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Synopsis

Phytoestrogen intake is known to be beneficial to decrease breast cancer incidence and progression. But its molecular
mechanisms of action are still unknown. The present study aimed to examine the effect of apigenin on proliferation
and apoptosis in HER2-expressing breast cancer cells. In our experiments, apigenin inhibited the proliferation of BT-
474 cells in a dose- and time-dependent manner. Apigenin also inhibited clonogenic survival (anchorage-dependent
and -independent) of BT-474 cells in a dose-dependent manner. These growth inhibitions were accompanied with an
increase in sub-Go/G4 apoptotic populations. Apigenin-induced extrinsic a caspase-dependent apoptosis up-regulating
the levels of cleaved caspase-8 and cleaved caspase-3, and inducing the cleavage of poly (ADP-ribose) polymerase
(PARP). Whereas, apigenin did not induce apoptosis via intrinsic mitochondrial apoptosis pathway since this compound
did not decrease mitochondrial membrane potential without affecting the levels of B-cell lymphoma 2 (Bcl-2) and Bcl-
2-associated X protein (BAX). Apigenin reduced the expression of phospho-JAK1, phospho-JAK2 and phospho-STAT3
and decreased signal transducer and activator of transcription 3 (STAT3) dependent luciferase reporter gene activity
in BT-474 cells. Apigenin inhibited CoCl,-induced VEGF secretion and decreased the nuclear translocation of STAT3.
Our study indicates that apigenin induces apoptosis through inhibition of STAT3 signalling and could serve as a useful
compound to prevent or treat HER2-overexpressing breast cancer.
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INTRODUCTION oestrogen receptor (ER), showing weak oestrogenic activity [1].
There are five major classes of phytoestrogens: flavones, iso-
flavones, lignans, coumestans and stilbenes. Apigenin (4°,5,7,-

Phytoestrogens are a large group of plant-derived compounds trihydroxyflavone) is one of the flavones found in various foods

and contain a phenolic ring which allows them to bind to the consumed by humans. Apigenin is found in many fruits and
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vegetables such as celery, parsley, Chinese cabbage, bell pep-
pers, cherries, apples and grapes. It is also found in wine and
tea, including chamomile. Like most flavones, apigenin has anti-
inflammatory [2], antioxidant [3], anti-telomerase [4] and antide-
pressant [5] properties. The most important research has been for
its potential to fight cancer. Epidemiologic studies indicate that a
diet rich in apigenin is associated with a decreased risk of certain
cancers, particularly cancers of the breast, digestive tract, skin,
prostate, lung, ovary and certain haematological malignancies
[6-11]. In in vivo models, apigenin suppressed prostate tum-
origenesis in transgenic adenocarcinoma of the mouse prostate
(TRAMP) mice through the PI3K/Akt/FoxO-signalling pathway
[12]. Administration of apigenin resulted in attenuation of tu-
mour growth in U937 xenografts accompanied by inactivation of
Akt and activation of JNK [13]. Apigenin significantly inhibited
tumour growth in nude mice suppressing HIF-1o and VEGF ex-
pression [14]. In in vitro models, apigenin-induced growth inhibi-
tion and apoptosis in a variety of cancer cell lines including breast
[15], lung [16], colon [17,18], prostate [19], leukaemia [20] and
pancreatic [21] cells. These studies suggest that apigenin could be
developed as a chemopreventive and/or chemotherapeutic agent
for cancer.

Apoptosis is a form of cell death in which a programmed
sequence of events leads to the elimination of cells without re-
leasing harmful substances into the surrounding area [2]. Ap-
optosis is considered a vital component of various processes
including normal cell turnover, proper development and func-
tioning of the immune system, hormone-dependent atrophy, em-
bryonic development and chemical-induced cell death [22]. In-
appropriate apoptosis can play a role in many diseases including
neurodegenerative diseases, ischemic damage, autoimmune dis-
orders and many types of cancer [22]. Two core pathways exist
to induce apoptosis, the extrinsic — death receptor pathway and
intrinsic — mitochondrial pathway [23]. The extrinsic pathway
is related to the activation of the death receptors, such as Fas
and tumour necrosis factor receptors (TNFR). Death domains
(DD) of Fas are oligomerized and recruit Fas-associated death
domain (FADD) and procaspase-8 to form death-inducing sig-
nalling complex (DISC). Procaspase-8 is cleaved and activated
and released from the DISC into the cytoplasm where it activ-
ates caspase-3 to induce apoptosis [24,25]. The intrinsic path-
way is related to changes in mitochondrial membrane potential
(AW¥m) and mitochondrial permeability transition, resulting in
mitochondrial release of apoptogenic factors such as cytochrome
¢ and apoptosis-inducing factor (AIF) into the cytoplasm [26].
Cytochrome ¢ binds to APAF1 and recruits procaspase-9 to form
an apoptosome; caspase-9 activates effector caspases such as
caspase-3 to induce apoptosis [27]. Caspase-3 from both ex-
trinsic and intrinsic pathways is responsible for the cleavage of
poly (ADP-ribose) polymerase (PARP) during cell death [28].

Breast cancers with human epidermal growth factor receptor
(HER2) gene amplification or HER2 protein overexpression are
called HER2-positive [29]. Approximately 20 % of breast can-
cer cases are HER2-positive [29]. HER2-positive breast cancers
tend to be more aggressive than other types of breast cancer [30].
They are also less responsive to hormone treatment [31]. How-

ever, treatments that specifically target HER2 exist: trastuzumab
(herceptin) and lapatinib (tykerb). Trastuzumab binds to domain
IV of the extracellular segment of the HER2 and induces cell
growth arrest during the G1 phase of the cell cycle resulting
in reduced proliferation [32,33]. Trastuzumab induces some of
its effect by down-regulation of HER2/neu leading to disruption
of receptor dimerization and signalling through the downstream
PI3K cascade [34]. Lapatinib inhibits the tyrosine kinase activity
associated with HER?2 [35]. Lapatinib decreases tumour-causing
breast cancer stem cells [36]. Lapatinib inhibits receptor signal
processes by binding to the ATP-binding pocket of the HER2
protein kinase domain, preventing self-phosphorylation and sub-
sequent activation of the signal mechanism [37]. However, many
women do not respond to these drugs or develop resistance [38].
This has resulted in significant efforts to find other compounds
which could effectively treat HER2-overexpressing breast cancer.

In the present study, we investigated whether apigenin displays
growth-suppressive activity on HER2-overexpressing breast can-
cer cells. For this purpose, we tested the effects of apigenin on
proliferation and apoptosis of BT-474 cells; we performed pro-
liferation assay, MTT assay and FACS analysis to evaluate the
cytotoxicity of apigenin in breast cancer cells. We also investig-
ated the mechanism by which apigenin regulates the growth of
BT-474 cells analysing the cell cycle and measuring the levels of
apoptotic molecules and intracellular signalling molecules. We
also verified whether apigenin inhibits signal transducer and ac-
tivator of transcription 3 (STAT3) signalling pathway, leading
to growth suppression of HER2-expressing breast cancer cells.
Since we report here that apigenin may suppress HER2-positive
breast cancer, the present study advances human health.

MATERIALS AND METHODS

Compounds

Apigenin (4’,5,7-trihydroxyflavone), carbonyl cyanide 4-
(trifluoromethoxy) phenylhydrazone (FCCP) and HIF-1e inhib-
itor (EF-24) were purchased from Sigma Chemical Co. These
compounds were dissolved in dimethyl sulfoxide (DMSO) and
the final concentration of DMSO in the controls and each sample
did not exceed 0.1 %. We found that 0.1 % DMSO did not affect
the cell growth rate compared with 0% DMSO (no treatment)
in breast cancer cells (data not shown). JC-1 was obtained from
Molecular Probes (Invitrogen). The caspase-8 inhibitor Z-IETD-
fmk and the caspase-9 inhibitor Z-LEHD-fimk were obtained from
R&D Systems, Inc. The STAT3 inhibitor S31-201 was obtained
from Calbiochem. The JAK inhibitor I was purchased from Santa
Cruz Biotechnology, Inc. An EZ-western chemiluminescent de-
tection kit was purchased from Daeillab Service Co.

Cell cultures
BT-474 human breast cancer cells (A.T.C.C.) were cultured in
RPMI 1640 medium containing 50 U/ml penicillin, 50 mg/ml
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streptomycin and 10 % foetal bovine serum (FBS; Welgene) at
37°C in an atmosphere of 5 % CO,.

Antibodies

Primary antibodies directed against FAS, cleaved caspase-8,
caspase-3, cleaved caspase-3 and PARP were purchased from
Cell Signaling Technology, Inc. Primary antibodies directed
against B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X pro-
tein (BAX), p53, phospho-p53 (Ser') and VEGF were obtained
from Santa Cruz Biotechnology, Inc. Primary antibodies dir-
ected against STAT3, phospho-STAT3 (Tyr’*) phospho-JAK1
(Tyr'922/Tyr'923) and phospho-JAK2 (Tyr'®7/Tyr'%%) were ob-
tained from Upstate-Millipore. Primary antibody against HIF-1c
was purchased from BD Biosciences. The anti-tubulin antibody
was from Sigma Chemical Co. Horseradish peroxidase (HRP)-
conjugated secondary antibodies (mouse and rabbit) were pur-
chased from Calbiochem and anti-goat secondary antibody was
from Jackson ImmunoResearch.

Cell proliferation assay

Cells were seeded in 12-well culture plates at a density of 5 x 10*
cells/well. After the cells were exposed to different concentra-
tions of apigenin (0-60 M) and incubated for 3 days, they were
harvested by trypsinization, resuspended in 1-2 ml of medium,
and counted using a haemocytometer.

MTT assay

Cells were seeded in 96-multiwell culture plates at a density
of 3 x10? cells/well and incubated for 24 h at 37°C. Then,
they were treated with different concentrations of apigenin (0—
60 uM) for 24 h, 48 h or 72 h. After incubation, MTT reagents
(0.5 mg/ml) were added to the each well and the plates were in-
cubated in the dark at 37°C for 2 h. At the end of the incubation,
the medium was removed, the resulting formazan was dissolved
in DMSO and the optical density was measured at 570 nm using
an ELISA plate reader.

Clonogenic survival assays (anchorage-dependent
and anchorage-independent)

For anchorage-dependent colony formation assay, cells were
seeded into six-well culture plates at a density of 5 x 10?
cells/well. After overnight incubation, they were treated with
different concentrations of apigenin (0—-60 M) or vehicle and
maintained for 10 days at 37°C. Cells were fed every 3 days by
removing old medium and adding fresh medium containing api-
genin. Finally, plates were stained with haematoxylin and the
colony number was counted. For anchorage-independent colony
formation assay, soft agar was used. 1 x 10? cells were suspen-
ded in 1 ml of 0.6 % soft agar that was layered on top of 1 ml
of 1% solidified agar in each well of 12-well plates. The plates
were then incubated for 15-21 days in complete RPMI medium
containing apigenin (0—60 uM). The medium was changed every
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3 days during this period. At the end of experiment, tumour cell
colonies measuring at least 30 um were counted under using a
dissection microscope.

Cell-cycle analyses by flow cytometry

Cells were harvested with 0.25 % trypsin and washed once with
phosphate buffered saline (PBS). After centrifugation (1500 g),
the cells were fixed in cold 95 % ethanol with 0.5 % Tween-20,
and stored at -20°C for at least 30 min. The cells were incubated
in 50 pg/ml of propidium iodide (PI) (including 1% of sodium
citrate and 50 pg/ml of RNase A) at room temperature in the dark
for 30 min. The analysis of apoptotic cells was performed with a
FACScan flow cytometer (Becton Dickinson) and the data were
analysed using CellQuest software.

Analysis of mitochondrial transmembrane potential
(A¥Ym)

Cells were seeded at a density of 1 x 10° cells/dish in 100 mm
dishes and incubated for 24 h at 37°C. After stabilization, the
cells were treated with apigenin (0—60 M) and vehicle for 72 h.
After harvest by treatment with trypsin-EDTA, the cells were
washed with cold PBS, centrifuged at 1500 g for 5 min and
stained with 4 pg/ml JC-1 for 15 min at 37°C in the dark. The
data were analysed by FACSCalibur flow cytometry (BD Bios-
ciences) measuring the green fluorescence and red fluorescence
at 514/529 nm (FL-1) and 585/590 nm (FL-2), respectively.

Western blot analysis

Cells were lysed in modified RIPA buffer (150 mM NaCl, 1%
NP-40, 0.5% deoxycholate, 0.1 % SDS, 50 mM Tris (pH 8.0),
1 mM EDTA, 1 mM phenylmethylsulfonyl fluoride (PMSF),
1 mM NaF, 1 mM Na; VO, and protease inhibitor mixture). The
lysates were cleared by centrifugation at 13000 g for 15 min
and the supernatants were collected. The protein concentration
was quantified using a Bio-Rad Bradford protein assay (Bio-Rad
Laboratories). Equal amounts of protein lysates were used for
western blot analysis with the indicated antibodies. Immunore-
active protein bands were detected with an EZ-Western Detection
kit (Daeillab Service Co.).

Immunocytochemistry

Cells (2 x 10* cells/well) were seeded in eight-well chamber
slides, incubated for 24 h at 37°C and treated with apigenin
(60 uM) in the presence or absence of CoCl, for another 24 h.
The cells were fixed with 4 % paraformaldehyde for 30 min and
treated with 3% hydrogen peroxide (H,O,) in methanol for
20 min to quench endogenous peroxidase activity. The cells were
washed with PBS, blocked with 5% BSA in PBS for 1 h and
incubated with the anti-STAT3 primary antibody (1:100 dilution)
overnight at 4°C. After washing with PBS, the cells were incub-
ated with anti-rabbit biotin-conjugated secondary antibody for 1 h
at room temperature. Then, the cells were treated with Vectastain
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Table 1 Primer sequences

RT-PCR was performed by co-amplification of the genes with a refer-
ence gene by use of the cDNA template and corresponding gene-spe-
cific primer sets.

Primers
HIF-1a

Sequence

Forward 5’ TCA CCA CAG GAC AGT ACA GGA TGC 3’
Reverse 5’ CCA GCA AAG TTA AAG CAT CAG GTT CC 3’
VEGF Forward 5° AAG GCC CAC AGG GAT TTT CT 3’

Reverse 5' AGG AGG GCA GAA TCA TCA CG 3’
Forward 5’ CGG CCA TCA CGC CAC AGT TT 3’

Reverse 5' CGT CTT CAC CAC CAT GGA GA 3’

GAPDH

ABC reagent (Vector Laboratories) for 30 min at 4 °C and stained
with diaminobenzidine tetra chloride (DAB) and haematoxylin.
The cells were mounted with mounting medium and subsequently
analysed by microscopy.

RNA extraction and reverse
transcription-polymerase chain reaction (RT-PCR)
Whole-cell lysates under diverse conditions were prepared
by washing with ice-cold PBS. Total RNA was isolated us-
ing Trizol reagent (iNtRON Biotechnology). Total RNA was
treated with 2 units of RNase-free DNase at 37°C for 30 min,
extracted with phenol/chloroform/isoprophanol, and precipitated
with ethanol. The RNA concentration was determined by meas-
uring the absorbance at 260 nm using a nanodrop, and the ratio
of absorbance at 260 and 280 nm was 1.8 or higher. cDNA was
synthesized from 2 pg of total RNA as a template in 20 ul reac-
tion mixture containing 5X first strand buffer, 0.1 M DTT, 10 mM
dNTP and 200 unit M-MLYV reverse transcriptase (iNtRON bio-
technology). cDNA was incubated at 42 °C for 1 h and inactivated
at 95°C for 5 min. After inactivation, the cDNA was stored at -
20°C until use. RT-PCR was performed by co-amplification of
the genes with a reference gene by use of the cDNA template and
corresponding gene-specific primer sets. The primer sequences
are shown in Table 1. PCR was conducted out in a total volume of
25 pl containing 5 1 of cDNA solution, 25 uM of sense primers,
and 25 uM of antisense primers, 1X PCR buffer, 2.5 mM MgCl,
and 2.5 unit Taq DNA polymerase (Takara Korea, Seoul, Korea).
The sequencing involved 30 cycles at 94°C, 45 s for denatur-
ation, 58°C, 45 s for annealing, and 72°C, 45 s for extension.
The resulting PCR products were resolved on 1% agarose gels
containing ethidium bromide.

Measurement of VEGF and MMP-9 secreted from
BT-474 cells by ELISA

To assess the level of VEGF and MMP-9 in the BT-474 cell su-
pernatants, the cells were treated with apigenin (0-60 ©M) in the
presence or absence of CoCl, (100 uM) to mimic hypoxia. After
24 h, the media were collected, centrifuged (1500 g) to remove
the cellular debris, and stored at -70°C until assayed for VEGF
and MMP-9. The amount of VEGF and MMP-9 secreted into the
culture medium was measured by ELISA according to the man-

ufacturer’s instructions (R&D Systems). Briefly, 96-well plates
were coated with capture antibody in ELISA coating buffer and
incubated overnight at 4°C. The plates were then washed with
PBS with 0.05% Tween 20 (PBS-T) and subsequently blocked
with 10 % FBS in PBS for 1 h at 20°C. Serial dilutions of stand-
ard antigen or sample in dilution buffer (10% FBS in PBS)
were added to the plates, and the plates were incubated for 2 h
at 20°C. After washing, biotin-conjugated anti-mouse IgE and
streptavidin-conjugated horseradish peroxidase (SAv-HRP) were
added to the plates, and the plates were incubated for 1 h at 20°C.
Finally, the tetramethylbenzidine (TMB) substrate was added to
the plates, and after 15 min of incubation in the dark, 2N H,SO,
was added to stop the reaction. The optical density was measured
at 450 nm on an automated ELISA reader.

STAT3 luciferase reporter assay

BT-474 cells were plated and allowed to attach by overnight
incubation at 37°C. Cells were transiently transfected with
p4xM67-TK-luc plasmid (Addgene plasmid 8688, Addgene)
containing four copies of the STAT-binding site (TTCCCGTAA).
The next day, cells were treated with different concentrations of
apigenin (0-60 uM) for 24 h and then submitted to the luci-
ferase assays. Luciferase assays were performed using a dual-
luciferase assay kit according to the manufacturer’s instructions
(Promega). Finally, luciferase activities were determined using a
luminometer (BMG Labtech).

Statistical analysis

All experiments were performed in triplicate. The data for the
cell proliferation assay, MTT assay, ELISA assay and STAT3
luciferase reporter assay are expressed as the mean + standard
deviation (S.D.). The standard deviations for all of the measured
biological parameters are displayed in the appropriate figures. A
Student’s #-test was used for single variable comparisons, and a
P-value of <0.05 was considered statistically significant.

RESULTS

Apigenin suppresses the growth of BT-474 cells

The effects of apigenin on cell growth were measured by cell
proliferation assay and MTT assay in BT-474 cells. As shown in
Figure 1(A), apigenin and genistein significantly inhibited BT-
474 cell proliferation in a dose-dependent manner (0-100 M)
after 72 h of treatment (proliferation assay). Between two
phytoestrogens, apigenin had the stronger growth-suppressive
activity compared with genistein in BT-474 cells. Therefore,
we chose apigenin for our experimental study. In addition, the
time-dependent growth-suppressive activity of apigenin was
measured by the MTT assay, as shown in Figure 1(B). It seems
that the proliferation assay was more sensitive than the MTT
assay with respect to measuring the intensity of the cell growth
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Figure 1. Effect of apigenin on BT-474 cell growth

(A) BT-474 cells were treated with different doses of apigenin and genistein (0-100 uM). After 72 h, cell viability was
assessed using a cell proliferation assay. (B) BT-474 cells were treated with different doses of apigenin (0-100 uM). The
relative cell growth rate was measured by MTT assay after 24 h, 48 h and 72 h. The growth rate of the vehicle-treated cells
was set to 100%, and the relative decrease in cell viability resulting from the phytoestrogen treatment was expressed
as a percentage of the control. (C) BT-474 cells were treated with different doses of apigenin (0-60 uM) for 72 h
and photographed by phase-contrast microscopy (original magnification, x40). Control cells were treated with DMSO
alone. Data are shown as the means of three independent experiments (error bars denote S.D.). *P <0.05, **P < 0.01,

*¥*¥*p <0.001.

inhibition, as shown in Figures 1(A) and 1(B). Moreover, the
growth inhibition induced by apigenin was verified by micro-
scopic observation. The results in Figure 1(C) show that apigenin
effectively inhibited the growth rate of BT-474 monolayer cells
after 72 h of treatment. Of note, apigenin also induced morpho-
logical changes in these cells (Figure 1C).

Apigenin inhibits clonogenic survival of BT-474
cells

Next, we investigated the effect of apigenin on clonogenic
survival of BT-474 cells using clonogenic survival assays
(anchorage-dependent and anchorage-independent). As shown
in Figure 2(A), apigenin significantly inhibited anchorage-
dependent colony formation dose-dependently in BT-474
cells. Consistently with this result, apigenin strongly de-
creased anchorage-independent colony formation in BT-474 cells
(Figure 2B). These results suggest that apigenin inhibits clono-
genic survival of BT-474 cells.

The growth-suppressive activity of apigenin is
accompanied by an increase in the sub-Go/G1
apoptotic population in BT-474 cells

To investigate whether apigenin inhibits cell proliferation by pro-
moting changes in cell-cycle progression, the effect of apigenin
on the cell-cycle profile was assessed in BT-474 cells. For this
purpose, cells were treated with apigenin (0—-60 uM) for 72 h and
then analysed for cell-cycle stage by flow cytometry. The results
demonstrated that apigenin induced an increase in the sub Go/G;
apoptotic population in BT-474 cells (Figure 3).

Apigenin induces apoptosis via a
caspase-dependent pathway in BT-474 cells

In this step, we investigated whether apigenin activates the
caspase-dependent apoptosis pathway by measuring the expres-
sion of caspase-8, caspase-3 and PARP. We observed that api-
genin up-regulated the levels of cleaved caspase-8 and caspase-3,
and induced the cleavage of PARP in BT-474 cells (Figure 4A).
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Figure 2 Apigenin inhibits anchorage-dep

dent and anchorage-independent clonogenic survival of BT-474 cells

(A) BT-474 cells were seeded into six-well culture plates at a density of 5 x 102 cells/well. After overnight incubation, cells
were treated with different concentrations of apigenin (0-60 M) and maintained for 10 days at 37 °C. Finally, plates were
stained with haematoxylin and the colony number was counted. (B) 1 x 103 cells were suspended in 1 ml of 0.6% soft
agar that was layered on top of 1 ml of 1% solidified agar in each well of 12-well plates. The plates were then incubated
for 15-21 days in complete RPMI medium containing apigenin. Colonies were stained with crystal violet.

This indicates that apigenin strongly promotes apoptosis via a
caspase-dependent mechanism in BT-474 cells. We also found
that the cleavage of caspase-8 and caspase-3 was inhibited by
the caspase-8 inhibitor Z-IETD-fink and the caspase-9 inhibitor
Z-LEHD-fmmk (Figure 4B), but apigenin prevented this inhibi-
tion and slightly induced the cleavage of caspase-8 and caspase-
3 in the presence of Z-IETD-fink and Z-LEHD-fink (Figure 4B).
Moreover, the caspase-8 and caspase-9 inhibitors did not sup-
press cell growth, but apigenin was able to induce apoptosis even

in their presence (Figure 4C). These results confirm that apigenin
strongly promotes apoptosis in BT-474 cells.

Apigenin induces extrinsic apoptosis in BT-474
cells

Next, we investigated whether apoptosis induced by apigenin
occurs via extrinsic apoptosis pathway in BT-474 cells. For this
purpose, we measured the levels of BCL2 family members (BAX
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(A) BT-474 cells were treated with apigenin (0-60 uM) and fixed 72 h later for flow cytometry. Propidium iodide-labelled
nuclei were analysed for DNA content. (B) The sub-Go/G1 apoptotic population and the G4, S and G,/M phase populations
were quantified using DNA histograms. The data shown are representative of three independent experiments that gave

similar results.

and Bcl-2) which are important in non-extrinsic (intrinsic mito-
chondrial) apoptosis pathway. We found that apigenin failed to
regulate the levels of BAX and Bcl-2 in BT-474 cells as shown in
Figures 5(A) and 5(B). We also measured the loss of mitochon-
drial transmembrane potential (A Wm) within the cells using JC-
1. JC-1 is able to selectively enter mitochondria and reversibly
transforms colour from red to green when the membrane potential
decreases. In non-apoptotic cells with high mitochondrial AWm,
JC-1 spontaneously forms complexes known as J-aggregates with
intense red fluorescence. On the other hand, in apoptotic cells (es-
pecially mitochondria-mediated apoptotic cells) with low AWm,
JC-1 remains in the monomeric form, which shows only green
fluorescence. In our study, apigenin did not induce a low mi-
tochondrial transmembrane potential (AWm), showing relatively
weak green fluorescence (DMSO; 4.5 %, Api 20 uM; 10.1 %, Api
40 uM; 9.7 %, Api 60 uM; 14.0 %) compared with FCCP (posit-
ive control: 87.6 %) (Figure 5C). These results demonstrate that
apigenin does not induce apoptosis via the intrinsic mitochon-
drial pathway but induces apoptosis via the extrinsic pathway in
BT-474 cells.

Effect of apigenin on STAT3 activation in BT-474
cells

Figure 6(A) shows that apigenin up-regulates phospho-p53 (p-
p53). In Figure 6(B), we investigated whether apigenin af-
fects STAT3 signalling measuring levels of p-STAT3 and VEGF
(STAT3 target gene). We found that apigenin reduced the expres-
sion of p-STAT3 as well as p-JAK1 and p-JAK?2 (upstream kinases
of STAT3) (Figure 6B). Apigenin also reduced the level of VEGF
(Figure 6B). Since STAT3 is a potential modulator of HIF-1e,

we observed the relationship between STAT3 and HIF-1a. We
found that apigenin suppressed the expression of p-STAT3 and
HIF-1¢ that was up-regulated by CoCl, (hypoxia mimic) (Fig-
ure 6C). Immunocytochemical staining indicated that apigenin
decreased the nuclear localization of STAT3 in the presence and
absence of CoCl, (Figure 6D). Figure 6(E) demonstrated that
apigenin strongly decreased STAT3 transcriptional activity as re-
vealed by transient transfection and luciferase assay.

Effect of apigenin on STAT3 target genes in BT-474
cells

As shown in Figure 7(A), apigenin decreased mRNA levels of
HIF-la and VEGF that was slightly up-regulated by CoCl,.
Moreover, ELISA assay indicated that apigenin strongly de-
creased the CoCl,-induced up-regulation of intracellular VEGF
(Figure 7B). Apigenin also decreased intracellular MMP-9
level (Figure 7B). These results suggest that apigenin decreases
the production of STAT3 target genes such as VEGF and MMP-
9. These results also suggest that apigenin suppresses HER2-
positive breast cancer cell growth rate by inhibiting the JAK-
STAT3-VEGEF signalling pathway.

Effect of S31-201 on STAT3 activation in BT-474
cells

Finally, we investigated whether the STAT3 inhibitor S31-201 in-
hibits cell proliferation and STAT3 activation in BT-474 cells.
As shown in Figures 8(A) and 8(B), S3I-201 decreased cell
growth in a dose- and time-dependent manner. Furthermore,
S31-201 reduced the expression of p-STAT3, STAT-3 and VEGF
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Apigenin induces a caspase-dependent apoptosis in BT-474 cells

(A) Apigenin induces apoptosis via a caspase-dependent apoptosis pathway in BT-474 cells. BT-474 cells were treated with
apigenin (0-60 uM) for 24 h. Whole-cell lysates were analysed by western blotting with anti-FAS, anti-cleaved caspase-8,
anti-caspase-3, anti-cleaved caspase-3, anti-PARP and anti-tubulin antibodies. The data shown are representative of three
independent experiments that gave similar results. (B) Effect of caspase-8 and caspase-9 inhibitors on apigenin-induced
apoptosis in BT-474 cells. BT-474 cells were exposed to 60 «M apigenin with or without the caspase-8 inhibitor (40 «M) or
the caspase-9 inhibitor (40 M) for 24 h, the cell lysates were separated by SDS/PAGE, and western blotting with specific
antibodies was performed (anti-cleaved caspase-8, anti-cleaved caspase-3, anti-PARP and anti-tubulin). The data shown are
representative of three independent experiments that gave similar results. (C) Effect of caspase-8 and caspase-9 inhibitors
on BT-474 cell proliferation. BT-474 cells were exposed to 60 uM apigenin with or without the caspase-8 inhibitor (40 M)
or the caspase-9 inhibitor (40 uM) for 72 h and photographed by phase-contrast microscopy (original magnification, x40).

(Figure 8C). These results demonstrate that STAT3 inhibition
induces cell growth inhibition and represses the expression of
oncogenic molecules. We also found that HIF-1« inhibitor (EF-
24) and JAK inhibitor I induced cell growth inhibition (Figure 8D
and 8E) in BT-474 cells. This suggests the involvement of HIF-1¢
and JAK pathways in the action of apigenin.

DISCUSSION

In the present study, we investigated the mechanism by which
apigenin suppresses the growth of HER2-overexpressing breast
cancer cells. The purpose of the present study is whether api-
genin could serve as a useful compound to prevent or treat
HER2-overexpressing breast cancer. Apigenin suppressed the
growth of BT-474 cells in a dose- and time-dependent man-

ner. Clonogenic survival assays revealed that apigenin decreased
anchorage-dependent and anchorage-independent colony forma-
tion in a dose-dependent manner. These growth inhibitions were
related with an increase in the sub-Gy/G; apoptotic population in
BT-474 cells. Apigenin increased the number of apoptotic cells
in a dose-dependent manner, as assessed by FACS analysis. Inter-
estingly, apigenin did not induce apoptosis via intrinsic mitochon-
drial apoptosis pathway since the compound failed to regulate the
levels of Bcl-2 and BAX, and did not reduce mitochondrial trans-
membrane potential (A W'm) maintaining red fluorescence. On the
other hand, apigenin-induced apoptosis via caspase-dependent
extrinsic apoptosis pathway showing the cleavage of caspases-8,
-3, and PARP. Moreover, apigenin suppressed the cell growth
even in the presence of caspase-8 inhibitor Z-IETD-fink and the
caspase-9 inhibitor Z-LEHD-fink. These results indicate that api-
genin contains a strong apoptotic activity. Caspases are a family
of proteases that offer crucial links in cell regulatory networks
related to inflammation and cell death (39). When activated,
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Figure 5 Apigenin induces apoptosis via extrinsic pathway in BT-474 cells

(A) and (B) analysis of intrinsic apoptosis-related molecules. BT-474 cells were treated with apigenin (0-60 uM) for 24 h.
Total proteins were analysed by western blotting with anti-Bcl-2, anti-BAX and anti-tubulin antibodies. (C) BT-474 cells were
incubated with apigenin (0-60 M) for 72 h and were dyed with JC-1 (4 ug/ml). The data were analysed by FACSCalibur
flow cytometry measuring the green fluorescence and red fluorescence at 514/529 nm (FL-1) and 585/590 nm (FL-2),
respectively. The data shown are representative of three independent experiments that gave similar results.

apoptotic caspases cause inactivation or activation of substrates,
and the production of a cascade of signalling events permitting
the controlled demolition of cellular components [39]. Dysreg-
ulation of caspases results in human diseases including cancer
and inflammatory disorders [39]. Hence, the investigation of the
caspase-dependent apoptotic pathway is important to prevent or
treat breast cancer.

Apigenin increased the expression of active p53 (p-p53) sug-
gesting that this compound suppresses HER2-overexpressing

breast cancer cell growth via a p53-dependent manner. In agree-
ment with our data, apigenin has been shown to induce G; or
G,/M arrest and apoptosis in human prostate carcinoma cells
[40,41], human cervical carcinoma cells [42], and human hep-
atoma cells [43] through p53-dependent manner. The p53 tumour
suppressor inhibits cellular proliferation by inducing cell-cycle
arrest and apoptosis in response to cellular stresses including
DNA damage, growth factor deprivation, hypoxia and oncogene
activation [44,45]. p53-dependent apoptosis is produced by the

(© 2015 Authors This is an open access article published by Portland Press Limited and distributed under the Creative Commons Attribution Licence 3.0.


http://creativecommons.org/licenses/by/3.0/

@

10

H.-S. Seo and others

(A) (B)
- | 'S e rJAKI
e s — : ‘
s BMFEATY e
A 53
-~ - p-STAT3

ﬁ‘ Tubulin .
C 2040 60 apigenin (pM) T“‘ STAT3
-—

0 20 40 60 apigenin (uM)
(D)

STAT3 nuclear localization

©

. p-STAT3

L W HIF-lo

‘ -———— ‘ STAT3

Negative Control
Al

- CoCl,

+CoCl,

Figure 6 Effect of apigenin on STAT3 activation in BT-474 cells

‘-i--‘ Tubulin (E)
_—
- e
& 85
. & 125
& 3 £
£ Al E 14
§ &
208 -
g
£ 06
g
E 0.4
Apigenin (60 uM) % 0.2 - o
- -4 S T
. o I
0 20 40 60

Concentration of apigenin (uM)

X 40

(A) BT-474 cells were treated with apigenin (0-60 wM) for 24 h. Whole-cell lysates were analysed by western blotting
with anti-p-p53, anti-p53 and anti-tubulin antibodies. (B) BT-474 cells were treated with apigenin (0-60 M) for 24 h.
Whole-cell lysates were analysed by western blotting with anti-p-JAK1, anti-p-JAK2, anti-p-STAT3, anti-STAT3, anti-VEGF and
anti-tubulin antibodies. (C) BT-474 cells were treated with apigenin (60 M) for 24 h in the presence or absence of CoCl,
(4 h). Whole-cell lysates were analysed by western blotting with anti-phospho-STAT3, anti-HIF-1«, anti-STAT3 and anti-tubulin
antibodies. (D) BT-474 cells were treated with apigenin (60 «M) for 24 h in the presence or absence of CoCl, and then
submitted to immunocytochemistry for detection of nuclear STAT3. The data shown are representative of three independent
experiments that gave similar results. (E) BT-474 cells were transiently transfected with p4xM67-TK-luc plasmid containing
four copies of the STAT-binding site, treated with apigenin (0-60 M) and submitted to dual luciferase assay. Data are
shown as the means of three independent experiments (error bars denote S.D.). *P < 0.05, **P < 0.01, ***P < 0.001.

caspase proteinases and related to pro-apoptotic proteins such as
BAX, NOXA and PUMA [44].

Interestingly, apigenin reduced the expression of p-STAT3,
p-JAK1 and p-JAK2 (upstream kinase of STAT3), and VEGF
(STAT3 target gene) suggesting its negative regulation of STAT3
pathway in BT-474 cells. Elevated p-STAT3 expression by
CoCl, was also reduced by apigenin. Apigenin inhibited nuclear
localization of STAT3 in the presence or absence of CoCl, as
revealed by immunocytochemistry. Apigenin inhibited the pro-
duction of VEGF and MMP-9 as revealed by ELISA assay. The
STAT3 inhibitor S31-201 decreased the cell growth and expres-
sion of p-STAT3, STAT3 and VEGF in BT-474 cells. These results
clearly indicate that apigenin induces growth-suppressive activity

by inhibiting STAT3 signalling pathway. STAT3 is a transcription
factor that regulates the gene expression in response to various
cellular stimuli and plays an important role in cell growth and
apoptosis. STAT3 usually acts as a tumour promoter, although its
role as a tumour-suppressor has been previously reported [46,47].
STAT3 accelerates cell proliferation and angiogenesis, inhibits
apoptosis, and drives invasion and metastasis [48-50]. STAT3 in
melanoma tumours is associated with poor prognosis [48-50].
Constitutive STAT3 phosphorylation is mediated by several up-
stream kinases (Jak and Src) and is thought to be a key component
of the oncogenic process [51,52]. Phytoestrogen (resveratrol) is
known to inhibit STAT3 signalling and induces the apoptosis
of malignant cells containing activated STAT3 [53]. The VEGF
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Figure 7

Effect of apigenin on the levels of HIF-1« and VEGF in BT-474 cells
(A) BT-474 cells were treated with apigenin (0-60 M) for 24 h in the presence or absence of CoCl,, and the mRNA levels

of HIF-1a and VEGF were measured by RT-PCR. The data shown are representative of three independent experiments that
gave similar results. (B) BT-474 cells were treated with apigenin (0-60 M) for 24 h in the presence or absence of CoCly,
and the intracellular VEGF and MMP-9 concentration was measured by ELISA. Data are shown as the means of three
independent experiments (error bars denote S.D.). *P <0.05, **P < 0.01, ***P < 0.001.

promoter contains various transcription factor binding sites,
including sites for STAT3 [54] and HIF-1 [55]. The physical
interaction of STAT3 with HIF-1 controls VEGF transcriptional
activation by their binding to the VEGF promoter [56].
HER2-positive breast cancers show HER2 gene amplifica-
tion or HER?2 protein overexpression. HER2-positive breast can-
cers occupy 20-25 % of invasive breast carcinomas [57]. HER2-
positive breast cancers have a tendency to grow faster and are
more likely to spread and relapse compared with HER2-negative
breast cancers. HER2 is a member of the HER/ErbB2/Neu pro-
tein family, which also includes HER1/EGFR, HER3 and HER4.

HER?2 cross-talks with the ER signal transduction pathway [58],
and its expression level can be regulated by ER. Our new finding
of the present study is that apigenin induces caspase-dependent
apoptosis through inhibition of STAT3 signalling pathway. In our
study, we found that apigenin significantly inhibited the growth
and induced apoptosis in HER2-overexpressing breast cancer
cells. This indicates that apigenin could be a useful natural
therapy that inhibits HER2-overexpressing breast cancer. Api-
genin could be a promising target for the treatment and preven-
tion of HER2-overexpressing breast cancer. The major questions
remain about our study are whether apigenin overcomes drug
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Effect of the STAT3 inhibitor S3I-201 on the growth of BT-474 cells

(A) BT-474 cells were treated with different doses of the STAT3 inhibitor S3I-201 (0-200 wM). After 72 h, the cell viability
was assessed using a cell proliferation assay. (B) BT-474 cells were treated with different doses of the STAT3 inhibitor
S3I-201 (0-200 uM). The relative cell growth rate was measured by MTT assay after 24 h, 48 h and 72 h. The growth rate
of the vehicle-treated cells was set to 100 %, and the relative decrease in cell viability resulting from the S31-201 treatment
was expressed as a percentage of the control. Data are shown as the means of three independent experiments (error
bars denote S.D.). *P < 0.05, **P <0.01, ***P <0.001. (C) BT-474 cells were treated with the STAT3 inhibitor S3I-201
for 24 h. Whole-cell lysates were analysed by western blotting with anti-p-STAT3, anti-STAT3, anti-VEGF and anti-tubulin
antibodies. The data shown are representative of three independent experiments that gave similar results. (D) (E) BT-474
cells were treated with different doses of the HIF-1« inhibitor EF-24 (0-100 uM) or JAK inhibitor | (0-10 wM). The relative
cell growth rate was measured by MTT assay after 24 h, 48 h and 72 h. The growth rate of the vehicle-treated cells was
set to 100 %, and the relative decrease in cell viability resulting from the treatment was expressed as a percentage of the
control. Data are shown as the means of three independent experiments (error bars denote S.D.). *P < 0.05, **P < 0.01,
*%*P < 0.001.

resistance in the treatment of HER2-overexpressing breast can-
cer. This leads to further investigation.
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