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Abstract

The C. elegans cell lineage provides a unique opportunity to look at how cell lineage affects 

patterns of gene expression. We developed an automatic cell lineage analyzer that converts high-

resolution images of worms into a data table showing fluorescence expression with single cell 

resolution. We generated expression profiles of 93 genes in 363 specific cells from L1 stage larvae 

and found that cells with identical fates can be formed by different gene regulatory pathways. We 

used molecular signatures to find repeating cell fate modules within the cell lineage and to create a 

molecular differentiation map, which shows points in the cell lineage when developmental fates of 

daughter cells begin to diverge. These results demonstrate insights that become possible using 

computational approaches to analyze quantitative expression from many genes in parallel using a 

digital gene expression atlas.

Introduction

A powerful approach to dissect apart cellular phenotypes is to use molecular expression 

signatures. This is typically accomplished by using DNA microarrays to measure changes in 

expression of all or nearly all of the genes in the genome associated with an experiment or a 

condition. The combination of all of the expression changes in a cell generates a molecular 

phenotype for the state of the cell that has very high resolution. For cancer, expression 

signatures provide a powerful method to classify tumors and predict clinical outcomes (Potti 

and Nevins, 2008). For pharmacological drugs, one can generate a connectivity map 

showing molecular responses to different drugs (Lamb et al., 2006). For aging, molecular 
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signatures can inform about the physiological age of tissues, apart from their chronological 

age (Rodwell et al., 2004).

Since molecular signatures are typically generated using DNA microarrays, the resulting 

data are noisy and reveal average expression from the entire sample. Thus an attractive 

alternative is to use libraries of images of GFP reporters or RNA in situ hybridizations. 

Images of GFP reporter expression or RNA in situ hybridizations have very high resolution, 

showing differential expression in different tissues or cells within a sample(Lecuyer and 

Tomancak, 2008).

Of all of the GFP expression datasets, images for C. elegans are particularly appealing 

because one can identify expression in specific individual cells. C. elegans is nearly unique 

among model organisms in that it has an essentially invariant cell lineage that gives rise to 

558 cell nuclei in the newly-hatched larva and 959 somatic cell nuclei in the adult 

hermaphrodite (Kimble and Hirsh, 1979; Sulston and Horvitz, 1977; Sulston et al., 1983). 

For worms expressing a fluorescence reporter, one can identify each nucleus, measure levels 

of fluorescence expressed in that nucleus, and thus analyze gene expression patterns at the 

level of single cells.

However, a major limitation for all of the GFP reporter and RNA in situ expression data is 

that the images must be manually browsed. The images show general patterns of expression 

but do not reveal quantitative levels of expression. Thus, the GFP expression data are not 

suitable for computational analysis, which is necessary to analyze all of the genes in parallel 

or to extract molecular signatures. To go beyond manual browsing, a key step is to 

automatically extract quantitative expression data from high resolution images. This is 

analogous to converting images of DNA microarrays to data files showing expression of 

genes, except with single-cell resolution and more precise measurement of expression levels.

In Drosophila and zebrafish, digital atlases have been constructed that allow one to examine 

patterns of expression of multiple genes in a virtual embryo (Fowlkes et al., 2008; Keller et 

al., 2008). However, Drosophila and zebrafish do not have a fixed cell lineage, and hence it 

is not possible to precisely line up specific cells in different individuals as in C. elegans. In 

C. elegans, computational algorithms allow one to follow gene expression in the embryonic 

lineage from the one-celled zygote to the ~350-celled stage embryo (Murray et al., 2008).

In this work, we develop an automated method to extract quantitative expression data from 

single cells in the nematode C. elegans (Long et al., 2009). This approach combines the 

advantages of high-resolution confocal microscopy and the ability to computationally 

analyze the data similar to analysis of DNA micrarray data. This combined approach 

provides a powerful new way to investigate patterns of gene expression and molecular 

signatures of cell fates in C. elegans.
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Results

A gene expression database with single cell resolution

We developed an experimental pipeline to create a gene expression dataset using images of 

worms carrying fluorescence protein reporters as a proof-of-principle to demonstrate that 

important biological insights can be extracted from single cell gene expression data. To 

generate mCherry reporter constructs in a systematic way, the upstream regulatory region of 

a gene of interest was inserted into an expression vector using a library of cloned upstream 

regions (Dupuy et al., 2004). In C. elegans, upstream regions contain most of the regulatory 

information, and the promoter library has been previously shown to be sufficient to 

recapitulate patterns of gene expression (Dupuy et al., 2007; Dupuy et al., 2004). The 

expression vector contains mCherry fused to the coding region of histone H1, which 

produces a stable fluorescent protein localized to the nucleus. Transgenic C. elegans strains 

carrying integrated copies of the reporter construct were generated by biolistic 

transformation. To aid in identification of nuclei, we crossed in a GFP reporter that is 

expressed in the body wall muscle cells and the anal depressor muscle (from the myo-3 

promoter). Newly-hatched first larval stage worms (L1) were stained with DAPI and then 

worms were scanned by confocal microscopy in three fluorescence channels. The mCherry 

channel revealed expression from the regulatory region of interest, the GFP channel labeled 

body muscle and anal depressor muscle nuclei as landmarks, and the DAPI channel revealed 

all 558 nuclei (Figure 1A).

We used knowledge of the cell number, morphology of the cell nuclei and their relative 

position with respect to each other to develop an automatic method to first identify specific 

cells in confocal images of worms expressing a fluorescent reporter, and then measure 

expression in specific cell nuclei. This approach captures high resolution expression 

information available from confocal images of worms, and converts the information into 

quantitative expression data suitable for computational analysis similar to output from DNA 

microarray experiments. We first computationally straightened the three-dimensional worm 

images, and then registered them by aligning each image into a canonical rod shape that has 

the same precise orientation and size (Figure 1B)(Peng et al., 2008). Next, we developed 

segmentation software to automatically identify nuclei as bright objects in the foreground of 

dark, surrounding cytoplasm (Figure 1C). Third, we automatically named the nuclei in the 

confocal image stacks. GFP-labeling of the 81 body wall muscle cells and the anal depressor 

muscle cell from the myo-3 reporter aided us in identifying surrounding cell nuclei. 

Currently, the software can recognize and name 357 nuclei with 86% accuracy (Long et al., 

2009). In addition to these 357 nuclei, an additional six nuclei were named manually. We 

have thus annotated 363 of the 558 nuclei in newly hatched L1 larvae (64 %). These nuclei 

include all of the cell nuclei in the trunk, tail and pharynx, representing nearly all tissue 

types in the worm. The only region that has not been well-annotated is the nerve ring, which 

contains nuclei that are clustered too tightly to be reliably recognized at this time. Finally, 

we extracted values for mCherry expression for each identified nucleus (see Experimental 

Procedures).
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Each of the steps in the pipeline can be scaled up, enabling one to generate much larger gene 

expression datasets in the future. The expression dataset currently contains 324 images from 

93 reporter genes, including 60 that encode transcription factors (Supplemental Table 1). To 

control for differences in fluorescence intensity due to sample thickness, we normalized 

mCherry expression to DAPI fluorescence because the DNA content of every nucleus is 

constant. By plotting the expression values in a heat map, we converted the complex 

expression information embedded in fluorescence images into a form that is suitable for 

computational analysis (Figure 1D; Fig. 2). Each row in these expression profiles shows the 

pattern of expression of a mCherry reporter gene in a highly quantitative manner with single 

cell resolution. The full data set can be queried using wormDB from the supplemental 

website (http://cmgm.stanford.edu/~kimlab/public_html/Liuetal/index.html) and 

downloaded from Supplemental Tables 2 – 4.

We performed several tests to evaluate the reproducibility of our system to measure 

mCherry expression levels. First, we re-annotated three images to determine the 

reproducibility of the annotation procedure, and found that 98% of the nuclei were assigned 

the same cell name. Second, we found that expression values from different images of the 

same worm are highly correlated (correlation efficient R > 0.99), indicating that the 

technical reproducibility of our procedure is very high. Third, we examined the biological 

variability of mCherry gene expression between individual worms from the same strain. For 

most strains, we found that different individual worms had correlation coefficients for 

mCherry expression of R > 0.80 (Supplemental Figure 1A), indicating both that the 

annotation of cell nuclei is reliable and that the mCherry expression is reproducible. Finally, 

to test whether the site of integration has a large effect on expression, we generated different 

transgenic lines using the same mCherry reporter construct. We generated multiple lines for 

12 mCherry reporter constructs, and found that the level of expression could be different 

between different transgenic lines but that the correlation in mCherry expression was largely 

similar whether the worms were derived from the same strain or from different strains 

expressing the same construct (Supplemental Figure 1B). This result indicates that the site of 

integration of the mCherry reporter in different transgenic lines affects the level but does not 

dramatically affect the pattern of mCherry expression.

The expression patterns for 53 of the 93 genes in our database have been described 

previously (Supplemental Table 1). For 47 of these, our results match previous results. 

Overall, the automated single-cell lineage expression data shows a close match to previous 

expression data, but has much higher resolution and accuracy than was previously possible 

by subjectively viewing each image one at a time. The expression database also includes 

data for 40 genes whose expression had not been previously analyzed at the L1 stage.

Correlation of gene expression with cell fate and cell lineage

We analyzed the pattern of expression of every gene to determine the relative effect of cell 

fate and cell lineage. Cell fate has a strong influence on gene expression as highly-

differentiated cells must express specific genes to carry out terminal differentiation 

functions. Cell lineage could play a strong role in gene expression for a number of reasons, 

including stable segregation of lineage factors or stable transmission of chromatin structure. 
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We compared the influence of cell lineage and cell fate on the expression pattern for each of 

the 93 reporter genes in this study. Specifically, for each gene, we examined whether it was 

expressed in cells that had the same fate (i.e. expressed in all of the body wall muscle cells) 

or in cells that were related by lineage (i.e. progeny of the blastomere AB.a).

For the majority of cases, gene expression correlated with cell fate rather than cell lineage 

(Figure 2). For example, ten genes are expressed mainly in the 81 body wall muscle cell 

nuclei, which are derived from four blastomere cells: AB, MS, C and D. In addition, we 

observed tissue-specific expression for genes expressed in the hypodermis, neurons, 

pharyngeal muscle, blast cells and the intestine (Figure 2). Each of these tissues is derived 

from multiple points in the cell lineage, except for the intestine, which is derived entirely 

from the E blastomere.

We found examples in which gene expression followed cell lineage more than cell fate. 

Body wall muscle cells are derived from the AB (1 cell), MS (28 cells), C (32 cells) and D 

(20 cells) lineages. The muscle cells derived from MS and D are interspersed with each 

other in body muscle bundles and are thought to be physiologically indistinct. We found 18 

genes that show different expression in body wall muscle cells depending on the cell lineage 

(Supplemental Figure 2A). Fifteen of these encode transcription factors, many of which are 

known to be important for muscle cell fate. For pal-1, previous experiments have shown that 

this gene is important for generating body wall muscle cells derived from the C lineage but 

not from the MS lineage (Edgar et al., 2001).

We observed a surprising pattern of differential gene expression for different nuclei within 

the same cell syncytium (Figure 3A). Specifically, hypodermal 7 is a syncytium containing 

23 nuclei that comprises a major section of the skin. Twelve hyp7 nuclei are derived from 

the C lineage and eleven are derived from the AB lineage. The molecular signature for 

nuclei derived from the C lineage is significantly different from that of nuclei derived from 

the AB lineage. sdz-28, elt-5, ZK185.1, nhr-2, his-72, ceh-39 and C08B11.3 are expressed in 

hyp7 nuclei derived from AB whereas pal-1 is expressed in hyp7 nuclei derived from C. 

Since the hyp7 syncytium is formed by cell fusion, one possibility is that these genes might 

only be differentially expressed before cell fusion and might be evenly expressed once the 

cells have fused, such that mCherry reporter protein levels may be differentially localized 

immediately after cell fusion but would equalize rapidly within the syncytium after fusion. 

We ruled out this possibility for C08B11.3, by showing that differential expression of 

C08B11.3:mCherry was stable for at least 8 hours, until the end of the L1 larval stage and 

that new expression appears following photobleaching (Supplemental Figure 3). Thus, 

nuclei in the same syncytial cell can show large differences in gene expression pattern, 

indicating that there can be different transcriptional control in different nuclei and also that 

mRNAs expressed from one nucleus give rise to proteins that stay localized to the same 

nucleus.

We next performed a genetic experiment to show differential transcriptional control of AB- 

versus C-derived nuclei in the hyp7 syncytium. hyp7 cell nuclei fuse together to form one 

syncytium late in embryogenesis, and then begin to express collagen genes such as col-93. 

We used RNAi to reduce activity of the transcription factor gene C08B11.3, which is 
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expressed in nuclei from AB- but not C-derived blastomeres, and then looked at the fates of 

the AB- versus C-derived nuclei in hyp7. We scored two AB-derived and two C-derived 

nuclei in hyp7, and found that C08B11.3(RNAi) affected the fates of the AB- but not C-

derived nuclei. Specifically, the AB-derived nuclei did not express the col-93 collagen 

reporter in 7 of 51 cases examined (14%). In some cases, the AB-derived nuclei fused with 

the hypodermal syncytium as in wild-type, but in most cases these hypodermal nuclei did 

not fuse with the rest of the syncytium. The C-derived nuclei appeared normal in all 

C08B11.3(RNAi) animals (Figure 3B). Together with our information about cell-lineage 

restricted expression, these observations suggest that different transcriptional networks can 

be used to produce cells with the same fate.

Molecular signatures for cell fates

The combined expression profiles of the 93 reporter genes in each cell is a molecular 

signature for that cell, and can be used as a quantitative measure to determine whether cells 

have different, related or identical cell fates. We first clustered the cells into groups in a two-

dimensional scatter plot according to their correlation in gene expression (Figure 4). In this 

scatter plot, the distance between two cells indicates similarity in molecular signatures. Cells 

that are placed close to each other express the 93 reporter genes at similar levels and cells 

that are far from each other have different molecular signatures. We find that cell clusters 

are consistent with known fates – intestinal nuclei cluster with other intestinal nuclei, as do 

nuclei for muscles, neurons, the hypodermis etc.

The map of molecular signatures shows an example of a spatial domain in gene expression 

for the pharynx. The pharynx is isolated from the rest of the worm anatomy by a layer of 

basal lamina, and includes many distinct cell types, such as muscle, neural and epithelial 

cells. The molecular signature map shows that pharyngeal muscle cells are clustered more 

closely to pharyngeal neural or epithelial cells than they are to body wall muscle cells. 

Similarly, pharyngeal epithelial and neuronal cells are clustered more tightly with other 

pharyngeal cells than to other epithelial or neuronal cells, respectively. These results 

indicate an underlying similarity in expression within the pharyngeal spatial domain.

The map of molecular signatures shows which tissues are relatively homogenous and which 

have diverse types of cells within that tissue. Cells from homogeneous tissues have much 

more similar correlations in gene expression to each other than do cell nuclei from 

heterogeneous tissues. For example, all 20 intestinal nuclei are clustered tightly on the 

molecular signature map indicating that these cells have very similar gene expression 

signatures and are nearly homogeneous (Figure 5). Neuronal cell nuclei are not tightly 

clustered on the two dimensional map of cell signatures, indicating diverse cellular functions 

within this tissue type. Body wall muscle and blast cells also show high levels of diversity in 

molecular signatures. Thus, molecular signatures obtained from the high resolution 

expression database not only cluster cells according to tissue type, but can distinguish 

homogeneous from heterogeneous tissues.

In some cases, we found interesting trends that could explain some of the differences in gene 

expression between different cells in the same tissue, such as differences in expression 

between different body wall muscle cells. The anterior body wall muscle cells are larger and 
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form different neuronal connections than posterior body wall muscle cells (Bird and Bird, 

1991; White et al., 1986). We found that there is an anterior-posterior gradient of gene 

expression in these cells. Among 68 genes that are significantly expressed in the body wall 

muscle, 13 are expressed at higher levels in anterior body wall muscle cells and 5 are 

expressed at higher levels in posterior cells (Supplemental Figure 2B).

A map for molecular differentiation during embryonic development

We have created a molecular differentiation map based solely on molecular signatures, in 

which we identify regions of the cell lineage where developmental fates begin to diverge. 

Newly-hatched worms have 558 cells resulting from 670 cell divisions from the one-celled 

zygote (Sulston et al., 1983). For each gene, we used the worm lineage and the observed 

expression levels at the 558 cell stage to predict when that gene became committed to be 

expressed in the embryonic lineage. We then searched for embryonic cell divisions in which 

daughter cells become committed to express a different battery of genes, thereby identifying 

cell divisions that are asymmetric and revealing when developmental potentials begin to 

diverge in the embryonic lineage.

We approached the problem of predicting gene commitment by adapting the parsimony 

algorithm used in molecular evolution, which determines ancestral sequences along a known 

phylogeny tree. Our algorithm assigns expression values to embryonic cells that minimize 

the changes in commitment needed to explain the expression pattern observed in the L1 

worm from the known cell lineage. To do this, the gene commitment algorithm builds a 

graph based on the known cell lineage, where nodes signify cells that are connected by 

directed edges to their daughter cells. The terminal nodes are the 363 cells with observed 

expression values for 93 genes in the L1 worm. Our goal is to assign commitment values to 

every embryonic cell indicating how committed the cell is to expression of each gene. The 

algorithm assigns expression values to embryonic cells that minimize the changes in 

commitment to gene expression required to produce the observed expression profile in the 

L1 worm (see Experimental Procedures).

The embryonic expression pattern is known in detail for nine of the genes from this study 

(Supplemental Figure 4). We compared the known embryonic expression to predictions 

from the gene commitment algorithm, and found a close match for seven genes. For cnd-1, 

there is transient expression in some embryonic lineages that was missed by the gene 

commitment algorithm (Supplemental Figure 4D). For lin-39, the algorithm predicted 

commitment before protein expression was directly observed (Supplemental Figure 4G). 

This time delay could be caused by a lag involving setting up the regulatory interactions that 

turn on expression, transcription of the gene, translation of the message, and accumulation 

of protein. For each of the remaining 84 reporter genes, we generated models predicting 

commitment to express a particular gene in the cell lineage (Supplemental Figure 5).

For each cell, we combined the results from all 93 genes to generate a molecular signature of 

that cell (Experimental Procedures). We used this molecular signature as a quantitative 

measure to compare two cells to each other and to determine similarities and differences in 

their fates. We first used this approach to generate a molecular differentiation map, which 

shows points in the cell lineage when cell divisions generate daughter cells that are different.
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For the 143 terminal cell divisions that we observed, we directly compared gene expression 

patterns of the 93 reporter genes in the daughter cells. Daughter cells that have different 

molecular signatures indicate cell divisions that are asymmetric. To find a cutoff that can 

distinguish symmetric from asymmetric cell divisions, we permuted the data such that every 

cell division is symmetric. Using a false discovery rate of 1%, we found 54 asymmetric cell 

divisions. Of these cell divisions, 38 were previously known to be asymmetric and 16 

asymmetric divisions were previously unknown (Figure 5A; Supplemental Table 7).

For cell divisions that occur earlier in the embryo, we used the parsimony algorithm to 

predict whether sister cells (or cells separated by a common ancestor) are committed to 

express a similar set of genes. The amount of developmental change at each cell division is 

shown by the thickness of the line in Figure 5. Thick lines indicate cell divisions that 

generate daughters that are different from each other whereas thin lines indicate symmetric 

cell divisions. We can thus overlay developmental activity onto the cell lineage, and mark 

key points for cell differentiation during development, either due to cell-cell signaling or to 

asymmetric cell division.

One example of a highly asymmetric cell division is the division of EMS to generate E 

(which produces only intestinal cells) and MS (which produces pharyngeal and body wall 

muscle cells) daughters (Sulston et al., 1983)(Figure 5B). The E blastomere becomes 

different from the MS blastomere due to a Wnt signal from the P2 cell, which determines 

gut cell fate by inducing the sequential activation of the end-1, end-3, elt-2 and elt-7 GATA 

transcription factors (Maduro, 2006). By parsimony, 54 genes are predicted to be committed 

differently in the E versus MS daughter cells.

The division of MS.a and MS.p are also asymmetric, producing one daughter that generates 

pharyngeal cells (MS.aa and MS.pa) and another that produces body wall muscle cells 

(MS.ap and MS.pp), due to interaction with the AB.a cell (Schnabel, 1994). The molecular 

differentiation map shows that this cell division is highly asymmetric, as 38 and 35 genes 

are predicted to be differentially committed in the daughter cells of MS.a and MS.p, 

respectively.

C.a and C.p undergo an asymmetric cell division, as one daughter generates muscle cells 

(C.ap and C.pp) whereas the other daughter makes mostly hypodermal cell nuclei (C.aa and 

C.pa,). In the molecular differentiation map, the daughter cells of C.a and C.p differ in their 

developmental commitment for 32 and 51 genes respectively.

In summary, the molecular differentiation map correctly annotates cell divisions that were 

previously known to be asymmetric, but also predicts many new cases of asymmetric cell 

divisions that were previously unknown.

Developmental Clones and Sublineages

In order to systematically search for repeating use of developmental patterns in the cell 

lineage, we generated a heat map comparing the molecular signatures of each of the 363 

cells to each other (Figure 6A). In this heat map, the cells are aligned according to their 
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lineage along the x- and y-axes. We searched the heat map for two types of patterns: 

developmental clones and sublineages.

A developmental clone is a progenitor cell whose progeny have nearly identical cell fates. In 

the heat map, developmental clones appear as a discrete box along the diagonal, in which the 

molecular signature of every cell within the box is similar to each other. The clearest 

example of a developmental clone is the E cell, which is known to generate 20 intestinal 

cells. In the cell fate heat map, the 20 intestinal cells form a box along the diagonal showing 

that each cell in the E cell clone has a very similar molecular signature (Figure 6A). In 

addition to the E cell, other examples of developmental clones include: C.pa (generates 8 

hypodermal cells), C.ap/C.pp (each generates 16 body wall muscle cells) and D (generates 

20 body wall muscle cells).

A sublineage is a set of cells that undergoes the same pattern of cell divisions. In the cell fate 

heat map, sublineages appear as diagonal lines that are offset from the main diagonal, such 

as the diagonals generated by AB.pl and AB.pr. The length of the diagonal line includes all 

of the progeny of AB.pl and AB.pr, indicating that each homologous cell in the AB.pl and 

AB.pr lineage is equivalent to each other (Figure 6B). MS.a and MS.p also share a common 

sublineage.

C.a and C.p are a combination of a sublineage and a developmental clone, forming an off-

center diagonal indicating that each undergoes a similar sublineage (Figure 6C). C.ap and 

C.pp are developmental clones as each generates 16 body wall muscle cells. C.pa and C.aaa 

are developmental clones generating 8 and 4 hypodermal nuclei, respectively.

In summary, the developmental clones and sublineages shown in Figure 6 extend earlier 

classic work that originally defined these lineage patterns using observation by Nomarski 

microscopy (Sulston and Horvitz, 1977; Sulston et al., 1983). With our approach, 

similarities and differences in cell lineages are revealed by quantitative comparisons of 

molecular signatures of cells.

Discussion

We developed an automated method to quantify expression of 93 fluorescent reporter 

proteins in 363 specific cells from individual worms. For each gene, we analyzed its 

expression pattern to assess the relative effects of cell fate (defined as the physiological and 

functional capabilities of a cell, such as muscle, neuronal or skin cells) and cell lineage 

(defined by the pattern of cell divisions that generated the cell, such as AB.pla). In C. 

elegans, many cell fates are derived from cells with similar lineages, such as the intestinal 

cells that are all derived from the E blastomere. For genes expressed in these cells, it is not 

possible to separate the effects of cell fate and cell lineage on gene expression. However, 

some types of cells, such as neurons and epithelial cells, are derived from distinct points in 

the cell lineage. As expected, expression of most genes was strongly linked to cell fate, as 

they were expressed in similar types of cells that were generated in distinct parts of the 

lineage.
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In several cases, we found genes whose expression was linked to cell lineage but not cell 

fate, which is surprising because cells previously thought to have identical cell fates express 

different sets of genes depending on their cell lineage history. Previous work has also 

described some genes whose expression is linked to cell lineage (Baugh et al., 2005; 

Bowerman et al., 1997; Broitman-Maduro et al., 2006; Edgar et al., 2001; Good et al., 2004; 

Hunter and Kenyon, 1996). This connection between expression and cell lineage could only 

be found in model organisms such as C. elegans, where knowledge of the complete cell 

lineage allows one to keep track of the origin of cells that share the same cell fate.

Molecular Signatures of Cell Fate

For each of the 363 cells scored in this study, we used the expression levels of the 93 

reporter genes to generate a molecular signature of that cell’s fate. We used the molecular 

signatures in two ways – to find parts of the cell lineage when cell fates begin to diverge and 

to find repeating cell fate modules expressed from different parts of the cell lineage.

The molecular signatures were used to create a molecular differentiation map that shows 

when cell divisions generate daughter cells that have different commitments to express the 

93 reporter genes. The molecular differentiation map closely matches results obtained by 

classical development studies, except that it is based on molecular signatures that 

graphically depicts when and where major changes in developmental commitment occur. 

These changes in developmental commitment generate cell asymmetry in the C. elegans 

lineage, and arise by one of two general mechanisms: asymmetric segregation of 

determinants during a cell division (an intrinsic mechanism) or extracellular signaling cues 

that affect one daughter differently than the other (an extrinsic mechanism)(Horvitz and 

Herskowitz, 1992).

Classical studies looking at the generation of cell fates from the C. elegans cell lineage 

defined several types of lineage patterns (Sulston and Horvitz, 1977; Sulston et al., 1983). 

One type is a developmental clone of cells, in which all of the progeny of a single progenitor 

cell adopt a single cell fate. Another pattern is a sublineage, in which cells distantly related 

by lineage adopt similar cell fates. We systematically compared the molecular signature of 

each cell to all other cells in order to see how cells with similar molecular signatures were 

generated in the worm cell lineage. We found clear examples of developmental clones (such 

as the E blastomere) and of sublineages (such as AB.pl and AB.pr). By defining clones and 

sublineages, the generation of 363 individual cells can be broken down to simpler repeating 

patterns, likely representing developmental modules that are re-used to generate the same 

cell fate in multiple instances. For example, a single gene regulatory network may be used 

repeatedly to generate all cells in a developmental clone or homologous cells in a 

sublineage.

Quantitative analysis of gene expression images

Previously, a simple method of extracting quantitative expression data has been developed 

by passing worms through a fluorescence activated cell sorter and measuring fluorescence 

intensity along their anterior-posterior axis (Dupuy et al., 2007). This method is fast and 

allows one to measure expression from a large number of worms, but it contains very little 
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information about GFP expression in specific tissues. Recently, a computational method has 

been developed to analyze movies of GFP expressing worms during embryonic 

development, from the one-celled zygote to the ~350 celled stage embryo (Murray et al., 

2008). Similar to our automatic cell lineage analyzer, this approach generates quantitative 

expression data at the level of single cells. A fundamental difference in the two approaches 

is that nuclei in the embryo are annotated based on their cell division pattern from 

continuous observation, whereas nuclei in the L1 larvae are named based on their 

appearance and position relative to each other in a single confocal image. Another difference 

is that terminal fates such as neuronal, muscle and intestinal fates are only established at 

after the majority of the embryonic cell divisions are complete, not at the 350-celled stage. 

Thus, tissue- and cell type-specific patterns of gene expression can be studied in the newly 

hatched worm but not in the early embryo. Beyond C. elegans, computational methods have 

been developed for analysis of expression from Drosophila melanogaster and Danio rerio 

(Fowlkes et al., 2008; Keller et al., 2008).

Gene expression database at single cell resolution

The complete cell lineage for C. elegans is known, providing a unique opportunity to 

analyze patterns of gene expression at the level of specific cells. By developing an automatic 

cell lineage analyzer, we extracted quantitative data from expression images showing 

expression of 93 genes in 363 specific cells. The data can be viewed using the wormDB link 

from the supplemental website (http://cmgm.stanford.edu/~kimlab/public_html/Liuetal/

index.html) and downloaded from Supplemental Tables 2–4.

This expression database could be greatly expanded in the future, which would greatly 

increase the resolution of this digital representation of worm development. Improvements in 

the automatic cell lineage analyzer will enable one to identify a larger number of cells and to 

analyze genes at a much faster rate. The automatic cell lineage analyzer can be modified so 

that it works on the other three larval stages as well as the adult, and confocal images of 

reporter genes can be generated from mutant worms or from worms grown under diverse 

growth conditions. Obtaining high resolution expression data for each cell throughout 

development would provide a unique molecular framework for understanding gene 

regulation circuitry and cell fate patterning.

Experimental Procedures

Strain construction

pJIM20 was used for the promoter∷reporter fusions, which contains a his-24∷mCherry 

reporter and unc-119 selection marker (Murray et al., 2008). Gene expression is driven by 

the promoter from the gene of interest. The upstream regions were inserted into pJIM20 

either by Gateway recombination using promoter constructs from the promoterome (Dupuy 

et al., 2004) or from DNA fragments generated by PCR from genomic DNA.

DNA constructs were introduced into unc-119(e3) worms by microparticle bombardment 

(Praitis et al., 2001), and then crossed with a strain containing a Pmyo-3∷GFP reporter (Fire 

et al., 1998). Detailed information on promoters and strains is in Supplemental Table 1.
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Imaging protocol

To obtain worms early in the L1 stage, eggs were isolated and those that hatched within a 3 

hour time window were used for image analysis. Although many genes show stable 

expression during this three hour time window, some genes (such as sod-3) show dynamic 

expression at this time in which case variability in expression could be caused by differences 

in developmental stage. L1 larvae were fixed and DAPI-stained as described in (Ruvkun and 

Giusto, 1989) and then mounted in 60% glycerol.

Images were obtained using a Leica SP2 AOBS confocal microscope. The pixel size was 

0.116 µm in the x–y plane and 0.122 µm in the z direction.

Automatic cell lineage analysis

The 3D image stacks of worms were straightened computationally along the anterior-

posterior axis (Peng et al., 2008). The cell nuclei in each image stack was segmented 

automatically (Long et al., 2009), and then manually edited using the VANO interactive 

interface (Peng et al., 2009). The identities of 357 nuclei were automatically identified using 

the 82 GFP-labeled nuclei as landmarks with 86% accuracy.

Manual editing of nuclei

The named nuclei were manually corrected using VANO, and an additional six nuclei were 

manually annotated according to Sulston et al., 1977 and www.wormatlas.org. Several 

neighboring nuclei in hyp 7 (ABpraapppp, ABarppaapa and ABarpaappp) have variable 

locations relative to each other, and could not be reliably identified. Furthermore, some pairs 

of nuclei in the midline have ambiguous cell lineage identities. For example, for hyp3 

nuclei, one cell nucleus (AB.plaapaaaa) migrates into the midline from the left and another 

cell nucleus (AB.praapaaaa) migrates into the midline from the right. For convenience, we 

represent the anterior nucleus of a pair by (lr), while the posterior one by (rl). We did this 

similarly for other pairs of nuclei with ambiguous lineage identities. For the pharyngeal 

muscles, the anterior nucleus is denoted (ap) and the posterior one is denoted (pa).

Many mCherry reporters are expressed in a small fraction of nuclei. For 72 images, we only 

identified those nuclei that show mCherry expression to expedite the annotation process. 

However, for each reporter, at least one image is fully annotated for all 363 nuclei.

Gene expression measurement

For every cell nucleus, the automatic cell lineage annotator measures the total volume of the 

nucleus, the total mCherry intensity summed over every voxel within the nucleus, and the 

total DAPI intensity summed over every voxel in the nucleus. The raw mCherry values were 

adjusted to account for background fluorescence and for loss of intensity due to distance of 

the focal plane from the objective.

To measure background mCherry fluorescence, 10 pseudo-nuclei of equal size were drawn 

in the digestive tract of each worm. The background mCherry was measured in each false 

nucleus, and then the average fluorescence in the mCherry channel of all ten false nuclei 

was calculated. The density of the background mCherry is the average background 
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fluorescence in the mCherry channel divided by the average size of the pseudo-nuclei. To 

find the amount of background fluorescence for each nucleus, the background mCherry 

density is multiplied by the size of the cell nucleus. To find the adjusted level of mCherry 

for each nucleus, the background mCherry level was subtracted from the raw mCherry level. 

A similar approach was used to calculate the adjusted DAPI levels.

To account for effects on mCherry fluorescence caused by different depths in the confocal 

image stack, DAPI fluorescence was used as a normalization control because all nuclei in 

the newly-hatched worm have the same DNA content. We calculated a normalized DAPI 

fluorescence level for each nucleus by dividing the adjusted DAPI fluorescence level of each 

nucleus by the median DAPI fluorescence level of all nuclei in the worm. We then 

calculated the normalized mCherry level for each nucleus by dividing its adjusted mCherry 

level by its normalized DAPI level. The normalized mCherry level is the level of 

fluorescence in a nucleus after background fluorescence has been subtracted and after 

correcting for variable distances on the z-axis. If the normalized level is negative, we used 1 

instead.

Multiple worms were imaged for each mCherry reporter, and twelve reporters were used to 

generate multiple transgenic lines. To show the average level of gene expression in each 

nucleus, we used the median normalized mCherry expression value from all images.

RNAi

dsRNA of C08B11.3 was induced in E. coli with 100 µl of 0.1 M IPTG. Worms at the L4 

larvae stage were added to the plates, incubated 2 days and L1 progeny larvae were scored. 

ajm-1∷GFP is described in (Mohler et al., 1998).

Commitment Algorithm

The cell lineage was used to construct a graph of nodes and directed edges, where nodes 

represent cells that are connected by directed edges from parent, u, to daughter cell, v., The 

cell lineage was modified so that the tree consisted of only annotated cells and their common 

ancestral cells (Supplemental Experimental Procedures).

Using this fixed graph we built a set of equations for a linear program to assign expression 

values to every remaining node. For every edge pair consisting of the source parent node u, 

and the target child node, v, we define the constraint

where xu and xv represent the expression value at parent u and child v respectively, iuv is the 

increase in expression between parent and child, duv the decrease.

To allow flexibility in scoring penalties for increases and decreases in gene expression, we 

create constants Ci and Cd respectively which are able to affect the penalties for each type of 

change. We wish to minimize the amount of change between parent and daughter cells by 

minimizing the expression
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Since these constraints can yield multiple optimal solutions, we use the L2-norm to find the 

unique solution, which is the sample mean of all solutions. Therefore, we use a quadratic 

program solver and solve the minimization problem

where ξ is a small constant we set to 10−14. This constant, ξ, is set to be arbitrarily small to 

ensure the scoring function still primarily minimizes the linear sum of changes. The small 

constant is included to add an additional, minimal, penalty to find the sample mean. We also 

chose to set the constants Ci and Cd to 1. To determine whether our results would be 

affected if we used another scoring function, we analyzed the data using sum of squares and 

obtained the same general results, indicating that the analysis is robust to type of scoring 

system used (Supplemental Experimental Procedures). To determine whether expression in 

the un-annotated cells have a strong effect, we analyzed the data by assigning either a 

minimum or a maximum expression level to each un-annotated cell. We re-derived the 

molecular differentiation map and found relatively little effect. As expected, regions of the 

lineage with few un-annotated cells (e.g. P1 descendants) showed essentially no effect and 

regions with a greater number of un-annotated cells (AB descendants) showed a larger effect 

(Supplemental Experimental Procedures).

Molecular differentiation map

The results from the commitment algorithm were summed to determine the total amount of 

asymmetry at each cell division. For every non-leaf node included in the above described 

graph, P, that has two daughter cells u and v, then the asymmetry, apg, is defined as

for a given gene, g. Therefore, the total asymmetry, ap,is then set to

for the cell division at a given node, P, where µpg is the average of the commitment 

(calculated as described above) for the two daughters. The factor of 500 represents 

fluorescence noise.
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Molecular Signature Heat Map

Pairwise asymmetry is computed between every pair of cells in the L1. For every cell pair (i, 

j), where i ≠ j, the absolute difference between the observed expression values for those cells 

is computed

where oig is the observed expression value for gene g in cell i. As with the molecular 

differentiation map, we divide this value by the average observed expression value of this 

pair of cells, µij, and the baseline noise established at 500 units. By summing over all genes, 

we get the resulting asymmetry for this pair of L1 cells

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Generation of cell lineage expression profiles. A. Three dimensional image of a worm 

expressing mCherry from a promoter of interest, GFP in muscle cells from the myo-3 

promoter, and stained with DAPI. B. The confocal image is computationally straightened 

and set to a standard three dimensional size. C. Nuclei stained with DAPI are automatically 

identified (Peng et al., 2009). Nuclei were labeled by pseudocolors for visualization. D. 

Expression of the mCherry reporter in each of the 363 identified nuclei is calculated and 

displayed as a heat map.
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Figure 2. 
A profile of gene expression at single cell resolution. Shown is the mCherry expression level 

for 93 reporter genes in 363 cells (out of 558 total, 64%) in newly-hatched L1 larvae. We 

adjusted the gene expression level by calculating (gene expression level + 500)/500. The 

scale bar shows log2(adjusted gene expression level). Genes were clustered according to 

their expression profile. Cells were manually arranged according to their tissue types and 

anterior-posterior order. Bold indicates genes that have been previously analyzed for 

patterns of gene expression (Supplemental Table 1). Red indicates genes that are expressed 
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mainly in the body wall muscle cells. Underline indicates cell lineage specific genes that are 

discussed in text. Data for single cell gene expression can be found in Supplemental Tables 

2–4. b.w.m.: body wall muscle; blast: blast cells; epi.: epithelial cells; hyp.: hypodermal 

cells; int.; intestine cells; neu.: neurons; ph. m.: pharyngeal muscle.
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Figure 3. 
Cell lineage dependent gene expression among nuclei in the hyp7 syncytium. A. Genes are 

differentially expressed between AB-derived and C-derived nuclei (p< 10−5, t-test). Color 

indicates level of expression. Gene expression levels were normalized for each gene so that 

the minimal and maximal expression values are 0 and 1 for each gene. Expression levels in 

these nuclei and p-values for all genes are in Supplemental Table 5A. B. Different 

transcriptional control of AB- versus C-derived nuclei in the hyp7 syncytium. Shown are the 

tail areas of L1 stage worms expressing a col-93:mCherry reporter (expressed in 
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hypodermal cells), ajm-1:GFP, (a hypodermal cell boundary marker) and stained with 

DAPI. The top and middle images show C08B11.3(RNAi) animals in which the two AB-

derived nuclei do not express col-93:mCherry. In most cases, the AB-derived nuclei have 

not fused with the syncytium (top) but sometimes they fuse (middle). The bottom image 

shows a control with normal expression of col-93:mCherry in the hyp7 nuclei and cell 

fusion . arrow head: AB-derived hyp7 nuclei; arrow: C-derived hyp7 nucleus.
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Figure 4. 
Clustering diagram of 363 cells according to their similarity of gene expression profiles. The 

terrain map of nuclei was generated by Genesis(Sturn et al., 2002). Colors indicate different 

tissue types. Distance between cells in the x–y plane indicate levels of molecular similarity, 

such that cells with similar gene expression patterns are placed close to each other and cells 

with different patterns are placed far apart. b. c.: other body cells; b. neur.: body neurons; 

b.w.m.: body wall muscle; blast: blast cells; hyp: hypodermal cells; int.: intestine cells; ph. 
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c.: other pharyngeal cells; ph.m.: pharyngeal muscle; ph. neur.: pharyngeal neurons; ph. rec.: 

pharyngeal epithelial cells; re. epi.: rectal epithelial cells.
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Fig. 5. 
Molecular differentiation map for the C. elegans cell lineage. A. Each cell in each 

bifurcation in the tree (corresponding to one or more cell divisions) is compared to its sister 

cell to determine whether they have similar or different gene expression states. Line 

thickness indicates degree of dissimilarity between these cells. The modified cell lineage is 

displayed. Dotted lines show the portions of the complete cell lineage that were unscored. 

The solid lines represent the modified lineage used for the analysis (Supplemental 

Experimental Procedures). Asterisks denote 16 new asymmetric terminal cell divisions. B. 

Expanded view of the P1 lineage, showing the fates of cells. Specific cells discussed in the 

text are shown. Colored bars represent tissue types of terminal cell nodes in the cell lineage 

tree.
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Fig. 6. 
Developmental clones and sublineages in the C. elegans lineage. (A) Cells are aligned 

according to their lineage along the x- and y-axes. The similarity of a pair of cells is a 

function of the activity score using the expression profile of the 93 reporter genes (sij 

defined in the Experimental Procedures). The lineage of the first several cell divisions is 

shown. Red boxes represent clones of cells of similar cell fate. Blue boxes represent 
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developmental sublineages. Omitted cells are excluded from the map. (B) AB.pl and AB.pr 

share a common sublineage. (C) Developmental clones and sublineages from C.a and C.p.
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