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Abstract Various bariatric surgical procedures are effective
at improving health in patients with obesity associated co-
morbidities, but the aim of this review is to specifically de-
scribe the mechanisms through which Roux-en-Y gastric by-
pass (RYGB) surgery enables weight loss for obese patients
using observations from both human and animal studies. Per-
haps most but not all clinicians would agree that the beneficial
effects outweigh the harm of RYGB; however, the mecha-
nisms for both the beneficial and deleterious (for example
postprandial hypoglycaemia, vitamin deficiency and bone
loss) effects are ill understood. The exaggerated release of
the satiety gut hormones, such as GLP-1 and PYY, with their
central and peripheral effects on food intake has given new
insight into the physiological changes that happen after sur-
gery. The initial enthusiasm after the discovery of the role of
the gut hormones following RYGB may need to be tempered
as the magnitude of the effects of these hormonal responses on
weight loss may have been overestimated. The physiological
changes after RYGB are unlikely to be due to a single hor-
mone, or single mechanism, but most likely involve complex
gut-brain signalling. Understanding the mechanisms involved
with the beneficial and deleterious effects of RY GB will speed
up the development of effective, cheaper and safer surgical
and non-surgical treatments for obesity.
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Introduction

The Roux-en-Y gastric bypass (RYGB) includes a small gas-
tric pouch (15-30 mL) on the lesser gastric curvature [1, 2]
which is completely divided from the gastric remnant and then
anastomosed to the jejunum (leaving an alimentary or Roux
limb of typically 100-150 cm). The size of the gastro-jejunal
anastomosis is controversial as initially it was thought that an
element of restriction may be helpful in slowing the progress
of food from the oesophagus into the jejunum, but more re-
cently the aim has been rapid transit of food into the jejunum
to generate the gut signals to reduce meal size [3]. Bowel
continuity is restored by an entero-entero anastomosis be-
tween the excluded biliopancreatic limb (BPL) and the ali-
mentary limb. This anastomosis is usually performed 100—
150 cm distal to the gastro-jejunostomy, although it has also
been performed up to 250 cm distally in an attempt to create
calorie malabsorption [1]. Usually, the BPL is approximately
50 cm, but since other operations such as the biliopancreatic
diversion or mini-gastric bypass with much longer BPL have
greater reduction in insulin resistance, renewed interest in the
length of the biliopancreatic limb BPL has developed [4].
Operative times vary between 45 and 90 min and the aver-
age hospital stay is 1-3 days, although same-day discharge
following RYGB procedure have been successful [5]. Early
complications, within 30 days after surgery, do occur in ap-
proximately 4 % of patients and include bleeding, perforation
or leakage, which need immediate surgical re-intervention [6].
Late complications such as significant abdominal pain, small
bowel obstruction, anastomotic stenosis or marginal ulcera-
tion can occur in 15-20 % of patients after 30 days from
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surgery to over 10 years, and surgery or endoscopic therapy is
often used for both diagnosis and/or treatment [7].

Even though RYGB does not treat some of the aetiological
factors of morbid obesity, such as the obesogenic environment
we live in, it does successfully result in 20-30 % long term,
over 2 years of weight loss and maintenance [8—10], in addi-
tion to an improvement or remission of many obesity-related
co-morbidities [11-15] such as hypertension, type 2 diabetes
mellitus, obstructive sleep apnoea and musculoskeletal pain.
Approximately 40 % of obese patients with type 2 diabetes go
into remission within days or weeks after RYGB [16].

The RYGB is the best studied procedure regarding under-
lying mechanisms. The aim of this review is to describe the
mechanisms through which RYGB surgery enables weight
loss for obese patients and helps in understanding its compli-
cations by using observations from both human and animal
studies.

Food Intake
Research Studies
Hunger and Fullness

Lifestyle changes with a lower calorie diet can be effective at
initiating weight loss; however, most of the results from
randomised controlled trials (RCT) are disappointing regard-
ing long-term weight loss maintenance [17, 18]. Approxi-
mately 70-80 % of patients fail to maintain their initial
lifestyle-induced weight loss thought to be due to physiolog-
ically compensatory responses that defend the previous
weight ‘set point’ [19]. Whilst on a long-term low-calorie diet,
patients usually report an increase in hunger, a decrease in
satiety and pre-occupation with energy-dense fatty and sweet
food [20, 21]. This may be part of a normal physiological
response and not due to lack of motivation.

Reduced calorie intake after RYGB is usually a conse-
quence of significantly smaller meal sizes, and reduced calorie
content of food eaten [22] compensated only partially by in-
creased meal frequency [23]. Enhanced satiety is the dominant
contributing factor [24]. A dramatic decrease in daily energy
intake, 600-700 kcal [22, 25], during the first month post-
surgery increases to 1000—1800 kcal during the first year
[22, 26-32]. An average reduction of 1800 kcal per day from
pre-operative intake can be sustained for several years [32,
33]. Protein intake during the first year after surgery is often
lower than recommended at 0.5 g/kg, rather than the recom-
mendation of at least 1.5 g/kg/day [27, 34]. The mechanisms
are unclear, but may be due to temporary intolerance of higher
protein diet and dairy foods [22, 25, 27, 35-37]. Relative
intake of fat and carbohydrates decrease during the first year
post-surgery, but return to the baseline after 1 year [22],

although the contribution of high and low glycaemic index
carbohydrates may change. Many patients reduce their intake
of high glycaemic index carbohydrates and increase their in-
take of lower glycaemic index carbohydrates. Changes in be-
haviour associated with eating after RYGB were reported in
the 1970s using structured interviews that suggested that pa-
tients reached satiety more quickly, with the most common
reason given as a ‘lack of desire’ for food [38].

Potential Mediators

Increased Transit of Food into the Midgut
Through the Gastric Pouch

Whether the size of the gastric pouch and stoma in RYGB
surgery affects food intake and body weight is contested. It
remains controversial in both the human and animal literature
whether a larger gastric pouch and stoma causes less weight
loss [39—43]. The stoma becomes more ‘compliant’ with time,
allowing food to transit more easily from the pouch into the
alimentary limb, but may also result in food being ‘stored’ in
the pouch and not emptying rapidly enough. Thus, the initial
diameter of the anastomosis may not affect weight loss in the
long term [44]. To study a RYGB technique that created a very
small pouch, a high-pressure manometer was used, but a large
stoma demonstrated that the pressure in the pouch (immedi-
ately proximal to the gastroenteral anastomosis) was lower
than in the alimentary limb [45]. This suggests there was no
restriction at the level of the stoma because of the absence of a
high-pressure zone proximal to the pouch. Insertion of a gas-
tric balloon into the alimentary limb and inflation of the bal-
loon to a pressure of 20 cm water demonstrated that patients
with the highest pressure generated by the alimentary limb had
the smallest meal volume during an ad libitum meal. In con-
trast, those with the lowest pressure in the alimentary limb
took longer to terminate their meal. Mechanoreceptors within
the alimentary limb may be important determinants of meal
size if food rapidly transits through the pouch to reach the
alimentary limb in a less digested state than usual. The com-
ponent that determines caloric intake may be the alimentary
limb and not the pouch size or stoma diameter.

Hormonal

RYGB alters endogenous gut hormone responses to a meal.
Glucagon-like peptide-1 (GLP-1), peptide YY (PYY) and
ghrelin have been the best studied candidates in the context
of reduced food intake and sustained weight loss after RY GB.
GLP-1 and PYY responses to mixed meals or oral glucose
have been at the centre of interest of several studies investi-
gating patients 6 weeks to 10 years after RYGB [46-51].
Significantly elevated responses are seen in GLP-1 and PYY
as early as 2 days after RYGB [52] and may remain elevated
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for more than a decade after RYGB [53]. Patients who lost the
most weight after RYGB also had the highest levels of these
postprandial satiety gut hormones [54, 55]. Blocking the re-
lease of these hormones in humans and rats with octreotide
increased food intake after RYGB, but not after adjustable
gastric banding (AGB) surgery in humans [51] or sham oper-
ations in rats [56].

Mechanistic studies in rodents have suggested the physio-
logical significance of PYY because weight loss in PY'Y-
knockout mice after a RYGB variant was lower than in
wild-type mice [57]. Exogenous PYY specific antibodies also
increased food intake in rats after bypass type procedures [51].
Physiologically, PYY has been shown to delay gut transit
time, but probably does not increase energy expenditure in
human [58]. GLP-1 responses are very similar to those of
PYY after RYGB, but have additionally been linked with in-
creases in insulin secretion [59, 60]. Postprandial responses of
GLP-1 before surgery do not correlate with change in weight
loss after surgery, suggesting that pre-operative gut hormone
responses are not prognostic [61]. Enhanced GLP-1 signalling
on its own is also not sufficient to reduce body weight after
RYGB, suggesting that it is multiple gut hormone responses
that mediate the increased satiation after a meal [62].

Reduced ghrelin was the first proposed hormonal mecha-
nism to explain weight loss after RYGB. At first, ghrelin
levels were thought to be lower compared to diet-induced
weight loss which increased ghrelin in a control group of
subjects [63]. It was postulated that this decrease was partially
responsible for reduced hunger after RY GB. Subsequent stud-
ies in patients after RY GB were more controversial reporting a
reduction in fasting and postprandial ghrelin levels [50,
64-70], no alteration in fasting and postprandial levels [51,
52, 71-79] and a rise in fasting ghrelin levels [80-84]. Con-
sidering all the data and variability, it is likely that RYGB
results in a comparative ghrelin deficiency considering that
ghrelin normally increases after diet-induced weight loss, but
the magnitude of this contribution is unclear [85, 86].

Neural

The vagal afferent fibres in the gastric and proximal small
bowel mucosa are known to be sensitive to mechanical stretch
in order to detect the volume of ingested food [87]. The vagus
nerve with both the ventral and dorsal gastric branches on the
large gastric remnant is transected during the formation of the
gastric pouch. The vagal fibres to the gastric pouch are thus
intact, and these could mediate satiety as food passes through
the pouch. The vagal denervation more distally may attenuate
signalling. Taken together, this may play a role in satiation
[88]. Visceral sensory information from the gut is communi-
cated centrally using the afferent (sensory) vagus nerve sig-
nalling to the nucleus of the tractus solitarius (NTS). Here,
visceral sensory information and hormonal and metabolic
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inputs are integrated together with neuronal inputs from other
brainstem areas [89] and may well be the most important way
in which RYGB signals to the brain. Transmission of these
signals involving the gut hormones such as ghrelin may be
impaired after vagotomy [90]. RYGB appears to have the
potential to alter neural responses [91] to reduce hedonic be-
haviour associated with eating highly palatable and calorie-
dense foods. These changes in reward value of food may alter
the amount of food consumed [38, 92-94].

Change in Bile Acids

Bile acids are agonists for the cell-membrane G protein-
coupled receptors, TGRS, which in turn enhances the release
of GLP-1 and PYY. Bile acids also bind the farnesoid X re-
ceptor (FXR) [95]. The anatomical changes after RYGB result
in bile progressing down the biliopancreatic limb to the distal
L cells without mixing with food. As a result, the availability
of undiluted bile acids in the distal intestine may enhance
stimulation of TGRS receptors on L cells [96]. Serum bile acid
concentration is raised after RYGB [97] and is associated with
increased energy expenditure possibly through signalling via
the cyclic adenosine monophosphate cAMP-dependent thy-
roid hormone triggering enzyme type 2 iodothyronine
deiodinase [98]. Fibroblast growth factor (FGF) 19 is in-
creased and binds to fibroblast growth factor receptor
(FGFR4) activating fibroblast growth factor receptor c-kit
(FGRRI1¢) in the presence of co-receptor 3 Klotho [99]. The
result is increased protein synthesis in the liver [100]. FGF19
also plays a role in enhanced mitochondria activity [100].
Activation of the FXR receptor may facilitate the effects of
bile acids on energy homeostasis through FGF19 that is re-
leased from ileal enterocytes which can lead to increases in
metabolic rate and decreases in adiposity [101, 102].

Bile acids, after a mixed test meal in human subjects, was
positively correlated with circulating GLP-1 and PYY, but
negatively correlated with ghrelin [103]. Pournaras et al. have
demonstrated that total plasma bile acids are elevated after
RYGB [104] and suggested that they may be partly responsi-
ble for the intestinal hypertrophy, anorexigenic hormone se-
cretion and alterations in gut microbiota [105].

Change in Gut Microbiota

Obesity is associated with low-grade inflammation, increased
Firmicutes and decreased Bacteroidetes in animals [106] and
humans [107-109]. Intestinal microbiota has also been shown
to utilise energy from food and thus increase the host’s energy-
harvesting capacity [110]. Proteobacteria
(gammaproteobacteria) has been shown to increase after
RYGB in humans [111] with the major contributor being En-
terobacter hormaechei. The significant improvement of
weight, inflammation and metabolic status after surgery was
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associated with increased bacterial variety. An association was
observed between adipose tissue gene expression and bacteri-
al genes at baseline with a 10-fold increase 3 months after
surgery, and this may suggest a restored crosstalk between
both the gut microbiota and the host [112].

After RYGB, acidity was reduced in the alimentary limb
leading to a decrease of hydrochloric acid flux in the gut,
while bile acids were increased in the biliopancreatic limb.
Bacteroidetes growth was attenuated at lower pH, whereas
Escherichia coli increased at a higher pH. Gut microbiota
quickly adapt in a ‘starvation-like state’ created by RYGB
and rapidly and sustainably increase. Changes in microbiota
in mice after RY GB were independent of weight alteration and
caloric restriction [113]. Transfer of the gut microbiota from
RYGB-treated mice to non-operated, germ-free mice resulted
in weight loss and reduced fat mass in the recipient animals.
The altered microbial production of short-chain fatty acids that
increases may partly be an explanation [113]. Although
RYGB did not change gut microbiota from the ‘obese state’
to the ‘lean state’, it did create a ‘third state’ which on balance
appear to be associated with many of the beneficial character-
istics of RYGB.

Food Preferences
Observations

Weight gain has been linked to a preference for both sweet
and/or high-fat foods [114, 115], which may partly explain
why obese people regain body weight frequently after
‘dieting” [116, 117]. The common view summarised earlier
by Pangborn and Simone is: “In the mind of a normal per-
son, sugar and sweets are ‘fattening’ and most overweight
people have a ‘sweet tooth’” [118]. Hedonism associated
with palatable foods is considered a significant factor which
increases the prevalence of obesity. A motivational factor
that is referred to as ‘hedonic hunger’ [119] may be a trigger
for overeating [120].

Patients after RYGB tend to increase the intake of fruit and
vegetables as well as low-fat food [121, 122]. The dumping
syndrome was thought to induce these changes in food pref-
erence [123], as initially it was considered as a useful charac-
teristic of the RYGB to ‘teach’ patients to avoid calorie-dense
foods and thus consume fewer calories [124]. However, pa-
tients after RYGB appear to make healthier food choices and
adopt a more balanced diet (even when they do not experience
dumping) [121, 125] and have considerable reduction in en-
ergy intake (EI) and energy density. A comparison on food
groups was done for a group of patients after RYGB and total
number of servings from fat, grains and sweetened beverages
was reduced and remained reduced in the longer term. How-
ever, meats, dairy products, fruits and sweets were reduced in

the short term, but then returned to baseline by 12 months
[22]. When energy intake was reduced to 1300 kcal, 60 and
25 % of patients ,respectively, were consuming less than one
serving per day from both fruits and vegetables. Whole grains
intake increased from 25 to 40 % within the first 3 months, but
then returned to baseline at 12 months [22]. The association
between reduced diet energy density and weight loss is con-
troversial as some studies describe no association [126], while
others show that shifts in food preferences are partially re-
sponsible for the decreased calorie intake and weight loss after
RYGB [127].

RYGB in humans appears to alter taste through uncondi-
tional and conditional mechanisms [24, 128—130] leading to
the concept of ‘behaviour surgery’ [123]. In 1987, Sugerman
et al. reported that ‘sweet-eaters’ did particularly well after
RYGB [131, 132]. Some of the initial findings were con-
founded by intolerance to sweets related to symptoms of the
dumping syndrome [38, 131-133]. Conditioned taste aversion
may thus be a factor in some patients. These initial assump-
tions resulted in many clinicians thinking that the RYGB
works by ‘punishing’ the ‘poor behaviours’ of obese patients.
The notion that RY GB becomes an external enforcer that goes
against the free will of the patient has led to some authors
questioning the morality of RYGB as a tool that changes pa-
tients” behaviour against patients’ natural wishes [134]. This
misconception may have reduced the wider acceptance of
RYGB as a valid physiological treatment for the pathology
that results in obesity. Classical conditioned food aversion is,
however, an unlikely explanation as most patients with severe
dumping still report that they like the taste of sweet foods, but
that they have learned to consume only small quantities that
do not cause negative visceral symptoms or consume sweets
at night before bedtime, suggesting a conditioned food
avoidance to be a more likely explanation. Distinguishing
between the terms is important because avoidance implies that
the palatability of sweet or fat did not change when small
quantities are consumed, but that the subject ‘learns’ to stop
consuming the food sooner (earlier avoidance) because large
quantities may have negative visceral consequences
[135-137].

Mediators

RYGB could be exerting its effects on food selection and
preference through any one of the taste function domains im-
portant in normal physiology such as sensory-discriminative
(stimulus identification), hedonic (ingestive motivation) and
physiological (digestive preparation) [138, 139]. Affective re-
sponses to taste stimuli, which can be considered an example
of ingestive motivation, can be both conditioned and uncon-
ditioned. It remains controversial which of these three do-
mains are involved and what their interactions are to deter-
mine food preferences after RYGB surgery. For example,
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RYGB could have effects directly on the central gustatory
pathways related with feeding and reward through gut hor-
monal mediators. Alternatively, changes in the sensory signals
could alter the intensity or the quality of tastants, but also lead
to an unconditioned change in palatability. If RYGB causes
visceral malaise after ingestion of fat, then it is possible that
the palatability of fat could alter through a process of learning
(conditioned response) [140].

Although there are suggestions in animal models that the
hedonic properties of sweet and fat stimuli may change after
RYGB [23, 140-144], less work has been done in humans.
Miras et al. using the progressive ratio task showed that
RYGB resulted in the selective decrease of the reward value
of a sweet and fat tastant, but not vegetables [145]. Further
support comes from studies of brain reward cognitive sys-
tems linked to eating behaviour as studied by functional
MRI (fMRI), where brain hedonic responses to calorie-
dense food are lower after RYGB compared to patients
who have lost similar amounts of weight after adjustable
gastric banding [128].

Energy Expenditure

According to the laws of thermodynamics, energy that enters a
system (energy intake) must either be stored (body energy
gain) or be used (activity, heat or faecal energy loss). Energy
expenditure (EE) is usually decreased during food restriction,
a phenomenon known as the ‘starvation response’ [146].
Weight loss in rodent models of RYGB is associated with
preservation of lean body mass and increased EE [146].
Humans have decreased basal metabolic rate, but increased
meal-induced thermogenesis after RYGB [32, 122,
147-153]. Evidence is now also emerging to suggest that the
metabolic rate of the small bowel is increased after RYGB
with more carbohydrate consumption which may explain the
changes observed in respiratory quotient after these operations
[154]. Reduced resting energy expenditure (REE) or basal
metabolic rate after RYGB [122, 147, 155—157] may be atten-
uated due to relative lean mass preservation. Patients who
regain the weight they lost 2 years after RYGB have lower
REE [149], suggesting that elevating REE after RYGB may
enhance weight loss. Physical activity may further help in-
crease activity-related EE and also preserve lean mass, and
therefore REE, after RYGB [158].

Calorie Malabsorption
Several bariatric operations were designed to result in malab-
sorption of calories [159]. The exclusion of the approximately

10 % of the bowel (50 cm of BPL) after RYGB is unlikely to
result in calorie malabsorption usually during other small
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bowel resections. Moreover, the exaggerated gut hormone re-
sponses which reduce gut transit have a net result of RYGB
not altering oro-caecal transit time or functional enterocyte
mass [16]. RYGB may, however, impair pancreatic exocrine
function which could contribute to a small amount of fat mal-
absorption, the magnitude of which is probably too small to
contribute substantially to weight loss [160—162].

Mechanisms of Complications

The rise in the number of RYGB procedures [163] has also
increased the absolute number of complications associated
with this procedure even though the percentage of patients
with complications has reduced due to better surgical experi-
ence [164].

Postprandial hypoglycaemia, even in patients who never
had type 2 diabetes, can occur several hours after a meal and
is distinct from early dumping syndrome which occurs within
minutes after eating [165, 166]. Early dumping is an outcome
of rapid emptying of food into the jejunum due to the lack of a
pylorus presumably causing neural activation in the proximal
alimentary limb [167]. Late dumping, or ‘postprandial
hypoglycaemia’, happens 1-3 h after ingesting a meal and is
a result of the exaggerated insulin response to high glycaemic
index carbohydrates in the meal. The proposed mechanisms
involve increased {3-cell mass and improved (3-cell function
and non-f-cell mechanisms, which may include a lack of
ghrelin (a counter-regulatory measure to hypoglycaemia)
[63, 168]. In addition, the sustained weight loss can reduce
insulin resistance which renders the previous insulin re-
sponses needed pre-surgery to suddenly become excessive.
The aetiology of hypoglycaemia is likely to be different for
individual patients and is also probably a mixture of the ana-
tomic, hormonal and metabolic changes after RYGB [169].
Although treatment of this complication can be difficult, pan-
createctomies are no longer advised [170], but rather a multi-
modal medical approach is favoured [171].

Unexplained Abdominal Pain

Up to 10 % of the patients complain of unexplained chronic
abdominal pain which can be difficult for both the treating
clinician and patient to acknowledge [172, 173]. Mild abdom-
inal pain is reported by up to 95 % of patients at some point
after RYGB [172, 174—176]. Symptom severity fluctuates be-
tween vague discomfort and severe colicky pain [177].
Vomiting and nausea, especially if prolonged, are symptoms
of pathology and are not part of the normal postoperative
course after RYGB; nonetheless, up to 80 % of patients report
the symptoms at some point after surgery [172, 174]. Abdom-
inal pain may be recurrent, and it should be remembered that
internal hernias may spontaneously reduce causing
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intermittent pain. Early investigation when acute symptoms of
abdominal pain first presents is mandatory due to the risk of
obstruction, volvulus and ischaemia of the herniated bowel
[172, 178]. Cross-sectional imaging is often unhelpful and
the use of laparoscopy is frequently required for diagnosis.
Management protocols for chronic unexplained abdominal
pain are not clearly defined, but the jejunal-jejunal anastomo-
sis is currently receiving more attention as a possible cause for
these chronic problems.

Anastomotic Stenosis

With the circular stapler technique, this can be a common
complication with a reported incidence of up to 27 % and a
recurrence rate of up to 33 % [179]. Usually dysphagia occurs
within 6 months after surgery. Endoscopy can often be used
both as a diagnostic but also an intervention tool.

Vitamin Deficiencies: Iron, Vitamin B12, Folic Acid,
Vitamin D and Calcium

Iron deficiency occurs in up to 49 % of patients after RYGB
[180]. Reduced acid production in the small stomach pouch
decreases iron absorption [181]. For iron to be absorbed, the
ferric iron in foods has to be reduced to the ferrous state, but
because hydrochloric acid is lower after RY GB, this process is
attenuated [182]. Reduced intake of iron-rich foods after
RYGB such as red meat may also contribute [183, 184].

In the stomach, both pepsin and hydrochloric acid are re-
quired for absorption of vitamin B12. Deficiencies of vitamin
B12 occur in up to 70 % of patients after RYGB [184-186]
because achlorhydria prevents vitamin B12 separation from
foods due to reduced ingestion of meat and insufficient secre-
tion of intrinsic factor after surgery [182].

Folic acid deficiency affects up to 35 % of patients after
RYGB. Folate absorption is enabled by hydrochloric acid with
absorption in the proximal third of the small bowel most im-
portant [186]. Vitamin B12 also acts as a coenzyme in
converting methyltetrahydrofolate to tetrahydrofolate. Thus,
folate deficiency might result from achlorhydria, bypassing
of the proximal small bowel, vitamin B12 deficiency and/or
decreased folate ingestion [184—187].

Hypocalcaemia occurs in up to 10 % and low serum 25-
hydroxy vitamin D levels in up to half of RYGB patients
[188]. Nevertheless, most obese patients had significantly
lower basal 25-hydroxyl vitamin D concentrations and
higher parathyroid hormone concentrations as compared to
age-matched lean controls [189]. Deficiencies may occur
because calcium is typically absorbed in the proximal small
bowel which is bypassed after RYGB. Intolerances can de-
velop to calcium-rich sources such as milk especially if the
fat content is high. Calcium can be released from bone as
evident from the increased bone turnover and subsequent

reduced bone mass after RYGB [190, 191]. The higher bone
turnover in the RYGB patients could be partly due to the
weight loss in these patients [192], but animal studies sug-
gest that bone loss exceeds what would be expected from
weight loss alone [193].

Loss of Bone Density

Many patients with obesity have very healthy bone density
before surgery due to long-term excessive weight bearing.
This may be protective and partly explains the controversy
of why the loss of bone density after RYGB does not cause
more bone fractures [194, 195] even if the risk for fracturing
may be increased. Multiple mechanisms may contribute to
RYGB reducing bone density, including physiologically re-
duced mechanical load related to weight loss after surgery,
hyperparathyroidism due to insufficient calcium consumption
or reduced intestinal calcium and vitamin D absorption. Hu-
moral factors from adipose tissue (oestradiol, leptin,
adiponectin), pancreas (e.g. insulin, amylin) or the gut (ghrel-
in, glucagon-like peptide-2, glucose-dependent insulinotropic
peptide) may also play a role [196, 197] by connecting a web
of consistent regulatory pathways [196].

Kidney Stones

Hyperoxaluria is common after RYGB, but the incidence of
renal calculi is much lower than after jejunal-ileal bypass (JIB)
[198-200]. Comparison with the JIB is important because the
incidence as well as the potential mechanisms may be differ-
ent after RYGB. The lithogenic effects after RY GB may stem
from reduced calcium binding to oxalate in the intestinal lu-
men. The excess oxalate is then cleared by the kidneys
resulting in hyperoxaluria and calcium oxalate nephrolithiasis.
Almost 21 % of patients after JIB, which causes significant
malabsorption, developed kidney stones 5 years after surgery
[201], but the incidence of kidney stones after RYGB appears
to depend on a combination of other factors such as hydration
status and urine volume [200]. Patients in high stone-forming
areas of the world have increased number of stones while
those in low stone-forming countries may have an incidence
similar to the background population [202]. Thus, RYGB
alone is not enough to cause kidney stones, but it does poten-
tiate other predisposing factors.

Conclusion

RYGB confers both benefits and complications, the mecha-
nisms of which are still only partially understood. Most, but
not all, clinicians would agree that the beneficial effects out-
weigh the harm that may be caused [203]. The exaggerated
release of the satiety gut hormones with their central and
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peripheral effects on glycaemia and food intake [52, 75, 204]
has given new insight into the physiological changes that take
place after surgery. The initial enthusiasm after the discovery
of'the role of the gut hormones may need to be tempered as the
magnitude of the effects of these gut hormones on weight loss
may have been overestimated. The physiological changes af-
ter RYGB are unlikely to be due to a single hormone, or single
mechanism, but are more likely to additionally involve com-
plex gut-brain nutrient and neural signalling [205, 206]. Un-
derstanding these mechanisms will speed up the development
of more effective and safer surgical and non-surgical treat-
ments for obesity.

All studies that are mentioned in the review adhered to the
expected high level ethical considerations and were approved
by the appropriate institutional review board.
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