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When being searched for and then (if found) pursued by a predator, a prey

animal has a choice between choosing very randomly among hiding locations

so as to be hard to find or alternatively choosing a location from which it is

more likely to successfully flee if found. That is, the prey can choose to be

hard to find or hard to catch, if found. In our model, capture of prey requires

both finding it and successfully pursuing it. We model this dilemma as a zero-

sum repeated game between predator and prey, with the eventual capture

probability as the pay-off to the predator. We find that the more random

hiding strategy is better when the chances of repeated pursuit, which are

known to be related to area topography, are high. Our results extend earlier

results of Gal and Casas, where there was at most only a single pursuit. In

that model, hiding randomly was preferred by the prey when the predator

has only a few looks. Thus, our new multistage model shows that the effect

of more potential looks is opposite. Our results can be viewed as a generaliz-

ation of search games to the repeated game context and are in accordance with

observed escape behaviour of different animals.
1. Introduction
When a predator finds its prey but is unsuccessful in its pursuit, it has two choices.

It can give up the attempt to again find and then catch this prey and move to

another patch or it can persist in its endeavour. We call the probability of the pred-

ator adopting the second choice its persistence, which we label as parameter b. This

persistence parameter is related to the so-called ‘give-up time’, and we view it as an

exogenous, fixed, parameter in our repeated game model of combined search for

and pursuit of prey. Giving-up times have been studied for decades within behav-

ioural ecology as a specific case of economic decisions at the individual level [1] and

shown to depend on both internal (satiation level, number of ripe eggs, etc.) and

external variables (number and quality of prey in patches, predation risk) [2]. Per-

sistence is known to be related to the topography of the pursuit arena, for example,

it was found in [3] that ‘. . .compared with a flat surface, leaf litter . . . reduced the

likelihood of secondary pursuits, after initial escape of the prey, to nearly zero’.

With the inclusion of a persistence probability, this paper can be viewed as a

repeated game extension of the single stage game of Gal & Casas [4], where an

unsuccessful pursuit ended the game. Our main result is that when the persistence

probability is high, the prey should hide more randomly (distributed over more

potential locations) rather than more concentrated on the best sites for fleeing.

From the point of view of the field of ‘search games’ (e.g. [5]), the importance

of this paper is the introduction of models and techniques from the area of

repeated games, which hitherto have not been part of the field. Such an extension

of existing models is required to analyse persistent attacks of a predator.
2. Search games and biological contexts
This section places our work within the two contexts of search games (in the applied

mathematics and operational research literatures) and behavioural ecology.
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2.1. Search games
There is an extensive literature on search games where the hider

chooses to locate at one of a finite number of locations (called

cells, boxes, etc.) and then the searcher looks sequentially into

these boxes to try to find the hider. These boxes may be hetero-

geneous in the cost of searching and in the probability that a

hider can be overlooked even if his location is searched. The lit-

erature on this aspect of our model has been discussed in [4].

A new aspect of search games that appears in this paper is

that of persistence of attacks—if the prey escapes, the predator

may attempt to find it again. The closest to this repetition of

search is in the model of Alpern et al. [6,7], where during the

search the prey (hider) may attempt to flee the search region.

The prey will succeed in this attempt if the predator is in a

cruise search mode, but not if he is in an ambush mode. In

those models, a successful flight by the prey is definitely fol-

lowed by a renewed attempt by the predator to find it. (We

use the term ‘flight’ as fleeing from the hiding location, not

necessarily in the air.) So in our context, we would say that

those models had maximum persistence, a b value of 1.

The problem of where to hide food (in discrete packages

such as nuts) rather than where to hide oneself, has been ana-

lysed in a search game played between a scatter hoarder such

as a squirrel and a pilferer in [8]. The squirrel has limited digging

energy and has to decide between placing nuts deeply hidden in

one place or alternatively widely scattered at shallower depths.

This problem is somewhat analogous to the problem of the

prey hiding in a good location or randomly choosing among

less good locations. Of course the pay-offs are of a different

kind as the prey either gets caught or not; while the squirrel

either has enough nuts left to survive the winter, or not. Also,

there is no pursuit phase in the squirrel’s problem.

The search game models in [6,7] had no pursuit phase,

and the issue raised there concerned the optimal alternation

between cruise search and ambush search. Following those

papers, Zoroa et al. [9,10] advanced the theory of search

games to include ambush. A ‘silent predator’ (whose approach

is not observable by the prey) was considered in [11].

More biological models were considered by Broom [12] and

Pitchford [13]. The only one of these papers to touch on

repeated games is the study of Zoroa et al. [10].
2.2. Persistent attacks and prey escape tactics in the
animal world

There is a paucity of ethological studies reporting the fleeing

behaviour of prey under persistent attacks by their natural ene-

mies, in contrast with the well-studied case of a single attack,

followed by escape [14]. In fact, the number of predator–prey

interactions with a rapid sequence of repeated attacks on the

same prey by the same predator abound in nature, and older

literature provides lengthy descriptions of such interactions,

from pompilid wasps pursuing spiders to falcons attacking

passerine prey (see Fabre’s description in [4] for the first case

and [15] for the second case). These descriptions often lack cru-

cial information to formalize them as repeated games, and are

not quantified. In the following, we first report the findings of a

few studies, conducted mainly with lizards [16] and grasshop-

pers [17] as prey and humans as predators. We then describe

one biological interaction in more detail. We use this example

to formalize the backbone of our theoretical study and describe

in less detail a further example in the discussion.
The survey of the less than a dozen studies on prey escape

under persistent attack show that prey switch tactics once

they realize that the predator is repeatedly attacking them

[17]. The chosen tactics range from shorter flight initiation

distance, longer flight distance, extended use of cover, use of

more protective cover and higher latency to emerge from

cover. Prey indeed adjust continuously the costs and benefits

of their decisions, and switching to a different tactic has a

price. For example, lizards running into rock crevices rather

than moving a bit further experience a thermal cost [16] and

grasshoppers hiding down grass stems rather than chipping

plant pieces and eating them in the open do not have access

to food [17]. Because these examples use humans as the preda-

tor, the experiments are conducted in a way to enable prey to

escape. Also, these studies do not provide a map of the environ-

ment and hence an appreciation of the number of hiding places

available to the prey. This aspect does matter as it defines the

number of possible hiding locations [4].

The most comprehensive knowledge of both the geometry

of the spatial arena and the occurrence of repeated attacks

and fleeing displayed by both antagonists is available for a

leafminer larva–parasitic wasp interaction. This system has

been studied in depth and only the relevant information is

provided here.

Movements by both wasp and host larva produce vibrations

of the leaf tissues in which the caterpillar lives, which may be

sensed by both actors [18,19]. The wasp flies toward the visual

appearance of the mines due to the white spots, thereafter

called windows, which are feeding locations of a couple of

square millimetres where only the cuticle of the leaf remains.

The feeding larva is below the window, and can be seen through

the translucent cuticle. The number of windows increases

during larval development [20]. The wasp lands on the leaf

and the game begins. Leaf vibrations cause the larvae to cease

feeding and to become ‘alert’. On the one hand, vibrations pro-

duced by the host during escape are useful to the parasitoid

female, as a trigger to continue the hunt [19]. On the other

hand, vibrations produced by a hunting parasitoid at the

leaf’s surface are also useful to the host, which remains alert.

The wasp tries to sting the larva by inserting the ovipositor vio-

lently in one of the windows, the other areas of the mine being

too tough to penetrate. A successful search ends with the larva

being parasitized and the wasp laying an egg.

Let us now formalize that biological example as a repeated

search game. We consider that the white spots on the mine are

the locations under which the hider hides. This number can

reach easily over 100. For simplicity, we assume that the larva

is hiding under only one window. In reality, a large larva can

be simultaneously under a few windows. A look starts when

the wasp explores a given window with its antenna. There are

then different possibilities depending on whether the larva is

hiding there. If the hider is somewhere else, the wasp moves to

another window or inserts the ovipositor to explore the location

more carefully (these less frequent cases are classified as search-

ing). In either of these cases the wasp then moves to another

location. If the larva was under the search window, either the

wasp does not sense it and moves to another window or the

wasp pursues the larva by violently inserting its ovipositor. So,

overlooking the hider is a possibility which implies the end of

that look, as the wasp is changing location, but its rare occurrence

is not implemented in our model. For a given pursuit, there are

two possible events. First, the wasp might hit the larva and

the game ends. Alternatively, the wasp might merely touch the
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larva or produce strong leaf vibrations. Both actions lead to the

escape of the larva, which relocates itself with uniform prob-

ability under any of the windows. A change of windows by the

larva terminates the look, irrespective whether the wasp persists

searching at the actual location. A change of window by the wasp

also terminates the look. If both remain in the same location, the

behavioural sequence starts anew, but within the same look.
lishing.org
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3. Review of basic game G(k, 0)
All the games we study are zero-sum two-person games. The

pay-off function is always the probability that the searcher

eventually finds and captures the hider. Thus, the searcher is

the maximizer and the hider is the minimizer. Such games

have a value, denoted by v, and optimal mixed strategies for

each player. The optimal strategy for the searcher will guaran-

tee that the capture probability (pay-off) is at least v and the

optimal strategy for the hider will guarantee that the capture

probability is at most v. The pair of optimal strategies form a

Nash equilibrium, though of a special type. The details of the

general form of search games can be found in [5].

Before describing the general game G(k, b) with persistence

probabilityb, we review what we call the basic game studied in

[4]. There is no persistence of attack, the persistence probability

b is 0, which is why the second parameter (forb) describing the

game is 0. There are n locations i [ f1, 2, . . . , ng for the hider

to hide in. If the hider stays at location i, then the probability of

capture, in case that the searcher looks at this location is pi,

where p ¼ ( p1, . . . , pn) is a known vector capture probability,

with the locations ordered so that p1 � p2 � � � � � pn: Thus,

location 1 is always the location where it is hardest to catch

the hider. The searcher is limited to looking in k out of the n
possible locations of the hider. Since the time taken to find

the hider is not important in our model, a pure strategy for

the searcher is a simple subset S , f1, 2, . . . , ng of cardinality

k. If the hider’s location i belongs to the searched set S, the hider

is captured with probability pi; otherwise he is not captured.

The pay-off to the searcher (hider) is 1(0) if the hider is captured

and 0(1) otherwise.

In terms of pure strategies, where the hider chooses

location i and the searcher looks at each location in the set

S, the pay-off (probability of capture) is given by

pay-off (S, iÞ ¼ 0, if i � S and
pi, if i [ S:

�
ð3:1Þ

A mixed strategy for the hider is a probability distri-

bution h ¼ (h1, . . . ,hn) over the locations, so that 0 � hi � 1

and h1 þ. . . hn ¼ 1. For the searcher, it is a probability

distribution over the subsets of f1,2, . . . ,ng of cardinality k.

A simpler representation of a search strategy, shown to be

equivalent in [4], is an n-vector r ¼ (r1, . . . , rn) satisfying

Xn

i¼1

ri ¼ k, 0 � ri � 1, ð3:2Þ

where ri is the probability that i [ S: (Note that the extreme

points of the set of all such points r have k coordinates equal

to 1 and the rest equal to 0, and thus can be identified with

particular k-sets S.)

It is useful to observe that in games of hide and seek (called

search games in the literature [5]), pure strategies are generally

not very good for either player. If the hider always goes to

the same location, the searcher will always look there first; if
the searcher always searches locations in the same order, the

hider will choose a location not searched or searched late (if cap-

ture time enters the pay-off). An exception to this is the Type II

solution of theorem 3.1, where the hider always chooses

location 1 (the best location for escape) and the searcher

always looks there first (or in the first k looks). But in any case

the prevalence of mixed strategies as Nash equilibria (optimal

strategies) in search games is in stark contrast with the pure strat-

egies which are sufficient as evolutionary stable strategies in

asymmetric animal contests [21]. It should be noted in any

case that the ‘pure’ strategies in [21] are behavioural and involve

randomization. In addition, during any round of our game

neither player knows about the choice made by the other

player so there is no asymmetry of knowledge.

In terms of mixed strategies r (for the searcher) and h (for

the hider), the capture probability (pay-off ) is given by the

following formula, which is, however, never explicitly used

in finding the solution.

pay-off(r, h) ¼
Xn

i¼i

hiri pi: ð3:3Þ

That is, the hider will be captured if for some location i: the

hider hides at location i, the searcher looks in location i and

the search successfully catches the hider in the pursuit stage

at location i.
The solution to the basic game G(k, 0), as given in [4], can be

summarized in the following result from Gal & Casas [4], where

l ¼ lðpÞ ¼ 1P
ð1= piÞ

: ð3:4Þ
Theorem 2.1. (Gal–Casas) The value of the game G(k, 0) is
given by

v ¼ minðkl, p1Þ: ð3:5Þ

The optimal strategies come in two types, mixed (Type I) and
pure (Type II).

Type I solution. If k , p1/l (that is, v ¼ kl) then the unique
optimal search strategy satisfies ri ¼ kl/pi, and the unique optimal
hiding strategy satisfies hi ¼ l/pi, i ¼ 1, . . . , n (the hider makes all
locations equally attractive for the searcher).

Type II solution. If k � p1=l (that is, v ¼ p1) then any opti-
mal search strategy satisfies r1 ¼ 1 (1 [ S) and ri � kl= pi for
i ¼ 1, 2, . . . , n and the uniquely optimal hiding strategy is to
hide at location 1, that is, h1 ¼ 1.
4. The game with persistence of attack, G(k, b)
This section covers the more general game, G(k, b), with an

arbitrary persistence probability b.

4.1. Framework
We now extend the game of Gal & Casas [4] to multiple

periods. When the persistence b is 1, we have a repeated

game, and when b , 1, the game is mathematically equival-

ent to a discounted repeated game, where b plays the role of

the discount factor.

The repeated game G(k, b) has an unlimited number of

stages played at the same n locations. In each stage, the

pure strategies are the same as in the basic game G(k, 0) dis-

cussed in the previous section: the hider chooses a location to

hide in and the searcher chooses a subset S of cardinality k to
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Figure 1. Flowchart of the dynamics of the repeated game. (Online version in colour.)
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inspect. There is no influence of previous play in earlier

stages, except in the variation discussed in the final section,

where the hider cannot return to a location where he has

previously hidden. There are three possible outcomes:

(1) If the searcher does not find the hider, then the game

ends with zero pay-off for the searcher and a pay-off of

one to the hider. (hider wins.)

(2) If the searcher finds the hider and successfully pursues

it (captures it), then the game ends with a pay-off of

one to the searcher and a pay-off of zero to the hider.

(searcher wins.)

(3) If the searcher finds the hider but does not catch it, then

there are two possibilities. With probability 12b the

predator gives up and the game ends with a win for

the hider. With the persistence probability b the process

restarts with the hider finding a new location.

The value v (0 � v � 1) is the probability that the searcher

eventually captures the hider, with best play on both sides.

We will show that there exist optimal strategies for both

players which are usually unique. The dynamics of the

game can be seen in figure 1.

4.2. Basic lemmas for G(k, b)
The value v of the game G(k, b), with persistence b, will be

later shown to be the solution of the basic equation

Xn

1

v
pi þ ð1� piÞbv

¼ k: ð4:1Þ

We now present several auxiliary results.

Lemma 4.1. The LHS of (4.1) is (continuous) strictly monotonic
increasing in v. Thus, equation (4.1) has a unique positive root v,
0 , v � 1.

Proof. The left-hand side (LHS) of equation (4.1) can be

written as

LHS ¼
Xn

1

1

pi=vþ ð1� piÞb
,

so it is a strictly monotonic increasing function of v for v . 0.

This function continuously increases from 0 to at least n as v
increases from 0 to 1. Since k � n, it follows by continuity

that there exists a unique root for equation (4.1). B

Definition 4.2. Let v1 satisfy

v1 ¼ p1 þ ð1� p1Þbv1, ð4:2Þ

so

v1 ¼
p1

1� bþ p1b
: ð4:3Þ

It immediately follows from Lemma 4.1 that

Lemma 4.3. As v increases from 0 to v1, LHS of (4.1) continuously
increases from 0 to M given by

M ¼
Xn

1

v1

pi þ ð1� piÞbv1
¼
Xn

1

p1

pið1� bÞ þ p1b
: ð4:4Þ

Also, as persistence b increases from 0 to 1, M increases fromPn
1 p1= pi to n.

Lemma 4.4. If k , M then for any i

v , pi þ ð1� piÞbv: ð4:5Þ

Proof. By lemma 4.3 if k , M then v , v1 so v , p1 þ (1 –

p1)bv. Since the right-hand side of (4.5) is a convex combi-

nation of 1, and bv � 1 and pi � p1, the result follows. B
4.3. Type I solutions of G(k, b)
A Type I solution for G(k, b) is a pair (h*r*) such that h* is the

hiding strategy that makes all locations equally attractive for

the searcher to visit for each stage independent of history and

r* is the search strategy that makes all locations equally attrac-

tive to hide at for each stage independent of history. We now

show that these strategies are optimal if k is smaller than the

threshold M.

Theorem 4.5 (Type I). If k �M (see (4.4)), then the solution of
the game G(k, b) is of Type I:
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The optimal strategies, unique for k , M, are

h�i ¼
v=k

pi þ ð1� piÞbv
for the hider ð4:6Þ

and

r�i ¼
v

pi þ ð1� piÞbv
for the searcher: ð4:7Þ

The value v of the game is the unique solution of equation (4.1),
as guaranteed by lemma 4.1.

Xn

1

v
pi þ ð1� piÞbv

¼ k:

Proof. Assume that k , M. First note that for all i, r�i , 1

by lemma 4.4.

We now show that r� ¼ ðr�1, . . . , r�nÞ guarantees capture

probability equal to v which solves equation (4.1) against any

hiding strategy. To obtain the minimum probability of capture,

achievable by the hider, if the searcher uses r* the hider has to

solve the corresponding Markov decision process (MDP) [22]

with just two states (a ‘free’ state and an absorbing state ‘cap-

ture’) and a finite action space for the hider. In this MDP there

are no costs involved except for a cost 1 which is paid by the

hider if the searcher visits the hider’s location (and the process

then enters into the absorbing state ‘capture’). By the basic

theory of MDP we need to take into account only deterministic

stationary strategies for the hider, i.e. always hiding at the

same location, say j. For any such j, the probability of capture

if the searcher uses r* is

X1
m¼0

ðr�j ð1� pjÞbÞm�1r�j pj ¼
r�j pj

1� r�j ð1� pjÞb
¼ v,

by (4.7).

Next we show that h� ¼ ðh�1, . . . , h�nÞ keeps the probability

of capture to at most v against any search strategy. In order to

obtain the maximum probability of capture achievable by the

searcher if the hider uses h* we have to solve an analogous

two-state MDP for the searcher. Again, we need to consider

only deterministic stationary search strategies of searching

only a set of k locations, say i1, . . . ,ik. For any such set of

locations, the probability of capture if the hider uses h* is

calculated as follows. The probability of another round of

the process is

B ¼
Xk

j¼1

h�ijð1� pijÞb: ð4:8Þ

Thus, the overall probability of capture is

X1
m¼0

Bm
Xk

j¼1

h�ij pij ¼
Pk

j¼1 h�ij pij

1�B

¼
Pk

j¼1 ððv=kÞ=ðpij þð1� pijÞbvÞÞpij

1�
Pk

j¼1 ððv=kÞ=ðpij þð1� pijÞbvÞÞð1� pijÞb
,

ð4:9Þ

by (4.8) and (4.6).

In order to calculate (4.9) observe that for any dj . 0, j ¼
1, . . . ,k, with cj ¼ y(12dj), we haveP

j cj=k

1�
P

j dj=k
¼

ðy=kÞ
P

j ð1�djÞ
ð1=kÞ

P
j 1�ð1=kÞ

P
j dj
¼y

ð1=kÞ
P

j ð1�djÞ
ð1=kÞ

P
j ð1�djÞ

 !
¼y:
Denote now

v pij

pij þ ð1� pijÞbv
¼ cj

and

ð1� pijÞbv
pij þ ð1� pijÞbv

¼ dj,

then

cj

1� dj
¼ v,

so the expression given by (4.9) is equal to v. Thus, the hiding

strategy h* assures the probability of capture at most v given

by equation (4.1). We have thus shown that v is the value of

the game and (h*, r*)) is a Nash equilibrium.

We next show that r� ¼ ðr�1, . . . , r�nÞ is the unique search

strategy that guarantees the pay-off v given by (4.1). Assume

that there exists a location j with rj , v=ð pj þ ð1� pjÞbvÞ:
Then by hiding at j the hider would make the searcher’s pay-off

rj½ pj þ ð1� pjÞbv� , v:

Thus, in order to guarantee pay-off v all ri would have

to satisfy

ri �
v

pi þ ð1� piÞbv
:

But r has to satisfy (3.2) so by (4.1) and lemma 4.1, we must

have equality. We have thus proved the uniqueness of r*.
We now prove the uniqueness of h*:

If

hj .
v=k

pj þ ð1� pjÞbv
, for some j, ð4:10Þ

then the searcher can get more than v by using a vector r with

ri ¼ ð1� uÞv=ð pi þ ð1� piÞbvÞ, for all i = j and

rj ¼
v

pj þ ð1� pjÞbv
þ u

X
i=j

v
pi þ ð1� piÞbv

,

where u is a small positive number. Thus, the pay-off for the

searcher using R is

ð1� uÞvþ u
Xn

i¼1

v
pi þ ð1� piÞbv

hj½ pj þ ð1� pjÞbv�

. ð1� uÞvþ u
Xn

i¼1

v
pi þ ð1� piÞbv

v=k . v: B

4.4. The persistent predator: G(k, 1)
We now consider the special case where the persistence prob-

ability b is 1 – the game always repeats after a successful

escape of the prey.

Corollary. The optimal solution of the persistent predator

game G(k, 1), for any k, 1 � k � n, is always of Type I.

Proof. Our basic equation with b ¼ 1 is

Xn

1

y

pi þ 1� pið Þy ¼ k:

If b ¼ 1 then M ¼ n so k �M. Thus, the Type I solution is

optimal.
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Moreover, the solution is unique except for the trivial case

k ¼ n in which any hiding strategy leads to a loss of 1 for the

hider because the hider always gets caught, eventually.

Also If k , n then y � k/n because if the hider hides with

probability 1/n at each location, then the probability of

capture in the repeated game is at most k/n.

Note that basic equation for y can be written as

y

k
¼ 1Pn

1

1

pi þ 1� pið Þy

:

Since the RHS is increasing in k, it follows that y is

super-linear in k.

The optimal strategies are:

r�i ¼
y

pi þ 1� pið Þy

and

h�i ¼
y=k

pi þ 1� pið Þy :

4.5. Type II solution for general b and k � M
Here we show that if k �M, where M is given by (4.4),

then the optimal solution is Type II: always hide at the most

favourable location, i.e. at location 1 which has the smallest pi.

Theorem 4.6 (Type II). Suppose k �M, where M is given by (4.4).
Then v ¼ v1 given by (4.3), and an optimal solution for the hider is to
hide at location 1 (Type II). For the searcher it is optimal to use an
r1 vector satisfying

r1
1 ¼ 1

and

r1
i �

v1

pi þ ð1� piÞbv1
, for i � 2:

Proof. By (4.6), hiding at location 1 guarantees v1 for the

hider. Also, the vector r1, which guarantees v1 against any

hiding location, is feasible by (4.4) which implies that

Xn

i¼1

v1

pi þ ð1� piÞbv1
¼M � k: B

4.6. The ranges of Type I and II solutions
Here we show that, in general, there is a cut-off value of the

persistence probability b above which the game G(k, b) has

only Type I (mixed) solutions and below which it has only

Type II (pure) solutions. Sometimes there are only Type I

solutions.

Theorem 4.7. For a given k � n Let bk denote the solution of the
equation

k ¼ wðp, bÞ ;
Xn

1

p1

pið1� bÞ þ p1b
: ð4:11Þ

Then

(1) If b . bk, then there are only Type I solutions to the game
G(k, b).
(2) If b , bk, then there are only Type II solutions to the game
G(k, b).

(3) If the equation (4.11) has no solution, then there are only Type
I solutions to the game G(k, b).

Proof. M given by (4.4) is monotonic increasing with b.

Thus, b . bk implies that k , M. Hence theorem 4.5 implies

that the unique solution of G(k, b) is of Type I. Similarly,

b , bk implies that k . M so theorem 4.7 implies that the

solution of G(k, b) is of Type II.

If (4.11) has no solution, then it must mean that the right-

hand side w1 of (4.11) is always greater than k (because

for b ¼ 1 the w1 equals n) so there are always only Type I

solutions to the game G(k, b). B

Note thatb1 � b2 � � � � � bn ¼ 1, because the denominator

of (4.4) is decreasing with b.

Example 4.8. In order to illustrate both types of solution

for G(k, b), we consider first an example with four hiding

location and take the capture probability vector to be

�p ¼ ð0:2, 0:3, 0:4, 0:5Þ:
Figure 2 shows which strategy type is optimal for p ¼ �p:

We plot the curve k ¼ w(b) which gives the least value of k,

as a real number, for which Type II strategies are optimal.

So, for example, when b ¼ 0.1, Type II strategies are optimal

for k . 2.6. But as k is always an integer in our model (the

number of searches), this effectively means that for b ¼ 0.1

Type II strategies are optimal only when k ¼ 3 (or in the trivial

case k ¼ 4, where all locations are searched). For k equal to 1 or

2, the figure shows that Type I strategies are optimal for any

persistence probability b. If we fix k ¼ 3, the line at height 3

intersects w(b) at about b3 ¼ 0.469, which is thus the cut-off

value of b for Type II strategies and Type I strategies. That

is, when b , 0.469 the solution to G(3,b) is of Type II, whereas

for b . 0.469 the solution is of Type I.

Example 4.9. We now consider a larger arena with nine hiding

locations, with capture probabilities given by the vector

p̂ ¼ (0:1, 0:2, 0:3, 0:4, 0:5, 0:6, 0:7, 0:8, 0:9): Figure 3 plots the

curve k ¼ w(b) which again gives the least k, as a real

number, for which Type II strategies are optimal. Since in

our model k is the integer giving the number of searches,

figure 3 only has implications for integer values of k, which

are drawn as horizontal lines. The intersection of the curve

w(b) with the horizontal line at height k is called bk, and for

b � bk the solution for k searches is of Type II because there

the line of height k is above the curve k ¼ w(b). For b � bk,

the solution for k searches is of Type I. Note that for k ¼ 1,2

we only have Type I solutions, but for higher k we have

both types.

Remark 4.10. Note that in general if

Xn

1

p1

pi
. j,

(or, equivalently, p1 . jl) then G(k, b) has only Type I sol-

utions for all k � j. This follows from theorem 4.7 because

the right-hand side of (4.11) at b ¼ 0 is greater than j so no sol-

utions for (4.11) exist if k � j. So for example if p ¼ (0.5,0.5,1,1)
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we have equality for j ¼ 3 so we have only Type I solutions for

k ¼ 1 and 2, and if k ¼ 3 only Type I solutions for b . 0.
4.7. An alternative approach to the repeated game
An alternative way of obtaining some of the results about the

game G(k, b) is to reduce it to a one-stage game by changing

the capture probabilities. Suppose the value of the game

G(k, b) is known to be some number v. If the hider hides at

a location i and the searcher visits it then the pay-off to the

searcher can be written as

q ¼ pi þ (1� pi)bv,

because the searcher wins immediately (pay-off 1) with

probability pi and with probability (1 2 pi)b he gets to play

the game (with value v) again. The remaining probability

can be ignored as it gives him pay-off 0. It follows that the

multi-period game G(k, b) is equivalent to the one-stage

game (b ¼ 0) with capture probabilities qi.

Using (3.5) of theorem 3.1 with qi replacing pi we get the

implicit equation

v ¼ minðkl, q1Þ ¼ minðkl, p1 þ ð1� p1ÞbvÞ, ð4:12Þ

where

l ¼ 1P
ð1=qiÞ

:

The implicit equation (4.12) can be solved by using

lemmas 4.1 and 4.3. Solutions with the minimum in the

first coordinate give Type I solutions and those with the

minimum in the second coordinate give Type II solutions.
5. Discussion
We first address here the biological significance of our find-

ings and end the paper with an enhancement of our

analysis by accounting for the possibility that prey do not

return to locations where they were previously found but

escape capture.

Persistence in the search leads to more randomization in

the prey choice of hiding locations. In the one-stage game

of Gal & Casas [4], a larger parameter k means more potential

searches. It also means that prey is more likely to hide at the

best location, in other words there is less randomization in

the hiding locations. The persistence game of this paper

implies, for k fixed, more potential searches for bigger b.

Therefore, bigger b means prey is more likely to be

found—but in this case it is less likely to hide at the best

location. This implies more randomization, so the effect of

more searches due to persistence is the opposite. This can

be seen in figure 3, where increasing k (going up) leads into

the Type II region, whereas increasing b (going right) leads

into the Type I region.

Despite an extensive search, we were unable to find

descriptions of biological interactions in which the arena

was mapped with sufficient precision to identify hiding

locations, enabling us to test the predictions of the model.

In the only case for which we have sufficient information,

the leafminer case detailed in the introduction, the very

large number of ovipositor insertions leads to a full ran-

domization of the fleeing locations of the caterpillar

location (see [18] and [19]). By contrast, there is ample evi-

dence that persistence of attacks leads to increased

randomness in other characteristics of prey escape for several

biological systems [23]. For example, the distribution of angle

of fleeing in cockroaches increases in variance with an

increasing degree of persistence of attacks [23]. In all cases,

increasing randomness in prey escape hampers any learning

process in the persistent predator.

A predator–prey interaction for which several of the key

ingredients of the game are known is the attack behaviour

of polar bears and the Inuit on seals at breathing holes. Polar

bears (Ursus maritiums) hunting ringed seals (Phoca hispida)

use different approaches at different times of the year with

still-hunts, also called sit and wait predation, being a

common occurrence [24]. Hunting seals with harpoons at

breathing holes belongs to the traditional way of hunting for

the Inuit, and is very similar to the technique used by bears

[25]. Both polar bears and the Inuit may wait quietly for

seals at their breathing holes for hours, making minimal move-

ment, as sound is well transmitted through ice in water. Seals

do not use holes if they hear noises at the surface. Just before

surfacing, seals also produce ‘phantom’ signals by exhaling

air. The bubbles move the water surface and a misled hunter

might then launch a premature attack and miss the wary

prey. The attacked seal then avoids using that hole due to

potential danger but needs to swim rapidly to another, safer

hole before oxygen depletion. Alternatively, it can wait to re-

use the same hole until the predator gives up and moves
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away. In summer, the number of breathing holes is large. In

winter, the number of breathing holes is reduced as each hole

has to be maintained actively and maintaining all the holes of

summer requires too much effort. Indeed, a hole is excavated

through ice which can exceed 2 m in thickness [26] and a

thick cap can form within a few hours. The home range of

ringed seals overlap extensively and multiple seals use the

breathing holes [26]. From the map produced by [26] one can

estimate the density of breathing holes at approximately 2–3

breathing holes per square kilometre. Finding a hole of several

tens of centimetres diameter at such low density in a nearly fea-

tureless landscape is not an easy task for bears, nor for humans.

Information about rapid changes of hunting holes by bears and

humans is very scant in the literature, so that this example

cannot be further used, despite containing all the major

ingredients, as basis for modelling persistent search and attack.

5.1. Improving the realism of the repeated search
model

Our model includes two assumptions that might be relaxed.

The first is that the available hiding locations do not change

over time and the second is that once the prey successfully

evades the predator, he will not be captured before he finds

a new hiding location.

Up to now, we have been assuming that in the multi-stage

games the available hiding locations remain the same over

time. However, we now consider the implications of the

opposite assumption, namely that if the prey successfully

escapes after being found at location j, he may not return to

that location in the next stage of the game. This restriction

on prey strategies is in accordance with two detailed biologi-

cal examples: a wary seal might prefer to swim to a different

breathing hole and a wary caterpillar might have stopped in

its mine and relocated itself somewhere else. As this restric-

tion is a complicating feature, we explore the consequences

of the ‘no return’ assumption in the simplest setting, a two-

stage game of four locations and full persistance b ¼ 1 in

the first stage. We consider the example where the capture

probability vector is �p ¼ (0:2, 0:3, 0:4, 0:5): In the version

with the no-return assumption, the optimal hiding strategy

in stage 1 is given by ĥ ¼ (0:331, 0:268, 0:218, 0:183): In the

unrestricted version (where the hider can return to a pre-

viously occupied location), the optimal hiding strategy in

stage 1 is given by ~h ¼ (0:355, 0:263, 0:209, 0:173): Note that

when return is prohibited, the optimal probability of hiding

at the best location, location 1, goes down from 0.355 (in

the unrestricted case) to 0.331. The intuition for this decreased

probability is that hiding at location 1 in the first stage now has

the disadvantage that this good location is no longer available

in the second stage. Of course, if the probability of hiding at
location 1 goes down, this must be compensated by increasing

some of the other probabilities. But it is interesting to note, in

this respect, that the ratios ĥi=~hi form an increasing sequence

(0.931, 1.018, 1.046, 1.058). In terms of the value (probability

that predator wins), it goes up from ~v ¼ lð~qÞ ¼ 0:093 in the

unrestricted game to v̂ ¼ lðq̂Þ ¼ 0:100 in the game where the

prey is restricted to no-return strategies. Of course it is well

known that, in zero-sum games, restricting the strategies of

one player results in a lower expected pay-off for that player,

so the direction of change is not surprising.

The second assumption that might be relaxed concerns

the ability of the prey to safely reach any new hiding location

once he has escaped pursuit by the predator at location i. This

models the situation where the prey is only vulnerable to cap-

ture while in one of the hiding locations. This is the same as

in the model of Zoroa et al. [10]. However, it is possible in

theory to incorporate a probability pij that the prey will be

captured when changing from location i to location j. This

could model the cover in the region between the hiding

locations. Clearly, locations i where the numbers pij and pji

are high would then become less attractive to hide at.

Another version of this type of modelling could be to

impose a network structure on the hiding locations, so that

if hiding in location i in one period the prey could only

move to an adjacent location i0 in the next period.

Both these altered models could be investigated in future

research, and we thank an anonymous referee for suggesting

modifications of our model in such directions.
5.2. Conclusion
This work is the first to extend search games to repeated

games. It thus expands greatly the number of observed

searcher–hider interactions played repeatedly by the same

pair of agents in the same environment and also highlights

the opposite inferences drawn when incorporating multiple

bouts of search and escape, in comparison with those

obtained in one-stage games. Our next goal is to further

increase the realism of search games by developing stochastic

search games to deal with the giving up time of persistent,

learning predators.
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