
Correcting Susceptibility-Induced Distortion in Diffusion-
Weighted MRI using Constrained Nonrigid Registration

Chitresh Bhushan*, Justin P. Haldar*, Anand A. Joshi*, and Richard M. Leahy*

* Signal and Image Processing Institute, University of Southern California, Los Angeles, CA, USA

Abstract

Echo Planar Imaging (EPI) is the standard pulse sequence used in fast diffusion-weighted 

magnetic resonance imaging (MRI), but is sensitive to susceptibility-induced inhomogeneities in 

the main B0 magnetic field. In diffusion MRI of the human head, this leads to geometric distortion 

of the brain in reconstructed diffusion images, and a lack of correspondence with undistorted high-

resolution MRI scans that are used to define the subject anatomy. In this study, we have tested an 

approach to estimate and correct this distortion of using a non-linear registration framework based 

on mutual-information. We use the commonly acquired anatomical image as the registration-

template and constrain the registration using spatial regularization and physics-based information 

about the characteristics of the distortion, but without requiring any additional data collection. 

Results are shown for simulated and experimental data.

I. Introduction

Diffusion MRI is a non-invasive technique which helps to quantify the micro-strcutural 

characteristics of the underlying tissue and can be used to study the anatomical connections 

between different parts of the brain. It provides information about underlying white-matter 

fiber structure by in-vivo mapping of diffusion process in human head [1], [2]. Clinically, it 

is useful for study and diagnosis of neurological disorders and conditions like stroke [3].

Most diffusion MRI uses EPI pulse sequence for data collection. EPI is a popular fast 

imaging technique, but EPI images are well-know to have localized geometric distortion, in 

practice, caused by main B0 magnetic field inhomogeneities [4], [5]. Distortion is most 

significant near the interfaces between air, bone, and soft tissues, due to large magnetic 

susceptibility differences between them [6]. Diffusion analysis often require mapping the 

diffusion weighted images to commonly acquired undistorted anatomical Ti weighted 

images. The errors in the mapping due to the distortion of diffusion data can lead to 

misalignment by several millimeters and can also lead to unreliable tractography [7], [8], 

which can limit the accuracy of image analysis in the affected regions.

Most approaches to distortion correction rely on acquiring additional data to provide an 

accurate model of the distortion, such as direct mapping of the B0 field inhomogeneity [9], 

[5], measuring the point spread function [10], or collecting two or more EPI image with 

different phase-encode direction [11], [12]. These methods can be effective, but all require 

additional information which is not acquired in a large fraction of imaging studies and the 

additional acquisition could be time consuming.
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Another class of methods is based on registration and use the information in undistorted 

anatomical images to estimate the distortion in EPI images [6], [13], [14], [15], [16], [17], 

[18]. In these methods, the anatomical structural images are used as registration template 

while EPI images are warped to match the template in a non-rigid registration framework. 

Another feature of this problem is that the diffusion images have very different contrast than 

the standard anatomical scans to which they are registered. This necessitates the use of pre-

processing to ensure that the images are similar enough to be registered using optimization 

metrics based on pixel-wise differences between the two images [13], [14], [15], [16], or 

optimization metrics like mutual information that are insensitive to differences in image 

contrast [6], [17], [18].

In this work, we perform constrained non-rigid registration using mutual information to 

correct the distortion. This approach only requires the diffusion images and an undistorted 

anatomical image, without the need to acquire any additional calibration. Due to the nature 

of susceptibility-induced distortion [4], we constrain the deformation in two ways. First, we 

allow the deformation only along phase-encode direction of EPI image. Second, we 

constrain the deformation to be smooth by adding spatial regularization. During the 

registration, we also account for the accumulation or dispersion of MR signal due to 

distortion by modifying the intensity of the EPI image. We use undistorted anatomical T1 

weighted image as registration template and diffusion images as the floating image in the 

registration framework.

Similar techniques have been used previously to correct EPI distortion. Studholme et al. [6] 

used MI with physics-constraints (but no spatial regularization) to correct functional-MRI 

images. Others [17], [18] have used spatial regularization (but no physics-constraints) to 

correct EPI diffusion images. Our approach combines these two constraints to obtain 

superior results to using either one individually.

This paper is organized as follows. Section II describes the characteristics of geometric 

distortion in EPI images. Section III describes our proposed registration framework for 

correcting this distortion. Section IV presents results on simulated and experimental data. 

Finally, discussion and conclusions are presented in Section V.

II. Distortion in Echo Planar Imaging

In the presence of a homogeneous B0 field, MRI encodes images by manipulating magnet 

gradient fields to setup a linear correspondence between spatial position in the image and the 

Fourier-domain frequency of the measured MRI data. B0 field inhomogeneity disrupts this 

linear correspondence, such that standard EPI images ρe(xe, ye) are approximately related to 

their ideal, undistorted version ρ(x, y) according to the following relationship [6]:

(1)

where, EPI coordinate (xe, ye) is related to undistorted coordinate (x, y) as:
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(2)

(3)

and |J(xe, ye)| is the Jacobian of the coordinate transformation, which describes the intensity 

changes in the EPI images. We have assumed that x and y are EPI readout and phase-

encoding direction respectively. Here, ΔB0(x, y) is the field inhomogeneity, Tes is the echo-

spacing, τ is the duration of phase-encode gradient Gy, and Gx is the readout gradient.

Equations (2) and (3) shows that the distortion is present in both readout and phase-encode 

direction. The term  in (3) scales the distortion in phase-encode direction, typically by 

order of magnitude as compared to distortion in readout direction. In real scenarios, the 

distortion in readout direction is limited to sub-millimeter where as in phase-encode 

direction it could be in order of 10-15 millimeters in a ected regions. This could lead to huge 

misalignment along the phase encode direction but practically no distortion along readout 

direction. Hence, in this work, similar to [6], we neglect the distortion along readout 

direction and approximate the Jacobian term as following:

(4)

III. Proposed Framework

Further, the intensity of the EPI images have to modified during the registration Due to the 

nature of the imaging physics, susceptibility-induced distortion has certain specific 

characteristics [4]. The geometric distortions a ect the image locally in a non-linear fashion, 

which makes rigid and affine registration methods insufficient.

Additionally, in contrast to the numerical gradient computation approach in Studholme et al. 

[6], we use analytic gradients for e cient optimization of registration cost function. It helps to 

converge to optimum solution faster and better than the numerical gradients, as in [6], even 

with large distortions. Unlike [6], we have also included a three-dimensional smoothing 

criteria in the cost function based on thin-plate spline bending energy. This regularization 

helps to add spatial information to the cost function and ensures that the registration process 

is stable even with large distortions. For estimation of joint pdf we used Parzen-window 

method with cubic B-spline as the window to give smoother and more realistic estimate of 

joint density [19]. This helps to avoid local minimum during optimization of the registration 

cost function.

The correction of a distorted EPI image Fe using anatomical image Fa requires (a) 

estimation of the deformation and (b) correction of intensity using the estimated 

deformation. The deformation is estimated by finding a transformation ϕ(Xa) : Xa ↦ Xe 
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which warps the image from EPI coordinate Xe to anatomical image coordinate Xa. Using 

(1) and (4), we get the intensity-corrected EPI image Fw as following:

(5)

Then the corrected EPI image Fc, in the anatomical image coordinates, can be then 

expressed as

(6)

Our proposed method seeks to correct image distortion by optimizing the following cost-

function,

(7)

where, ϕ is the spatial warping operator, I(Fa; Fc) is an energy term that encourages 

correspondence between the warped image Fc and the target image Fa, while (ϕ) is a 

regularization term.

We use normalized mutual information (NMI) as the measure of image alignment. Mutual 

information (MI) is measure of information shared between two communication channels or 

two images in our case. Since, both diffusion and structural images are acquired for same 

subject, after registration the images should be aligned in a way such that they contain 

maximum information about each other. This corresponds to finding a deformation which 

maximizes the mutual information between the images [20]. Since, MI does not make any 

assumption about the nature of the image content, it can be used in a multi-modal 

registration framework [21]. Studholme et al. [22] showed that mutual information is 

sensitive to image overlap and can increase with decreasing image overlap (and increasing 

misregistration). They proposed NMI as a ‘normalized’ measure which is less sensitive to 

changes in overlap. The normalized mutual information of the two images Fa and Fc is 

given by

(8)

where, H(Fa) and H(Fc) is the marginal entropy of the images, and H(Fa, Fc) is the joint 

entropy computed from the joint probability density p(m, n) of the images as following:

(9)

(10)
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(11)

where, the marginal probability densities are calculated from the joint density by integrating 

out the other variable.

The transformation ϕ(Xa) has a two components in it – a rigid transformation ϕR(Xa) due to 

movement or change in the position of head in between two scans and a non-rigid 

transformation ϕΔB0 (Xa) due to the B0 field inhomogeneity.

(12)

We model the non-rigid deformation by 3D free-form deformation (FFD) based on cubic B-

spline [23], [24]. It produces a smooth and locally controlled transformation. It is described 

by outer product of 1D cubic B-splines:

(13)

where,  is the lth basis function of cubic B-spline [25] and Φi,j,k is the 3D mesh of 

control points with uniform spacing δ. (i,j,k) is the index of control points: 

. u, v, and w are the local re-parametrization of the location Xa with 

respect to the control points: . We use a single layer of phantom 

control-points at all ends to make the deformation well behaved by interpolating the end 

control-points [25]. In order to constrain the deformation only in the direction of phase-

encode, the control points are constrained to change only y-coordinate while solving eq.(7). 

So, effectively only y-coordinate of the control points are the registration parameters.

Contrary to Studholme et al. [6], we have also included a regularization term (ϕ) to 

penalize over-fitting during the registration. This regularization plays an important role 

when the images have complementary contrast in non-rigid registration framework. Mutual 

information based similarity measure lacks spatial information of the intensities in the 

images because its only based on the joint distribution. But in MR image, intensities varies 

smoothly spatially and the intensities of neighboring voxels are not independent of each 

other. This makes similarity measures based only on mutual information unreliable, 

specially in non-rigid registration framework [26], [27], [28].

Further, since the magnetic field inhomogeneity variations are governed by Maxwell's 

equations, we know that the field variations will be generally smooth. Hence, we used 2-D 

bending energy of thin-metal plate for regularization as given by [29]. This regularization 

ensures the smoothness and invertibility of the transformation and does not penalize any 

rigid transformations. *** TO BE MODIFIED ***
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(14)

We formulate our NMI based cost function (7) as a continuous and differentiable function of 

registration parameters. This requires a continuous joint histogram, which is estimated using 

a separable Parzen-window approach [19]. This takes the form

(15)

where V is the region of overlap and h is the Parzen-window (chosen to be a cubic B-spline 

in our implementation). A continuous joint histogram allows explicit analytic form of 

derivative of our cost function. As compared to numerical gradients, analytical gradients are 

more accurate and thus can lead to better algorithm performance.

Our choice of cubic B-spline as parzen window h(t) is motivated by its partition of unity 

property and the local support [25]. While, local support helps to reduce the computation, 

partition of unity plays an important role in simplifying the expression of marginal density 

and analytical gradient (16). Similar to [30], [31], we computed the expression for partial 

derivative with respected to ith registration parameter ψi,y (y-coordinate of control point) in 

our 1D non-rigid framework as:

(16)

where, A(ϕ) and B(ϕ) are expressed in (8) and,

(17)

where, α = Card(V ). The last term in (17) is the product of B-spline basis functions similar 

to that of in (13). Detailed steps of the derivation of (17) are given in [30].

Implementation

The whole registration framework was implemented in a multi-resolution pyramid to help 

avoid local minimum during the optimization of the cost function [30]. The input images 

were initially blurred using a Gaussian smoothing kernel and were down-sampled to a 

coarse resolution. The B-spline control points were initially serperated by 30 mm to estimate 

larger global deformation. The rigid part of the transformation ϕR from (12) was initially 

estimated using rigid registration with mutual information as described in [22]. Then the 

non-rigid part of the transformation ϕΔB0 was estimated as described above. After 

performing the registration on a coarse resolution grid, the registration grid was successively 

refined till it reached the initial resolution of image. Each grid refinement was also 
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accompanied by introducing new B-spline control points, using Lane-Riesenfeld Algorithm 

[32], between exisiting control points to effectively reduce the spacing between them. This 

helps to capture the detailed deformation at finer resolution. A total of four grid refinement 

steps were used. We used simple gradient-descent method with decreasing step size to 

optimize our cost function.

Interpolation is an important and necessary step to reflect any non-cartesian displacement of 

voxels during optimization of cost function. We choose to use tri-linear interpolation on a 

densely sampled grid. This decision was made because our approach had the least effect on 

estimation of joint density. Interpolation techniques has been known to have effect on the 

final results in mutual-information based registration methods [33], [34]. It has been showed 

that tri-linear interpolation maximizes mutual-information at non-Cartesian grid positions 

due to the blurring introduced by the interpolation. Tsao et al. [34] suggested to use nearest-

neighbor (NN) interpolation with random jitter to avoid the problem. But, in our problem it 

became in-effective as the deformations were subvoxel in many regions and use of NN 

interpolation could not capture this small deformation for further refinement of the 

alignment. We found that tri-linear interpolation on a densely sampled image worked better 

than NN interpolation, as the densely sampled image is itself a smooth representation of the 

original image and hence, practically, the information lost by blurring by use of tri- linear 

interpolation does not affect the mutual-information calculations. In this work, we sampled 

all the images on a grid which was three times denser than the original grid to reduce 

interpolation artifact.

IV. Results

A. Simulation

For simulation, we acquired the field-map of a brain scan along with standard anatomical 

images on a 3T Siemens Magnetom TrioTim scanner. MPRAGE scan (TE=3.09ms, 

TR=2530ms) at a resolution of 1.0×1.0×1.0 mm3 was used as the registration template. We 

also acquired T2 weighted data (TE=88ms, TR=10000ms) at a resolution of 0.8×0.8×3.5 

mm which we used for the simulation. The field map was estimated from two gradient echo 

images with different echo times [35], with TE=10.00ms and 12.46ms (TR=1300ms for 

both) at a resolution of 2.0×2.0×2.0 mm3. Field map estimation was performed using a 

simplified version of the regularized estimation framework and graph-cut algorithm 

described in [36]. All the scans were sampled on the sampling grid of the field-map for 

simulation. The T2 weighted data was then distorted by adding phase (obtained from 

acquired field-map) in its fourier domain before reconstruction, as described in [4], [6]. This 

distorted image was then used as the ‘synthetic’ EPI image for the whole sequence. For 

purpose of simulation we set the parameters such that effective distortion was similar to 

distortion in common diffusion images. Here, we use the displacements as computed by the 

field-map, as in (3), as gold standard.

We compared the displacement estimated by our method to that of field map in Fig. 1 and 2. 

For perfect estimation the scatter plot should lie on a 45 degree line. Our estimated 

displacement follows a closely the 45 degree line for most of the voxels, although there are 
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deviations. Most of the voxels which are off the 45 degree line lie very near to areas known 

to have very rapid supseptibility changes, where large amount of distortion makes the signal 

recovery and distortion correction particularly challenging. It can be seen in fig. 2a.

Fig. 2 shows the comparison of estimated displacement using our method to the 

displacement computed by the field-map, eq. (3). Absolute value of the field-map 

displacement (in mm) are shown in Fig. 2a. We have shown the absolute value of error in 

displacement estimation using our method in Fig. 2b. From the images we can see that 

estimate using the registration framework is close to field-map estimate within 1-2 

milimeters, except in areas lying right next to sinuses, an area of rapid supseptibility change. 

Fig. 4 and fig. 3 show two slices of the simulated EPI images before and after the correction 

using registration framework. After distortion correction, the diffusion images are much 

better aligned with the anatomical image.

B. Imaging experiment

We tested our approach on data-set acquired as a part of imaging experiment. A 64-direction 

diffusion (single-shot EPI) scan (TE=88ms, TR=10000ms, b=1000s/mm2) was acquired at a 

resolution of 2.0×2.0×2.0 mm3. Along with diffusion weighted images, one image without 

any diffusion weighting (b=0s/mm2) was also acquired for the sequence. The b=0 image was 

used as the distorted EPI image for the correction. Standard MPRAGE image (TE=3.04ms, 

TR=2530ms) at a resolution of 1.0×1.0×1.0 mm3 was also acquired to be used as 

registration template. To analyze the effectiveness of the method, we also acquired the 

fieldmap (estimated from two gradient echo images using [36], with TE=10.00ms and 

12.46ms, TR=1100ms for both) at a resolution of 2.0×2.0×2.0 mm3.

The proposed algorithm was used to correct the distorted diffusion data. Since, all the 

diffusion weighted images suffer from same static field inhomogeneity, we used just one of 

image, b=0 image for estimating the distortion. Among all the diffusion images, b=0 image 

has most consistent contrast throughout white matter and gray matter, as there is no 

diffusion encoding. MPRAGE has also consistent contrast throughout white matter and Gray 

matter, although complementary to b=0 image. Hence, b=0 image is the most suitable 

among all diffusion image for registration. Fig. 5 shows few slices of b=0 image before and 

after the correction, overlaid by the edge-map of MPRAGE. As expected, regions in frontal 

lobe are more affected by field inhomogeneity due to the presence of sinus. It can be seen 

that sub-cortical structures near ventricles get aligned after the correction. This also aligns 

the white-matter structures in a much better way.

We also compared our estimate of displacement with that of as computed by the acquired 

field-map in fig. 6. It can been seen that our approach can estimate displacement within an 

error of 1-2 milimeters except in areas next to sinues. The scatter plot in fig. 7 shows that 

displacement in most of the voxels in our estimate follows the 45-degree line.

Furthermore, we studied the effect of distortion correction on the diffusion measures like 

Fractional Anisotropy (FA) etc, which are widely used in many neurological studies. Better 

alignment of diffusion images, and hence the diffusion measures, to the anatomical images 
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can allow more reliable and useful analysis in any study. We estimated the deformation in 

b=0 image using the registration framework and then used the same deformation to correct 

all the diffusion images. The corrected set of diffusion images were then used to estimate the 

diffusion tensors at each voxel. FA images were generated from the eigenvalues and 

eigenvectors of the estimated tensors. Fig. 8 shows FA images before and after the 

correction overlaid by edge-map of MPRAGE. It can be clearly seen that the white matter 

regions are much better aligned after the correction. It is most evident in frontal areas near 

the ventricles.

V. Discussion & Conclusion

In this paper, we addressed the common problem of distortion in images acquired using EPI 

sequences. We proposed a method which does not require acquisition of any special data-

set, like field-map, or does not depend of field-models on tissue segmented image. Instead, 

we used the geometrically correct anatomical images, which is commonly acquired in most 

of the diffusion experiment, in a non-rigid registration framework based on the mutual-

information measures to estimate the distortion. We used the physics of the distortion to 

constrain the registration process. The proposed approach accurately aligns the diffusion 

images to anatomical image. The accuracy of the correction is similar to that of when using 

field-maps. Though, we presented the results using a diffusion experiment, the techniques 

remains general and can be used with any EPI image, even with significantly different 

contrast as compared to structural image.

***BS, SVREG, population ***

The proposed technique has some known drawbacks. The areas which are distorted can be 

aligned accurately with help of anatomical image, but the structure lost due to the 

superposition of signal from different regions can not be recovered without any additional 

knowledge. This can be seen in severely distorted regions like lower frontal regions. 

However, the lost structure can also be not recovered by use of field-map based techniques 

without addition data or prior information. Further, in some areas near air/tissue boundary 

main magnetic field changes very rapidly resulting in severely distorted image. This rapid 

change can not be a modeled due to the small number of B-spline control points. By 

decreasing the spacing between the control points in the areas which are severely deformed, 

we can model the rapid changes in magnetic field. This increases the complexity of the 

algorithm and we will explore the irregular spacing of control points for the B-spline in the 

future. Another, drawback is that the proposed method required skull-stripped MPRAGE for 

better alignment. There are many automated skull-stripping algorigthm available in different 

neurological softwares, which can be used for this purpose.

In conclusion, the proposed technique shows an improvement in the alignment of diffusion 

EPI images to the anatomical images over traditional affine and rigid registration without 

need of field-map acquisition. This can be particularly useful for data-set which has been 

already acquired without field-map. The results so far indicates that the technique could be 

useful for many studies in brain-imaging.
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Fig. 1. 
Scatter plot of our estimated displacement vs the field-map displacement for simulated EPI 

image.
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Fig. 2. 
Mosaic images showing comparison of estimated displacement for simulated-EPI image in 

phase-encode direction using our method to that of field-map at different slices. The values 

are reported in milimeters.
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Fig. 3. 
Overlay of a saggital slice before and after correction of the distortion in simulated EPI 

sequence (similar to fig. 4). First row shows image before distortion correction, while 

images after correction are presented in second row. First column shows the MPRAGE 

overlaid by the edge-map (in red) generated from b=0 image. Second column is converse to 

the first column (edge-map of MPRAGE superimposed on b=0 image).
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Fig. 4. 
Overlay of an axial slice before and after correction of the distortion in simulated EPI 

sequence. First row shows image before distortion correction, while images after correction 

are presented in second row. First column shows the MPRAGE overlaid by the edge-map (in 

red) generated from b=0 image. Second column is converse to the first column (edge-map of 

MPRAGE superimposed on b=0 image).
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Fig. 5. 
Results after correction of the distortion in diffusion data. Image on the left-side of each pair 

shows the distorted b=0 image overlaid by edge-map of MPRAGE. The corrected image is 

shown on the right. Major differences are higlighted by arrows.
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Fig. 6. 
Comparison of our estimated displacement in phase-encode direction to that of field-map at 

different slices. The values are reported in milimeters.
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Fig. 7. 
Scatter plot of our estimated displacement vs the field-map displacement for diffusion data.
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Fig. 8. 
FA images before and after the correction of diffusion data. (a) shows different slices of the 

distorted FA image overlaid by edge-map of MPRAGE. (b) shows the FA image after 

correction.
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