100

0
10–3

10–2

10–1

1

10

5 10
noise added (%)

(a)

M
SE

 (
M

Pa
)

15 20 25 0 5 10
noise added (%)

(b)

15 20 25

Figure 7. Assessment of the susceptibility of the DQLV and Fung QLV fitting methods to experimental noise. (a) DQLV and (b) Fung QLV fittings of simulated data
reproduced the stress – relaxation curves in a way that was robust against noise. The DQLV model showed lower MSE than the Fung QLV model. Shown is the mean
squared error (MSE) of the fit to the stress – relaxation data for fitting of 10 different noisy sets of relaxation data at each of five different levels of noise. For
comparison, the peak stress was about 13 MPa. Noise was introduced by adding a Gaussian random fraction of the quantity b(sf ) to each data point, where
b [ f0%, 5%, 10%, 15%, 20%, 25%g.
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4.2. Discrete quasi-linear viscoelastic fitting of stress –
relaxation data of rabbit medial collateral ligament

The stress–relaxation data for rabbit MCLs at strain levels of

1.25, 2.5 and 5% all showed a characteristic rise during

stretching, then gradually decreased to plateau at about

2000 s (figure 8a,c,e). Both the DQLV and box spectrum
models fit the experimental data with acceptable error, but

the DQLV had higher precision (figure 8b,d,f ). By comparing

the DQLV spectra (figure 9a) to the Fung box spectra

(figure 9b) of the three stress–relaxation tests, it is clear that

the box spectra weakly estimated the lower boundary of

dominant time constants of the system. The DQLV model

estimation, on the other hand, was more consistent.
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Moreover, the DQLV model illuminated a structurally fast

time constant at about 10 s and a slow time constant at

about 1000 s that were not detectable by the Fung box spec-

tra. These observations are consistent with dynamic testing

reported for other tissues [18,19,50].

The DQLV spectrum showed reasonable repeatability for

the three strain levels, suggesting that the Fung QLV model’s

criterion of a strain-independent reduced relaxation function

would be met reasonably well for the rabbit MCL specimens

tested. However, the other condition, that of a flat, box-like

spectrum was not met: the continuous spectrum of equation

(3.1) must have constant dimensionless height h(t) ¼ C over

some range of t1–t2, but the values of t1,t2 and C varied sub-

stantially for the best fits to the three tests. Errors associated
with applying the box spectrum model become evident at

the lower boundary of the time constants (figure 9b).

4.3. Choosing among models
For a tissue such as the rabbit MCL studied above, a more

detailed description of the spectrum would be required,

especially under dynamic loading. Two logical choices are a

normalized, generalized form of the Maxwell model and the

DQLV model. Both are related in that they involve a Prony

series, and both have strengths and limitations.

The generalized Maxwell model is an excellent tool for fit-

ting most experimental stress–relaxation data, and can usually

do so with only two or three exponential terms [37]. This is a

strength because of its simplicity, but is also a limitation



0
10–1 1

re
la

xa
tio

n 
fu

nc
tio

n

10 102

(a)

t (s)
103 104 105

0.05

0.10

5% strain
2.5% strain
1.25% strain

0.15

0.20

0
10–2 10–1 1 10

(b)

t (s)
102 103 104

0.04

0.08

0.12

Figure 9. DQLV and Fung QLV spectra of the rabbit MCL. (a) The DQLV spectra were very similar at all three strain levels, which is a fundamental requirement for
using the Fung QLV model. However, the spectra showed two dominant peaks (around 10 s and around 1000 s) rather than a box spectrum, which precludes use of
the Fung QLV model. (b) The Fung QLV model produced a poor fit to this spectrum, with the lower range of t mispredicted and the minor variations of the
spectrum with respect to strain exaggerated.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20150707

9

because the limited number of time constants may be

inadequate to reveal either the range of relaxation mechanisms

or the subtle differences between materials.

The DQLV model can represent the reduced relaxation

spectrum of a material such as the rabbit MCL and is con-

venient for several reasons. First, estimating a DQLV

spectrum is a logical first step in choosing a material model

for a biological material: by using a regularizing function, the

approach identifies ranges of time constants over which

Fung’s continuous box relaxation spectrum provides a suitable

approximation and is effective at fitting this box relaxation

spectrum. Second, a DQLV spectrum identifies when discrete

time constants are more effective than a box relaxation spec-

trum for representing damping responses and provides a

reasonable material model with no further fitting. Third, the

DQLV spectra from multiple strain states reveal the assump-

tion of strain-independent relaxation (cf. equation (2.3)) is

supported; for example, the MCL data (figure 9a) showed

DQLV spectra that are very similar for three different strain

levels, indicating that the DQLV model would be a reasonable

simplification. Finally, the parameters Hi are insensitive to the

number of time constants chosen. Increasing the number of

time constants will improve the precision of the discretization

of a continuous relaxation spectrum, but our experience is

that the nature of this spectrum eventually converges, becom-

ing insensitive to further increases in the number of time

constants. Application of this approach is a simple and effec-

tive way to identify material relaxation spectra in an

unbiased manner from stress–relaxation data.
5. Conclusion
Application of the DQLV model is a simple and effective way to

identify material relaxation spectra in an unbiased manner from

stress–relaxation data. The approach identifies ranges of time

constants over which Fung’s continuous box relaxation spectrum

provides a suitable representation of material behaviour and is

effective at fitting this box relaxation spectrum. It also identifies

when discrete time constants are more appropriate than a box

relaxation spectrum for representing damping responses.

Although the Fung QLV model with a box spectrum can fit

most stress–relaxation data, including data generated using a

relaxation spectrum that differs substantially from a box spec-

trum, errors associated with applying the box spectrum

become evident at the lower boundary of the time constants.

The improvement in fit to relaxation data using the DQLV

model can be substantial, especially when considering behaviour

over narrow ranges of material time constants. The DQLV model

was able to identify correctly spectra at particular strain levels

from simple stress–relaxation tests.
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