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Abstract

Objectives—Pure-tone audiometry has been a staple of hearing assessments for decades. Many 

different procedures have been proposed for measuring thresholds with pure tones by 

systematically manipulating intensity one frequency at a time until a discrete threshold function is 

determined. The authors have developed a novel nonparametric approach for estimating a 

continuous threshold audiogram using Bayesian estimation and machine learning classification. 

The objective of this study is to assess the accuracy and reliability of this new method relative to a 

commonly used threshold measurement technique.

Design—The authors performed air conduction pure-tone audiometry on 21 participants between 

the ages of 18 and 90 years with varying degrees of hearing ability. Two repetitions of automated 

machine learning audiogram estimation and 1 repetition of conventional modified Hughson-

Westlake ascending-descending audiogram estimation were acquired by an audiologist. The 

estimated hearing thresholds of these two techniques were compared at standard audiogram 

frequencies (i.e., 0.25, 0.5, 1, 2, 4, 8 kHz).

Results—The two threshold estimate methods delivered very similar estimates at standard 

audiogram frequencies. Specifically, the mean absolute difference between estimates was 4.16 ± 

3.76 dB HL. The mean absolute difference between repeated measurements of the new machine 

learning procedure was 4.51 ± 4.45 dB HL. These values compare favorably to those of other 

threshold audiogram estimation procedures. Furthermore, the machine learning method generated 

threshold estimates from significantly fewer samples than the modified Hughson-Westlake 

procedure while returning a continuous threshold estimate as a function of frequency.
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Conclusions—The new machine learning audiogram estimation technique produces continuous 

threshold audiogram estimates accurately, reliably, and efficiently, making it a strong candidate 

for widespread application in clinical and research audiometry.

Introduction

The procedure typically followed for clinical audiogram estimation currently is pure-tone 

audiometry (PTA) using the modified Hughson-Westlake (HW) procedure (Hughson & 

Westlake 1944), which was proposed as a standard for audiological testing decades ago 

(Carhart & Jerger 1959). As detailed by ANSI, the procedure proceeds one frequency at a 

time with the presentation of a tone at a sequence of intensities determined by the listener’s 

most recent response. In a common variant, the first intensity delivered is at a level audible 

to the listener, and the level is reduced in fixed-size increments until the listener no longer 

responds. The intensity is then increased by a smaller fixed-size increment until the listener 

again responds. This procedure is repeated for several “reversals” (Franks 2001; American 

National Standards Institute 2004; American Speech-Language-Hearing Association 2005).

In parallel to the development of adaptive conventional approaches like the one described 

above, automated audiometry methods play a role in clinical audiometry with the earliest 

form designed by George von Békésy in the late 1940s (Békésy 1947). Békésy’s proposed 

automated audiogram, often referred to as “Békésy audiometry,” implemented a method of 

adjustment, giving listeners control of an attenuator used to identify the intensity at which 

they could not hear the presented stimulus. Additionally, many computerized audiometric 

methods designed to ensure consistency and save labor have been developed, with some 

employing a method of adjustment similar to Békésy’s technique but most using a method 

of limits resembling the HW algorithm (Ho et al. 2009; Margolis et al. 2010; Swanepoel et 

al. 2010; Mahomed et al. 2013). Even with ready access to powerful digital computing 

technology today, however, computerized automated audiometry sees relatively little use in 

clinical diagnostic settings, with most audiograms still obtained manually (Vogel et al. 

2007).

A recent exhaustive review and meta-analysis was conducted of techniques developed for 

automated threshold audiometry (Mahomed et al. 2013). A wide range of automated 

techniques produced audiograms generally comparable to manual audiograms, with an 

absolute average difference of 4.2 dB HL and a standard deviation of 5.0 dB HL (n = 360). 

Test-retest reliability among these automated methods demonstrated an absolute average 

difference of 2.9 dB HL and a standard deviation of 3.8 dB HL (n = 80). As a comparison, 

manual threshold audiometry in the reported studies produced an absolute average 

difference of 3.2 dB HL and a standard deviation of 3.9 dB HL (n = 80). These studies 

indicate that computerized automation of pure-tone audiometry procedures yields threshold 

audiograms comparable in value and test-retest reliability to conventional manual 

procedures.

Adaptive techniques, such as those described in (Mahomed et al. 2013) and the HW 

procedure itself, share the common feature of systematically manipulating pure-tone 

intensity one frequency at a time until a threshold value at each of the sampled frequencies 
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is determined. Disadvantages of such an approach include 1) multiple stimuli with high or 

low probabilities of detection must be presented for each test frequency; 2) identical or 

nearly identical stimuli are presented repeatedly near threshold; and 3) stimulus presentation 

sequences have a large degree of predictability, which facilitates the intentional subversion 

of test results by noncooperative listeners.

To address primarily the first shortcoming above, several methods have been developed by 

psychophysicists seeking optimal sampling methods (Leek 2001). For instance, the 

parameter estimation by sequential testing (PEST) method (Taylor & Creelman 1967; Hall 

1981) adjusts step size dynamically to systematically narrow stimulus parameter ranges 

down to values of interest, while maximum likelihood methods (Pentland 1980; Watson & 

Pelli 1983) sequentially select points most likely to be informative using current estimates of 

the psychometric function. Bayesian methods have also been applied to the problem of 

optimal sampling for psychometric functions, typically by constructing a posterior estimate 

of the function given the existing data and selecting the next sample point based upon some 

optimality criterion, such as maximizing information gain (King-Smith et al. 1994; 

Kontsevich & Tyler 1999; Lesmes et al. 2006; Remus & Collins 2008; Kujala 2011; Shen & 

Richards 2013). Techniques inspired by these methods have been applied in auditory 

threshold estimation on a per-frequency basis and have demonstrated threshold estimates 

consistent with traditional sampling techniques (Green 1992; Formby et al. 1996; Leek et al. 

2000). Particularly noteworthy is a dynamic Bayesian technique that guides optimal 

sampling across a range of frequencies and intensities using interfrequency relationships 

derived from a database of candidate audiometric patterns (Özdamar et al. 1990).

To address the second shortcoming above, techniques such as Békésy audiometry and 

Audioscan® systematically sweep tone stimuli through multiple frequencies (Békésy 1947; 

Meyer-Bisch 1996; Ishak et al. 2011). These continuous-audiogram estimation techniques, 

particularly Audioscan®, are able to identify various hearing pathologies that cannot always 

be detected by discrete pure-tone audiometric approaches (Jerger 1960; Zhao et al. 2002; 

Zhao et al. 2014). Despite this advantage, however, these techniques do not currently see 

substantial use in the clinic. The main reason for this is the substantially lengthened testing 

time required compared to conventional PTA, particularly with sweep rates that are 

comfortable for listeners (Ishak et al. 2011). Furthermore, substantial engagement by the 

listener is required, which could lead to inefficient acquisition, inaccuracies, and/or 

intentional misrepresentation.

A new technique that can generate continuous audiogram estimates through efficient 

deployment of test stimuli could potentially combine the advantages of Bayesian and sweep 

audiometry. As an added bonus, if this method were less predictable than conventional 

methods, noncooperative listeners would be revealed.

Machine learning (ML) is a field of computation employing principled methods to subdivide 

complex parameter spaces into informative categories. It encompasses a powerful set of 

tools for performing efficient data-driven inference on complex spaces or processes (Bishop 

2006; Hastie et al. 2009; Murphy 2012) By merging classification methods from machine 

learning with techniques for optimal Bayesian estimation and effective sampling procedures 
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from psychophysics, we propose to simultaneously speed acquisition, increase accuracy and 

increase test sensitivity for PTA. To this end, we have designed a machine learning 

audiogram estimation procedure that finds hearing thresholds continuously across frequency 

while efficiently sampling the psychometric space.

Materials & Methods

Machine learning algorithm

An algorithm employing Gaussian process (GP) regression (Rasmussen & Williams 2006) 

was used to construct tone detection audiogram estimates from human listeners in real time. 

GP regression is a nonparametric Bayesian machine-learning technique that performs rapid 

and accurate estimation of multidimensional functions. GPs can be thought of as an 

extension of the multivariate Gaussian distribution to infinitely many random variables. 

Each single variable represents the range of possible values an output function can take 

when evaluated at a particular input and is Gaussian-distributed with some mean and 

variance. In the context of the tone-detection audiogram, the input values are the frequency 

and intensity of presented pure tones, and the output function is an individual’s probability 

of detecting the given tone (i.e. the individual’s psychometric profile across frequency-

intensity space).

A GP is fully specified by 1) its mean function, which describes the central tendency of the 

overall output function and 2) its covariance function, which describes the relationship 

between any pair of output function values. Upon conditioning on a set of observed data, the 

GP can produce a posterior probability distribution (often called “predictive posterior”) for 

some set of inputs. The mean of this posterior distribution (distinct from the GP mean 

function) represents the GP’s best prediction of output function values at the new inputs. The 

posterior variance, on the other hand, reflects the GP’s inherent uncertainty in estimate 

quality, or the GP’s “confidence” about its prediction of the function value at each set of 

inputs.

Variable space—For audiogram estimation, the input variables are the frequency and 

intensity of presented pure tones. The GP was trained to predict the probability of a 

listener’s tone detection as a function of these variables, which takes on continuous values 

between 0 and 1 over all combinations of frequency and intensity.

Covariance function—The GP covariance function describes how variables change with 

one another, and generally describes the “smoothness” of the GP function in each 

dimension. For this application, constraints that reflected prior knowledge about 

psychometric functions were incorporated into the covariance functions. Most crucially, the 

probability of listener detecting a tone is monotonically increasing as a function of tone 

intensity, but need not have an explicit dependence upon frequency except that the overall 

function is continuous. To reflect this scenario, separate covariance functions are used for 

the frequency and intensity dimensions: a monotonically increasing linear kernel in 

intensity, and a more flexible squared exponential (SE) kernel in frequency. To ensure that 

the GP returned a probability estimate, values were transformed with a cumulative Gaussian 

likelihood function in intensity.
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Calculation of hyperparameters—4 covariance function hyperparameters were used 

for this model: a Gaussian-distributed noise parameter (allowing the GP to be more robust to 

false positives and negatives), an amplitude for the SE kernel, a characteristic length scale 

for the SE kernel, and a slope for the linear kernel. Hyperparameters are updated (learned) 

automatically following each response by minimizing the negative log marginal likelihood 

of these hyperparameters with respect to the sampled data.

Calculation of predictive posterior—Following each new tone presentation, the data 

sampled up to that point were used to compute the predictive posterior probability 

distribution. Both the mean posterior probability of detection at any frequency/intensity 

combination and an uncertainty (posterior variance) for this estimate were computed. Figure 

1A shows an example of the posterior mean during data acquisition for one audiogram 

estimate and Figure 1B shows the corresponding posterior variance.

Informative sampling—After initializing with a few pseudorandom samples, only points 

deemed to be highly informative to the estimate were selected for subsequent samples. We 

adopted a strategy known as uncertainty sampling in which at each algorithm iteration, the 

next chosen sample point was one whose class identity (i.e. heard or unheard) was the most 

uncertain (Lewis & Catlett 1994; Lewis & Gale 1994; Settles 2009). Based upon the 

calculated variance function for the previous iteration, the frequency/intensity pair 

corresponding to the highest value in the variance function was selected for the next point to 

sample (Figure 1B). If multiple points were tied for maximum variance, a point was selected 

at random from this set. After determining the listener’s response, the posterior distribution 

was updated for the next iteration (updated posterior mean shown in Figure 1C). The cycle 

of hyperparameter estimation, posterior calculation, and uncertainty sampling was repeated 

until convergence criteria were met, as detailed in Experimental procedure.

Our technique shares similarities with previously described Bayesian techniques for 

estimation of psychometric functions. Those techniques also build a posterior probability 

distribution from existing data to estimate the psychometric function (Kontsevich & Tyler 

1999; Lesmes et al. 2006; Remus & Collins 2008; Kujala 2011; Shen & Richards 2013). 

Additionally, the strategy of uncertainty sampling we have adopted for selecting informative 

sample points resembles strategies that successively pick points to minimize some cost, such 

as expected variance (King-Smith et al. 1994) or entropy (Kontsevich & Tyler 1999; Lesmes 

et al. 2006; Shen & Richards 2013). Our technique is able to generate a multivariate 

psychometric function in frequency-intensity space in much the same way that, for instance, 

the qPvC technique is able to generate a psychometric function in noise-contrast space 

(Lesmes et al. 2006).

A key departure relative to the other Bayesian techniques described previously is that ours is 

a nonparametric technique. Unlike the general shape of the auditory filter, for instance, 

which can be accurately characterized by a 3-parameter equation (Shen & Richards 2013), 

the shape of the audiogram varies significantly between individuals and cannot be similarly 

parameterized. Instead, we adopted a nonparametric approach that only assumes tone-

detection thresholds are generally similar for very close frequencies (i.e. the audiogram is 

continuous). This assumption is reflected in the SE covariance kernel chosen for the GP in 
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the frequency dimension, which enforces a general smoothness (Rasmussen & Williams 

2006). The tone detection probability estimate is produced by a posterior estimate of the 

function values given the observed data and learned hyperparameters, rather than the more 

typical case of optimizing over a set of parameters to best fit the observed data (Lesmes et 

al. 2006; Shen & Richards 2013; Shen et al. 2014).

The current method perhaps most resembles the technique of (Özdamar et al. 1990), which 

also samples across a range of frequencies and intensities and informs estimates of one 

frequency using information from nearby frequencies. Rather than selecting between 

candidate audiogram patterns, however, the current method incorporates prior beliefs about 

psychometric functions into the covariance function, essentially expanding the number of 

candidate patterns to all possible patterns under the given covariance function and 

hyperparameters.

Participants

A total of 21 participants (8 male, 13 female) were recruited from the Department of Adult 

Audiology at Washington University School of Medicine Central Institute for the Deaf and 

the Research Participant Registry at Washington University in St. Louis. All participants 

were between 18 and 90 years of age (mean 47), fluent English speakers and with no history 

of neurological disorder. Approval for completion of the study was received from 

Washington University in St. Louis’ Human Research Protection Office (HRPO), and all 

participants provided informed consent before any testing protocol began. One listener 

(listener number 17) fell asleep during one part of the study. This listener’s data were 

therefore omitted from the group averages but were presented separately to demonstrate how 

the algorithm operates with a noncompliant listener (see Discussion).

Experimental procedure

For each listener, 2 repetitions of the automated ML-based audiogram and 1 repetition of a 

standard manual HW audiogram were conducted. Air-conduction PTA was performed in 

each case, and each auditory stimulus consisted of a three-pulse sequence of 200-ms pure 

tones with inter-pulse intervals of 200 ms. Listeners were seated within a sound isolation 

booth, and all auditory stimuli were delivered using a Toshiba Portege R700 laptop 

computer running custom MatLab code and Sennheiser HD280 circumaural headphones. 

Computer audio output was calibrated to match the output of a GSI-61 two-channel clinical 

audiometer. The relative order for the ML and HW audiograms was randomized for each 

listener, and experimenters conducting the HW audiogram were blinded to the listeners’ ML 

audiogram scores. Listeners were asked to remove any hearing-assist devices prior to data 

collection. Short periods of rest (~2 mins) were administered between each set of audiogram 

runs.

Manual HW audiometry—A conventional audiogram was conducted by an audiologist 

according to accepted standards (American National Standards Institute 2004; American 

Speech-Language-Hearing Association 2005). Each listener was instructed to raise his or her 

hand upon detection of a presented pure-tone stimulus. Hearing ability was assessed at 

standard audiogram frequencies (0.25, 0.5, 1, 2, 4, and 8 kHz), with the possible intensity 
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ranging from −20 to 100 dB HL in a minimum of 5-dB increments. For an individual 

frequency, a pure tone was first presented at an audible intensity based upon the 

audiologist’s clinical judgment, then reduced in 10-dB increments until the listener failed to 

respond. Henceforth, the intensity was increased in 5-dB increments following detected 

tones and decreased in 10-dB increments following undetected tones. The threshold for that 

frequency was determined by the lowest-intensity tone to elicit a response in at least 2 of 3 

ascending trials. The manual audiogram was conducted separately for left and right ears. 

This manual method is the modified Hughson-Westlake ascending-descending procedure 

and is referred to here as HW audiometry {Carhart, #159; Katz, 2009 #225}.

Automated ML-based audiometry—The ML framework was incorporated into a user 

interface for real-time integration of listener responses. Listeners were instructed to click a 

mouse button upon detection of any stimulus. Each stimulus was separated by a randomized 

inter-trial interval of between 0.5 and 2 seconds to minimize listener prediction of stimulus 

presentation times. A response within 1500 ms following the onset of the tone sequence was 

marked as a detected (+1) sample; no response was counted as an undetected (−1) sample. 

The range of possible sample points fell within 250–8000 Hz in semitone increments 

centered at 1000 Hz along the frequency dimension, and −25–100 dB HL in 1-dB 

increments centered at 0 dB HL along the intensity dimension. Sampling was initially 

conducted pseudo-randomly throughout both frequency and intensity space until at least 1 

sample was collected at each standard audiogram frequency (0.25, 0.5, 1, 2, 4, and 8 kHz) 

and at least one detected and one undetected sample had occurred. After this point, the 

algorithm followed the iteration cycle of hyperparameter training, posterior estimation and 

informative sampling of next stimulus as previously described. This cycle was iterated for a 

minimum of 36 presentations and until two specific convergence criteria were met: 1) the 

average posterior variance and 2) the posterior mean change since the previous iteration 

were both sufficiently low.

“Heard” responses for which no tone presentations occurred within 1500 ms (i.e., false 

positives) were not used in evaluating the GP or in training the hyperparameters. The 

automated audiogram was conducted separately for left and right ears. To maximize user 

comfort, delivered tone intensities never exceeded 10 dB HL louder than the maximum 

intensity delivered up to that point in the test. Whether or not convergence criteria were met, 

the algorithm terminated after a maximum of 64 iterations.

Analysis

Following completion of the automated audiogram, each GP posterior mean was binarized at 

a detection probability of 0.707, the standard probability of a positive response at 

convergence for a transformed 2-up, 1-down method like the modified HW procedure 

(Levitt 1971). Points for which the probability of detection was greater than or equal to 

0.707 were labeled as “detected,” and points for which the probability of detection was less 

than 0.707 were labeled as “undetected.” This binary surface was then used to construct an 

estimate of the audiogram: for each frequency, the smallest intensity in 1 dB increments 

greater than the transition from “detected” to “undetected” was selected as the threshold 

value for that frequency. Because of the monotonic constraint enforced upon the estimator in 
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the intensity dimension, there could be a maximum of only 1 transition point at each 

frequency. The threshold values at each frequency therefore become a continuous (in 

frequency) estimate of the listener’s threshold audiogram.

The ML and HW threshold audiograms were compared at the standard audiogram 

frequencies. Accuracy of the automated algorithm was assessed via comparison to the 

results of the HW audiogram by calculating 1) the mean difference and standard deviation of 

threshold between the ML and HW audiograms, 2) the mean absolute difference and 

standard deviation of threshold between the ML and HW audiograms, 3) the median 

absolute difference and interquartile range of threshold between the ML and HW 

audiograms, and 4) the percent 5-dB difference, or percentage of all ML audiogram values 

within 5 dB of the corresponding HW audiogram values (Swanepoel et al. 2010; Mahomed 

et al. 2013). Test-retest reliability (precision) of the automated audiogram was assessed by 

calculating 1) the mean difference and standard deviation of thresholds and 2) the absolute 

difference and standard deviation of thresholds between the audiogram estimates produced 

by the 2 runs of the ML algorithm (Mahomed et al. 2013). Calibration correction was 

applied equally to both manual and automated estimates and therefore had no effect upon 

the comparisons between them because both methods used the same stimuli and the same 

hardware.

Results

The total number of stimulus presentations delivered to each listener for the manual HW and 

the two runs of the automated ML audiogram are shown in Table 1. This includes the 

samples presented to both the left and right ears. The HW procedure required an average of 

97.0 ± 15.8 (mean ± standard deviation) samples to estimate the threshold audiogram, while 

the first and second runs of the ML procedure averaged 78.4 ± 11.0 and 78.9 ± 14.6 

samples, respectively. This difference in number of samples between the HW audiogram 

and each run of the ML audiogram was statistically significant (p = 0.0012 and 1.5 × 10−4, 

respectively; paired-sample t-test). Note that numerous runs of the ML audiogram 

terminated after 72 stimuli, which is the minimum number of samples after which the 

algorithm was allowed to terminate for each listener. Therefore, the actual mean number of 

stimuli required to achieve convergence criteria in the ML algorithm without this constraint 

is likely to be considerably lower. All but 1 of the 40 included ML audiogram runs 

terminated prior to the maximum allowable number of iterations.

Samples obtained during both the manual HW and automated ML methods are shown in 

Figure 2 for 1 representative listener, with the final audiogram estimates shown as 

superimposed lines. Note that the HW method searched each standard audiogram frequency 

across a number of intensities, with several repeat presentations of specific stimuli. The ML 

procedure, on the other hand, sampled across a more diverse set of frequencies with no 

repeats.

The degree of similarity among the different audiogram estimates for each ear is readily 

apparent, despite the differences in sampling procedure for each. The skilled audiologist was 

able to rapidly discover reversals and spent the most time probing right around threshold. A 
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less skilled individual may have spent more time sampling points farther from threshold. 

These examples concisely demonstrate the utility of the HW procedure in trained hands and 

help explain why it is still in use many decades after its development.

Figure 3 compares directly the HW and ML audiogram results for 3 distinct ears: an ear with 

approximately normal hearing (Figure 3A), an ear with sloping high-frequency hearing loss 

(Figure 3B), and an ear with no-response at a subset of standard audiogram frequencies 

(Figure 3C). Once again, the ML audiogram is able to produce a continuous audiogram 

estimate that compares favorably with the standard HW procedure at the standard audiogram 

frequencies. Moreover, while the HW procedure cannot provide a principled estimate at 

frequencies where no response was elicited, the ML procedure can and does, although the 

threshold estimate at 8 kHz in Figure 3C is not visible because of the limited range of values 

plotted. Hence, the similarity in estimates cannot be assessed at 8 kHz for this ear, but the 

ML estimate is likely closer to the actual threshold than any estimate that could be 

extrapolated from the HW data in this case.

Table 2 shows the results of evaluating the accuracy of the ML audiogram at standard 

audiogram frequencies relative to the HW audiogram averaged across all listeners and 

estimation runs. For the 6 standard audiogram frequencies, the mean estimated threshold 

difference was −0.011 ± 5.61 dB HL, the mean absolute estimated threshold difference was 

4.16 ± 3.76 dB HL, the median absolute estimated threshold difference was 3.00 dB HL 

with an interquartile range of 5.00 dB HL, and the percent 5-dB difference in threshold 

estimates was 66.25. These values compare favorably with historical differences in 

audiogram estimation methodologies (Gosztonyi Jr. et al. 1971; Schmuziger et al. 2004; 

Ishak et al. 2011; Mahomed et al. 2013). Judging from the relatively low percent 5-dB 

difference yet comparable mean absolute difference, the ML procedure appears to produce 

somewhat more outlier estimates at individual frequencies than methods that estimate 

directly at those frequencies. Naturally, it is possible that the outliers in this case arise from 

the HW procedure.

The ML audiogram’s clinically relevant performance was evaluated by classification of 

audiogram results into conventional categories of hearing loss (normal, mild, moderate, 

severe, and profound) using the pure-tone average (Stach 2008; Katz et al. 2009). The 

categorical classifications produced by ML and HW audiogram estimates in our listeners 

were in agreement 95.0% of the time, and the disagreements in pure-tone average 

classification resulted in adjacent clinical categories. This result provides further evidence 

that the ML audiogram generates information that is clinically equivalent to the 

conventional HW audiogram using current standards.

Table 3 shows the results of evaluating the test-retest reliability of the automated ML 

audiogram at standard frequencies averaged across all listeners and estimation runs. Across 

all frequencies, the mean signed difference between automated audiogram runs was 0.75 ± 

6.29 dB HL, the mean absolute difference between runs was 4.51 ± 4.45 dB HL, and the 

median absolute difference between runs was 3.00 dB HL with interquartile range 4.00 dB 

HL. These values are comparable to previously reported absolute test-retest differences for 

manual audiometry: 3.2 ± 3.9 dB HL (Fausti et al. 1990; Swanepoel et al. 2010; Mahomed 
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et al. 2013). This degree of similarity in final estimate between runs where the different 

initial randomization led to nonoverlapping probe stimuli in the two cases indicates the 

robustness of the ML procedure.

Figure 4 shows the accuracy of the ML procedure as a function of algorithm iteration, or 

equivalently, the number of samples collected. This post-hoc analysis was performed by 

constructing an ML threshold audiogram estimate from the posterior distribution after each 

iteration of the GP algorithm and then evaluating the absolute difference from the final HW 

threshold audiogram at the six standard audiogram frequencies. Figures 4A, B show this 

trend for two representative ears, and Figure 4C shows the accuracy as a function of 

algorithm iteration averaged across all listeners and GP algorithm runs that terminated 

following 36 iterations. In both the individual data and the population data, the accuracy of 

the ML algorithm tended to improve systematically as a function of iteration. The ML 

estimate tends to achieve close to its final absolute difference value in only 20 samples or so. 

In some cases the difference function becomes shallow quickly but remains at some positive 

value (e.g., Figure 4A). It is possible that this outcome originated from a systematic 

misestimate in the HW procedure instead of the ML procedure. Finally, note that the first 10 

iterations show little systematic improvement in estimate quality, which is caused by the 

random sampling at this early stage before the informative sampling procedure begins.

The normalized GP posterior variance is shown as a function of ML algorithm iteration in 

Figure 5. At each iteration, the normalized variance was calculated by summing each value 

in the posterior variance, which spans values [0, 1], and dividing by the total number of 

values. Figures 5A, B show this trend for the same runs as in Figure 4, and Figure 5C shows 

this trend averaged across all listeners and runs. In general, the normalized posterior 

variance tends to decrease as a function of iteration, implying that the ML audiogram 

produces a less uncertain (more confident) estimate with an increasing number of samples. 

This function alone or in combination with other factors could therefore be used to evaluate 

the overall quality of an estimate.

Discussion

We have introduced a novel automated PTA audiogram estimation technique exploiting 

recent developments in machine learning. This method is able to provide a nonparametric 

yet continuous estimate of a listener’s pure tone detection probability across all 

combinations of tone frequency and intensity. To our knowledge, this is the first approach 

capable of doing so. Furthermore, the procedure we have developed is designed to deliver 

each successive tone at the frequency and intensity of maximum uncertainty in the estimate 

up to that point. The result is an estimate of the complete psychometric function as a 

function of all variables. In the case of PTA, this is the probability of detecting a tone at any 

particular frequency and intensity, which we refer to as the tone detection audiogram. Any 

particular contour of the detection audiogram reflects a constant probability of tone 

detection, or threshold. In this study we will specifically refer to the 0.707 contour of the 

tone detection audiogram as the threshold audiogram.
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While obtaining threshold estimates at all frequencies and achieving accuracy comparable to 

other algorithms, the ML audiogram consistently required significantly fewer samples to do 

so. Conventional HW approaches query frequencies individually and obey a rigorous rule 

for selecting tone intensities, depending at any frequency only upon the accumulated number 

of reversals, the intensity of the last tone presented and the last listener response. In practice, 

this means that many samples collected by the conventional HW approach are not 

particularly informative, e.g., several relatively loud intensities in a row that the listener is 

very likely to hear. In contrast, the GP algorithm successively selects sample points 

evaluated by uncertainty sampling to be maximally informative at that point in time about 

the perceptual space. The rapid accumulation of relevant information in the ML audiogram 

case is demonstrated clearly in Figure 4, where the accuracy of the GP algorithm approaches 

reasonable values many iterations before the algorithm eventually terminates. Such rapid 

convergence simply cannot be accomplished with the HW approach because of its rigid 

sampling criteria, in either manual or automated form.

Another unique property of our ML audiogram procedure is that an estimate of accuracy is 

automatically included with each newly computed posterior. In general, both the estimate 

error (in this case, the correspondence with the HW estimate) and normalized posterior 

variance decrease as a function of algorithm iteration. The trend in accuracy appears more 

reliable than the trend in variance: additional samples will typically generate a more accurate 

estimate of the audiogram because there is more information about the function space. The 

ML procedure could possibly generate a low-variance yet inaccurate audiogram estimate 

with very few samples by either underfitting or overfitting, which is responsible for the 

dramatic drop in GP variance shown in the first 5 samples of Figure 5A. Multiple methods 

exist to deter underfitting or overfitting (Murphy 2012); the simplest is perhaps to enforce a 

minimum number of iterations while ensuring that the algorithm is still sampling widely, 

which was deployed in the current experiment. After the first few iterations, the steady 

decrease in error implies that with more samples, we can achieve even more accurate 

audiogram estimates. As Figure 4 suggests, however, this is likely only necessary for 

individuals whose GP estimates do not converge quickly.

The ML audiogram was generally robust to false positives. The noise term in the covariance 

function allows the GP to classify unexpected responses as anomalies rather than true 

responses, assuming there are sufficiently many true responses to offset the false positives. 

If, however, the listener provides multiple false positives for very soft tones (or 

alternatively, misses multiple clearly audible tones), the ML audiogram may be unable to 

correctly reject those responses, as the evidence is no longer overwhelming in favor of 

rejecting them. While we did not experience this scenario with our listeners, the variance 

function inherent to our ML audiogram is in any case a natural quantification of estimate 

quality. Estimates that do not converge fully by the end of the ML audiogram can be used to 

signal the test operator that a poor reading resulted, thereby directing him or her to start the 

test over or pursue an alternate estimation strategy.

A related situation is a listener who responds inconsistently, to which the ML procedure is 

sensitive. Figure 6 shows an example of one listener who provided inconsistent results by 

falling asleep during the ML audiogram procedure. The ML threshold audiogram deviated 
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from the HW threshold audiogram obtained for the same ear (Figure 6A), and the 

inconsistency in responses that produced this result can be seen in Figure 6B. Note that 

sample points very close in intensity/frequency space elicited different responses, which is 

physically unrealistic. The ML procedure produced a threshold audiogram estimate that 

attempted to best match this inconsistent data. It can also be seen from Figure 6C that the 

ML algorithm hit the ceiling on the number of allowable iterations for that ear, 64, due to 

high posterior variance. Figure 6C further reveals that the normalized posterior variance did 

not generally decrease as a function of iteration; in fact, following iteration 15, the 

normalized variance gradually increased. The normalized variance may sometimes 

dramatically increase when the GP hyperparameters change substantially due to a 

particularly informative sample, but a gradual increase in normalized variance indicates that 

obtained samples may be of poor quality because each additional sample is making the 

posterior less, rather than more, well-defined. Sufficient native quantification therefore 

appears to exist within the ML procedure to signal when a poor estimate is being obtained, 

in which case an alternate audiogram estimation strategy may be pursued.

One major advantage of the automated ML algorithm is precisely its operation without 

direct human supervision. The algorithm used in this experiment necessitated experimenter 

intervention only upon switching ears, which was primarily as a courtesy for the listeners so 

that the ear switch could be announced. If this feature is removed or automated, the ML 

audiogram becomes a “plug-and-play” procedure that need only be initialized and will 

otherwise proceed on its own until termination, with no need for direct supervision by 

clinicians or experimenters other than to verify that the equipment is operating as desired. In 

other words, a technician could effectively oversee the test procedure and relay the results to 

a clinical audiologist for interpretation and possibly a decision to retest using a different 

methodology. Alternately, if it is possible to deliver only a very few stimuli, such as with 

very young children, the ML procedure could run decoupled from the stimulation apparatus 

and simply inform a clinician where to manually deliver the next sound to provide the most 

information about that patient’s hearing. Based upon our findings, 20 samples using this 

method should be enough to obtain a reasonable tone detection audiogram estimate, which, 

of course, includes the threshold audiogram.

As indicated in Table 2, mean threshold estimates corresponded closely between the 

predictable, sequential HW procedure and the unconstrained, roving ML procedure. In 

general, both one-interval and two-interval detection and discrimination tasks have shown 

elevated thresholds when one or more stimulus parameters are roved (Berliner & Durlach 

1973; Mori & Ward 1992; Amitay et al. 2005; Mathias et al. 2010; Bonino et al. 2013). This 

is widely interpreted to be an attentional rather than a purely perceptual phenomenon 

because roving under masked conditions leads to observations best described by 

informational rather than energetic masking. The lack of threshold elevation with the roving 

ML stimulus presentations in the current study is therefore somewhat surprising. Our 

unmasked detection condition may have contributed to the similarity in thresholds. Other 

potential mitigating factors include our delivery of relatively long tones (Ward 1991), 

relatively long inter-stimulus intervals (Berliner & Durlach 1973) and, perhaps most 

significantly, repeated tone presentations (Kidd et al. 2003; Burk & Wiley 2004; Leibold & 

Bonino 2009; Guest et al. 2010).
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Recall that the ML estimation procedure presented here uses no information about actual 

audiograms other than the expectation that only one threshold exists for each frequency and 

that the threshold is a continuous function of frequency. That potentially leaves room for 

additional modifications to improve the accuracy, precision, efficiency and robustness of the 

algorithm. One logical improvement to the accuracy of the algorithm is to further expand the 

frequency range from which the ML algorithm may sample. From Table 2 it is apparent that 

the greatest discrepancy between the HW and ML procedures occurred at 250 Hz and 8000 

Hz, and the least discrepancy occurred at 1 kHz and 2 kHz. This most likely means that ML 

estimation at the extremes of the sampled frequencies is adversely affected by edge effects. 

This limitation apparently exists despite the observation that many samples are taken near 

the edge frequencies (c.f., Figure 2). Correcting this limitation would undoubtedly increase 

overall accuracy of the procedure as well as efficiency and could be accomplished in several 

ways. The most obvious solution would be to sample frequencies during the ML procedure 

at frequencies lower than 250 Hz and higher than 8000 Hz. This and other improvements are 

currently being evaluated.

A second improvement to the efficiency and precision of ML estimates would be to use 

explicit tone detection priors to drive initial sampling rather than learning the shape of the 

tone detection function completely empirically by a random priming sequence (Özdamar et 

al. 1990). These priors can be represented in the mean and/or covariance function 

hyperparameters, and may be either specifically selected based upon the literature or 

empirically learned from real audiometric data. A second improvement may be to 

investigate different choices of cost function used to inform the selection of each sample 

point. Our technique currently employs uncertainty sampling, but other techniques from 

psychophysics or Bayesian active learning may prove better-suited for this application 

(King-Smith et al. 1994; Kontsevich & Tyler 1999; Roy & McCallum 2001; Settles 2009; 

Houlsby et al. 2011). Improving sampling consistency will also likely improve the accuracy 

of alternate classification strategies that might be developed in the future and thereby add to 

the overall value of the proposed procedure.

A final advantage of the ML-based algorithm is that it is more difficult for users to 

deliberately manipulate results than with traditional methods. The conventional HW 

algorithm is quite predictable, and any amount of familiarity with the procedure allows 

inclined individuals to manipulate their responses in order to obtain a deliberately inaccurate 

audiogram. On the other hand, manipulating responses to obtain a deliberately inaccurate 

audiogram is a much harder task using the ML estimation procedure because it does not 

follow the predictable structure inherent to HW. The ML audiogram samples widely across 

frequency and intensity from trial-to-trial, making it challenging for a listener to discern 

which responses would intentionally skew the test results in a particular direction. Attempts 

to thwart the test would also be readily discernible by the algorithm as response outliers, 

resulting in an inconclusive test and instruction to the operator to start over or pursue a 

different estimation strategy.
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Conclusion

We have developed an automated algorithm for conducting pure-tone air-conduction 

audiometry that selects appropriate test stimuli in real time based upon current estimate 

uncertainty. Our results indicate that the accuracy of this algorithm is comparable to other 

manual and automated methods while requiring fewer samples. At the same time, tone 

detection probabilities are determined for all frequencies and intensities. This algorithm also 

produces its own estimate of accuracy, which can be driven to arbitrarily high values simply 

by continuing to deliver more sample stimuli with the same criteria. The algorithm was not 

optimized specifically for audiogram estimation; therefore, much room for improvement 

remains possible for audiometry. Taken together, these advantages make this technique a 

compelling advance in pure-tone audiometry that can add immediate value to hearing 

diagnostic procedures upon its adoption.
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Figure 1. 
Illustration of the sampling algorithm used by the Gaussian process (GP) for machine 

learning (ML) audiogram estimation. (A) Posterior mean is computed by the GP using the 

sampled points. Red diamonds indicate the tone was inaudible; blue pluses, audible. (B) 

Posterior variance is computed by the GP using the sampled points, and the point of 

maximum variance is identified (purple star). (C) The point of maximal variance is queried 

for listener audibility (black arrow). Once it is determined that the listener did not hear this 

tone, the updated set of points is used by the GP to re-compute the posterior mean with a 

more elevated threshold near the frequency of that tone.
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Figure 2. 
Sample plots of left- and right-ear audiograms obtained and samples conducted for a 

representative listener (Listener 4) using the manual HW technique (A, D), the first run of 

the ML algorithm (B, E), and the second run of the ML algorithm (C, F). Marks represent 

the frequencies and intensities of the stimuli that were presented, with pluses denoting 

listener detections and diamonds denoting misses. The superimposed curves are the final 

audiogram estimates produced by each technique. Note that the small displacements along 
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the frequency axis in (A) and (B) only are to make repeat stimuli more visible and do not 

reflect actual deviations in the frequency of presented tones.
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Figure 3. 
Sample plots of ML audiogram results for (A) an ear with relatively normal hearing; (B) an 

ear with sloping high-frequency hearing loss; and (C) an ear with a no-response at 8000 Hz. 

“X” and “O” marks denote values estimated from the manual HW audiogram (connected by 

straight lines). The superimposed curves show the results from the automated ML 

audiogram.
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Figure 4. 
Cumulative agreement between automated ML and manual HW audiograms as a function of 

GP algorithm iteration. Mean absolute difference was calculated by obtaining the current 

ML estimate of the threshold audiogram at each iteration during one run, then calculating 

the absolute difference between that estimate and the HW threshold audiogram, averaged 

across all 6 audiogram frequencies. (A) and (B) show examples for two ears (Listener 4, the 

same listener as in Figure 2), and (C) shows this trend averaged across all runs where the 

ML audiograms terminated at 36 iterations (53 of 80 runs). Blank areas denote points at 

which the ML procedure did not produce a posterior mean with a clear boundary, so error 

could not be assessed (but in practice is very high). Gray shading on (C) indicates ±1 

standard deviation from the mean.
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Figure 5. 
Normalized posterior variance as a function of algorithm iteration. Normalized posterior 

variance was calculated by dividing the sum all values in the variance function at each 

iteration by the total size of the variance function matrix. (A) and (B) show examples for 

two ears (Listener 4, the same listener as in Figure 2), and (C) shows this trend averaged 

across all listeners whose ML audiograms terminated at 36 iterations. Gray shading on (C) 

indicates ±1 standard deviation from the mean.
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Figure 6. 
Data from Listener 17, who fell asleep while the ML audiogram estimation was underway. 

(A) The final ML audiogram from one ear, superimposed upon the HW audiogram obtained 

for the same ear (“X”). (B) Samples collected while conducting the ML audiogram. Note the 

inconsistency in responses, with detections and misses in very close proximity. (C) Plot of 

normalized posterior variance as a function of iteration for this listener. This listener reached 

the ceiling on the number of allowable iterations for this ear, 64. Unlike the variance trends 

in Figure 5, the variance in this ear actually begins to increase after approximately iteration 

15 and remains high even after 64 iterations.

Song et al. Page 23

Ear Hear. Author manuscript; available in PMC 2016 January 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Song et al. Page 24

Table 1

Total number of samples delivered by the HW and ML audiogram estimation procedures (both ears) for each 

listener, in decreasing order of the number of HW samples required. The minimum and maximum number of 

ML audiogram samples allowed for the automated technique are 72 and 128, respectively. Listener 17’s data 

are omitted because the listener fell asleep during part of the study.

Listener Designation # Samples (HW) # Samples (ML 1) # Samples (ML 2)

13 126 73 104

10 117 98 128

11 117 72 78

7 116 77 76

5 112 72 72

8 106 84 72

12 105 72 72

6 103 72 74

20 98 72 78

19 97 72 72

21 94 72 72

23 93 72 72

18 91 72 72

24 90 72 72

4 89 74 72

16 84 82 73

14 78 103 99

9 77 78 72

22 76 72 73

15 69 106 76

Mean 97.0 78.4 78.9

Standard deviation 15.8 11.0 14.6
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