
Research Article
Long Read Alignment with Parallel MapReduce Cloud Platform

Ahmed Abdulhakim Al-Absi1 and Dae-Ki Kang2

1Department of Ubiquitous IT, Graduate School, Dongseo University, 47 Jurye-ro, Sasang-gu, Busan 47011, Republic of Korea
2Department of Computer & Information Engineering, Dongseo University, 47 Jurye-ro, Sasang-gu, Busan 47011, Republic of Korea

Correspondence should be addressed to Dae-Ki Kang; dkkang@dongseo.ac.kr

Received 22 September 2015; Revised 18 November 2015; Accepted 18 November 2015

Academic Editor: Elaine Leung

Copyright © 2015 A. A. Al-Absi and D.-K. Kang.This is an open access article distributed under theCreativeCommonsAttribution
License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the originalwork is properly cited.

Genomic sequence alignment is an important technique to decode genome sequences in bioinformatics. Next-Generation
Sequencing technologies produce genomic data of longer reads. Cloud platforms are adopted to address the problems arising from
storage and analysis of large genomic data. Existing genes sequencing tools for cloud platforms predominantly consider short
read gene sequences and adopt the HadoopMapReduce framework for computation. However, serial execution of map and reduce
phases is a problem in such systems.Therefore, in this paper, we introduce Burrows-Wheeler Aligner’s Smith-Waterman Alignment
on Parallel MapReduce (BWASW-PMR) cloud platform for long sequence alignment.The proposed cloud platform adopts a widely
accepted and accurate BWA-SW algorithm for long sequence alignment. A customMapReduce platform is developed to overcome
the drawbacks of the Hadoop framework. A parallel execution strategy of the MapReduce phases and optimization of Smith-
Waterman algorithm are considered. Performance evaluation results exhibit an average speed-up of 6.7 considering BWASW-PMR
compared with the state-of-the-art Bwasw-Cloud. An average reduction of 30% in the map phase makespan is reported across all
experiments comparing BWASW-PMR with Bwasw-Cloud. Optimization of Smith-Waterman results in reducing the execution
time by 91.8%. The experimental study proves the efficiency of BWASW-PMR for aligning long genomic sequences on cloud
platforms.

1. Introduction

Bioinformatics involves the biological, genomic, statistics,
mathematics, and computer science disciplines of study.
Analysis of genomic and biological sequence data is one of the
important parts of bioinformatics [1].The analysis of genomic
sequences enables us to understand the genetic structure, and
its bases of drug response and disease. Numerous researchers
who are working in this interdisciplinary field perform gene
structure and functionality analysis in order to discover
new gene sequences and understand gene origin. For the
analysis purpose, existing genomic databases such as Google
Genomics [2] and NCBI [3] (generally in 100’s of GB in size)
are used to identify the similarities. Identification of sim-
ilarities/dissimilarities is achieved by sequence comparison
algorithms. Comparisons of biological sequences produce
matching alignments and similarity scores. These similar-
ity scores represent the similarities/dissimilarities between

the considered biological sequences. The matching align-
ments and similarity scores are used for secondary structure
predictions and multiple sequence alignments which are
highly complex operations that rely on the accuracy of the
comparison algorithm used. Applications related to cancer
research, forensics, agrigenomics, genetic disease identifica-
tion, microbial research, reproductive health, human whole-
genome sequencing, and many more rely on sequence align-
ment algorithms for analysis.

Genomic sequencing data is obtained from the devel-
oped Next-Generation Sequencing (NGS) technologies (e.g.,
from Illumina, Solexa, and Pacific Bioscience). Most of
the genomic data available consists of millions of genomic
sequences of short reads [4].With the advances in sequencing
technologies, millions of sequences with greater read lengths
> 1000 bp are now being generated. Based on genomic data,
the sequencing tools can be basically classified into two cat-
egories:

Hindawi Publishing Corporation
BioMed Research International
Volume 2015, Article ID 807407, 13 pages
http://dx.doi.org/10.1155/2015/807407

http://dx.doi.org/10.1155/2015/807407

2 BioMed Research International

(1) Short read aligners: used to align genomic sequences
whose read length is between 32 bp and 200 bp, that
is, BWA [4] and Bowtie2 [5].

(2) Long read aligners: used to align genomic sequences
whose length is greater than 1000 bp, that is, Illumina.

Examples of short read aligners include FASTA [6],
BLAST [7], BLAT [8], SOAP [9], and Burrows-Wheeler
Aligner (BWA) [4]. For long read alignment, researchers
have proposed Burrows-Wheeler Aligner’s Smith-Waterman
(BWA-SW) Alignment [10], Bowtie2 [5], Cushaw2 [11], and
BWA-MEM [12].

Existing bioinformatics applications require both man-
agement of huge amounts of data and heavy computation
for analysis. Nearly 3 billion US dollars and 10 years were
required to produce the initial human reference genome
containing about 3.5 billion base pairs. The latest develop-
ments in sequencing technologies available produce enor-
mous amount of data in terms of gigabytes per run [13].
In NGS large sample size applications, users are required to
wait for sufficient resources to become available in which the
time needed to complete processing becomes unpredictable.
Analyzing such enormous amount of data and its storage
are problems that exist. To address these high computa-
tion needs, grid or cluster computing platforms have been
provided to researchers [14]. The provided grid or cluster
computation platforms are constrained by hardware capacity
and concurrent access capacity to support multiple users.
The ever growing gap between computing capabilities and
sequencing throughput is presented in [15].

Using cloud platforms, one can solve the storage and
computing problems that exist in gene sequencing. Cloud
computing platforms provide flexibility, scalability, and on-
demand access to resources. Moreover, adoption of cloud
computing technologies eliminates the costs incurred in
establishing, maintaining large physical storage systems,
and computing clusters. Cloud users pay for the uti-
lized storage and computing resources without worrying
about maintenance, availability, and reliability related issues.
Although cloud computing provides scalable and flexible
infrastructure, parallel computing models on cloud plat-
forms/infrastructure are required to achieve the desired goal
of analyzing gene sequences. One such framework for the
cloud, called MapReduce model [16], was introduced by
Google. Another model developed by University of Califor-
nia at Berkeley proposed the Spark platform [17] for cloud
computing. The Pregel framework for cloud environments
is presented in [18]. A comprehensive survey of most recent
research and development in cloud-based service computing
solutions in research of genome informatics is available in
[19, 20]. In research of genomic analysis, there are a number
of cloud computing providers that offer cloud-based services
solutions such as Google Cloud Genomics [3], Amazon [21],
andMicrosoft Azure [22].The necessity for cloud computing
for genomic analysis has been well discussed by leaders
in bioinformatics and computational biology [23]. Galaxy
[24] is a powerful web-based system for performing genome
analysis tasks and one of many models that manage bioinfor-
matics databases. Galaxy built on Amazon’s Elastic Compute

Cloud (EC2) with CloudMan framework to assist researchers
executes their own Galaxy server on cloud infrastructure.
However, Galaxy has data storage and data manipulation
bottlenecks for large datasets with capability of analyzing
one sample at a time and does not utilize the elastic cloud
compute capabilities completely. This drawback is caused by
its dependence on a single shared file system. A significant
bottleneck has been reported in [25] when processing large
datasets across distributed compute resources. Among all the
cloud computing platforms available, Hadoop MapReduce is
by far the most popular choice due to its ease to tune, open
source nature, and acceptability by industry and academic
organizations. In order to utilize the full potential of cloud
infrastructure, public cloud service providers offer virtualized
resources in terms of both hardware and software [26]. The
virtualization enables user specific customization, flexibility,
application execution environments, and cost efficiency and
minimizes power consumption [27, 28].

The Hadoop framework [29] adopts a MapReduce model
for computing a user specific application on cloud platforms.
In the MapReduce model, a dual phase execution approach
is adopted. In the initial phase, input data to be processed is
split into chunks. Each chunk is associated with a mapper or
a map worker that provides ⟨Key | Value⟩ pairs as outputs.
The outputs values are sorted on the basis of the Key values
associated.The sorted values are provided to reduce workers,
that is, ⟨Key | SortedList(Value)⟩. Reduce workers store the
results inHadoop distributed file system.Themap and reduce
workers are generally virtual machines (VMs) in public cloud
environments. A simple MapReduce model deployed on the
VM based computing environment is shown in Figure 1.

Next-Generation Sequencing (NGS) tools like CloudA-
ligner [13], Cloud Burst [30], SeqMapReduce [31], and Cross-
bow [32] adopt the Hadoop framework.Themajor drawback
of these alignment tools is that they are short read aligners.
The short read aligners prove to be efficient when single-gap
or ungapped alignment is to be computed. Considering long
reads, these alignment algorithms exhibit performance deg-
radation and affect accuracy proved by the results presented
in [10]. For alignment considering long sequence reads,
optimization of the BLAST algorithm and its deployment on
Hadoop platform is presented in [33]. For long read aligners,
the BWA-SW algorithm in [10] has been found to be efficient
and suitable. In [34], the Bwasw-Cloud algorithm consider-
ing Hadoop platform is presented. The Bwasw-Cloud adopts
BWA-SW algorithm for alignment. Based on the literature
reviewed, it is evident that limited work has been carried out
considering long read aligners required to support analysis of
genomic data generated from current and future sequencing
technologies. There is an increasingly urgent need to pro-
vide a reliable and scalable support for the ever-increasing
convergence of NGS data. However, there is clearly a lack
of standardized and affordable NGS management solutions
on the cloud to support the growing needs of translational
genomics research [20]. This is a major motivating factor for
the authors of this paper.

All the existing long read aligners for cloud environments
consider the Hadoop framework. Genome alignment is an

BioMed Research International 3

Split

Merge

Merge
Merge

In
pu

t

O
ut

pu
t

Map

Map

Partition

Partition

Reduce

Reduce

Worker 1 on VM Worker 1 on VM

Worker N on VM Worker M on VM

Map stage Reduce stage

Cloud storage

Cloud storage

VM based virtualized computing environment

Cloud storage

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

.

.

.

.

.

.

.

.

.

Figure 1: MapReduce model deployed using VM based computing environment.

iterative process and Hadoop incurs considerable perfor-
mance overheads when iterative applications are hosted on
the framework [18, 35].The aligners presented in [33, 34] need
to rely on multiway joins as genomic sequences are split and
needed to be merged prior to the reduce phase. The perfor-
mance of Hadoop suffers whenmultiway joins are considered
[36].TheHadoop framework considers sequential processing
of the map followed by reduce stage that affects performance
[37].

Therefore, in this paper, we present Burrows-Wheeler
Aligner’s Smith-Waterman Alignment on Parallel MapRe-
duce (BWASW-PMR) to perform long read alignments on
a cloud platform. BWASW-PMR adopts the BWA-SW pre-
sented in [10] to perform long read alignments of genomic
data. MapReduce model is considered for the execution on
the public cloud environment. The Smith-Waterman (SW)
algorithm [38, 39] in BWA-SW is optimized using paral-
lel computation technique. To overcome the drawbacks of
HadoopMapReduce, a parallel execution strategy of the map
and reduce workers is considered in BWASW-PMR.Themap
and reduce functions executions on the VM based worker
nodes are parallelized to reduce execution time. The aligner
presented in [34] bears the closest similarity to the BWASW-
PMR proposed and is considered for comparison. The major
contribution of our work can be summarized here:

(i) Optimization of Smith-Waterman in the BWA-SW
long read sequence alignment.

(ii) A custom MapReduce framework to support the
required computations for long sequence alignment.

(iii) Parallel map and reduce workers execution strategy.

(iv) Parallel execution of the map and reduce functions at
worker nodes.

This paper is organized as follows. Section 2 presents related
work background. Section 3 discusses the proposed Burrows-
Wheeler Aligner’s Smith-Waterman Alignment on the Par-
allel MapReduce, BWASW-PMR. The SW algorithm and its
considered optimization are also presented in Section 3. The
results and the experimental study are shown in Section 4.
Comparison notes with related work counterparts are dis-
cussed in the penultimate section. The concluding remarks
and future work are discussed in the last section.

2. Background

2.1. Smith-Waterman (SW) Algorithm. Burrows-Wheeler
Aligner’s Smith-Waterman (BWA-SW) Alignment relies on
SW algorithm to align the seed matches of sequences. Let 𝑞

0

and 𝑞
1
represent two genomic sequences obtained from the

seed matches. The Smith-Waterman algorithm computes the
similarity matrix score initially. Using the similarity matrix
and backtracking technique, optimal alignment is obtained.
Let X represent the size of 𝑞

0
and Y represents the size of

𝑞
1
. For sequence 𝑞

0
, there are X + 1 possible prefixes and,

for 𝑞
1
, there areY + 1 possible prefixes including the empty

sequence. Let 𝑞seq[1, . . . ,Y] denote a prefix of Y characters
and 𝑞seq[X] represents the Xth character of a sequence
𝑞seq. The similarity score between prefixes 𝑞

0
[1, . . . , 𝑎] and

𝑞
1
[1, . . . , 𝑏] is represented as 𝑞

𝑎,𝑏
. The similarity matrix is

denoted by 𝑍 and its size is (X + 1,Y + 1). The first row and

4 BioMed Research International

column of 𝑍 are initialized to 0. The remaining elements of
𝑍 (indexed by (𝑎, 𝑏)) are computed using

𝑍
𝑎,𝑏

= max

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

0

𝐼
𝑎,𝑏

𝐽
𝑎,𝑏

𝑍
𝑎−1,𝑏−1

+𝑅 (𝑎, 𝑏) ,

(1)

where 𝑅(𝑎, 𝑏) is a function providing values of exact match or
mismatch; that is, if 𝑞

0
[𝑎] = 𝑞

1
[𝑏] then𝑅(𝑎, 𝑏) = 𝑋

𝑖
(identical

characters among sequences 𝑞
0
and 𝑞
1
); otherwise, 𝑅(𝑎, 𝑏) =

𝑀
𝑖
(if characters among sequences 𝑞

0
and 𝑞

1
are unique). 𝐼

and 𝐽 represent thematrices in accordance with the affine gap
model. The matrices 𝐼 and 𝐽 are used to determine the gaps
and are defined as

𝐼
𝑎,𝑏

= max
{

{

{

𝐼
𝑎,𝑏−1

− 𝐺
𝐸

𝑍
𝑎,𝑏−1

− 𝐺
𝐹
,

𝐽
𝑎,𝑏

= max
{

{

{

𝐽
𝑎−1,𝑏

− 𝐺
𝐸

𝑍
𝑎−1,𝑏

− 𝐺
𝐹
,

(2)

where 𝐺
𝐸
and 𝐺

𝐹
represent the first and successive gap

penalty.
Backtracking algorithm is used to find the optimal align-

ment between 𝑞
0
and 𝑞
1
. The backtracking begins with a cell

in 𝑍 that holds the highest score and proceeds till a zero
valued cell is reached. Smith-Waterman algorithm provides
optimal alignments and similarity scores. It must be noted
that computation ofmatrix𝑍 is bounded by the running time
of the slowest 𝑍 task due to the dependencies it exhibits.

2.2. Burrows-Wheeler Aligner’s Smith-Waterman (BWA-SW)
Alignment Algorithm. BWA-SW algorithm constructs a
full-text index in minute space (FM-index) [40] of the query
sequence 𝑄 and the reference sequence 𝑅. A prefix directed
acyclic word graph (𝑃𝑟𝑒𝑓𝑖𝑥 𝐷𝐴𝑊𝐺) is built using sequence
𝑄. 𝑝𝑟𝑒𝑓𝑖𝑥 𝑡𝑟𝑖𝑒 is built using the sequence 𝑅. The prefix trie is
a tree representation of sequence 𝑅. The tree is constructed
by concatenating all edge symbols from any node in the graph
as a route to the root node providing a unique string. The
unique string obtained is a substring of the sequence 𝑅. Each
node of the tree is represented using 𝑠𝑢𝑓𝑓𝑖𝑥 𝑎𝑟𝑟𝑎𝑦 𝑖𝑛𝑡𝑒𝑟V𝑎𝑙.
Traversing from nodes generates strings that are lexico-
graphically sorted. A node in 𝑝𝑟𝑒𝑓𝑖𝑥 𝑡𝑟𝑖𝑒 represents a string.
The 𝑠𝑢𝑓𝑓𝑖𝑥 𝑎𝑟𝑟𝑎𝑦 𝑖𝑛𝑡𝑒𝑟V𝑎𝑙 of the node and the string it
represents are considered to be equivalent to each other.
From 𝑝𝑟𝑒𝑓𝑖𝑥 𝑡𝑟𝑖𝑒, nodes exhibiting identical or similar
𝑠𝑢𝑓𝑓𝑖𝑥 𝑎𝑟𝑟𝑎𝑦 𝑖𝑛𝑡𝑒𝑟V𝑎𝑙 are collapsed to form 𝑃𝑟𝑒𝑓𝑖𝑥 𝐷𝐴𝑊𝐺.
Each node of 𝑃𝑟𝑒𝑓𝑖𝑥 𝐷𝐴𝑊𝐺 established represents one
or more substrings of 𝑅. Figure 2 represents 𝑝𝑟𝑒𝑓𝑖𝑥 𝑡𝑟𝑖𝑒,
𝑃𝑟𝑒𝑓𝑖𝑥 𝐷𝐴𝑊𝐺, and 𝑠𝑢𝑓𝑓𝑖𝑥 𝑎𝑟𝑟𝑎𝑦 of the input string
“BANANA$”.

Let PT(𝑋) and DG(𝑋) represent two functions that
are used to form 𝑝𝑟𝑒𝑓𝑖𝑥 𝑡𝑟𝑖𝑒 and 𝑃𝑟𝑒𝑓𝑖𝑥 𝐷𝐴𝑊𝐺 graph. In

the BWA-SA algorithm, PT(𝑅) and DG(𝑄) are initially com-
puted. Let 𝑎 be the root node of PT(𝑅), and 𝑏 represents the
root node of DG(𝑄). The best score between the sequences
𝑄 and 𝑅 is computed using a dynamic programming mecha-
nism. Initialize 𝐸

𝑎𝑏
= 𝐹
𝑎𝑏
= 𝐾
𝑎𝑏
= null considering the root

nodes of PT(𝑅) and DG(𝑄). For each of the parents, that is,
𝑎
𝑝
, of the 𝑎th node in DG(𝑄), computation of 𝐹

𝑎𝑏|𝑎𝑝
, 𝐾
𝑎𝑏|𝑎𝑝

,
and 𝐸

𝑎𝑏|𝑎𝑝
is considered. The computation of 𝐹

𝑎𝑏|𝑎𝑝
is

𝐹
𝑎𝑏|𝑎𝑝

= max {𝐹
𝑎𝑝𝑏
, 𝐸
𝑎𝑝𝑏

− 𝑔
𝑜
} − 𝑔
𝑒
, (3)

where 𝑔𝑜 is the gap open penalty and 𝑔𝑒 is the gap extension
penalty.𝐾

𝑎𝑏|𝑎𝑝
is computed using

𝐾
𝑎𝑏|𝑎𝑝

= max {𝐾
𝑎𝑏𝑝
, 𝐸
𝑎𝑏𝑝

− 𝑔
𝑜
} − 𝑔
𝑒
, (4)

where 𝑏
𝑝
is the parent of the 𝑏th node in PT(𝑅). The compu-

tation of 𝐸
𝑎𝑏|𝑎𝑝

is achieved using

𝐸
𝑎𝑏|𝑎𝑝

= max {𝐸
𝑎𝑝𝑏𝑝

+ 𝑂 (𝑎
𝑝
, 𝑎; 𝑏
𝑝
, 𝑏) , 𝐹

𝑎𝑝𝑏𝑝
, 𝐾
𝑎𝑝𝑏𝑝

, 0} , (5)

where𝑂(𝑎
𝑝
, 𝑎; 𝑏
𝑝
, 𝑏) represents the score between the symbol

on edge (𝑎
𝑝
, 𝑎) and (𝑏

𝑝
, 𝑏). The computation of 𝐸

𝑎𝑏
, 𝐹
𝑎𝑏
, and

𝐾
𝑎𝑏
is defined as

(𝐸
𝑎𝑏
, 𝐹
𝑎𝑏
, 𝐾
𝑎𝑏
)

=

{

{

{

(𝐸
𝑎𝑏|𝑎
󸀠 , 𝐹
𝑎𝑏|𝑎
󸀠 , 𝐾
𝑎𝑏|𝑎
󸀠) , When 𝐸

𝑎𝑏|𝑎
󸀠 > 0,

(−∞, −∞, −∞) , all other cases,

(6)

where 𝑎󸀠 = argmax
𝑎𝑝∈𝑎𝑟(𝑎)

𝐸
𝑎𝑏|𝑎𝑝

and 𝑎𝑟(𝑎) is a set containing
parent nodes of 𝑎. Variable 𝐸

𝑎𝑏
represents the best match-

ing score between the substrings, that is, substring 𝑎 and
substring 𝑏. Consider 𝐸

𝑎𝑏
> 0 when the substrings 𝑏 and

𝑎 match. It is known that the Smith-Waterman algorithm
provides accurate alignment results but requires large com-
putation time. To optimize the computations, the reverse
postorder traversal scheme on DG(𝑋) and PT(𝑋) is adopted.
The dynamic programming mechanism in the BWA-SW
algorithm enables identifying the seed matches of the
genomic sequences. Based on the partial matches, the Smith-
Waterman Alignment is considered to the extended matches.
𝑠𝑒𝑒𝑑 𝑖𝑛𝑡𝑒𝑟V𝑎𝑙 𝑝𝑎𝑖𝑟, that is, (𝑎, 𝑏), is formed when the best
score, that is, 𝐸

𝑎𝑏
, is high and 𝑠𝑢𝑓𝑓𝑖𝑥 𝑎𝑟𝑟𝑎𝑦 𝑖𝑛𝑡𝑒𝑟V𝑎𝑙 size of 𝑏

is within the threshold set.The seedmatches are derived from
𝑠𝑒𝑒𝑑 𝑖𝑛𝑡𝑒𝑟V𝑎𝑙 𝑝𝑎𝑖𝑟𝑠 by analyzing the suffix array of sequences
𝑄 and𝑅.Matching of the extended seedmatches using Smith-
Waterman algorithm is considered only when high matching
scores are observed.

3. Proposed Burrows-Wheeler Aligner’s
Smith-Waterman Alignment on the Parallel
MapReduce, BWASW-PMR

BWASW-PMR provides a cloud platform to perform long
read alignments considering genomic data obtained from

BioMed Research International 5

A NB$

$ N

$ NA

A

A

$

A

$ N

A

$

N

A

N

A

$

(a)

A NABANANA$

$ NA $ NA$

NA$
$

(b)

B A N A N A $

N
A

$

$

$

(c)

0 BANANA$

1 ANANA$B
2 NANA$BA
3 ANA$BAN
4 NA$BANA
5 A$BANAN
6 $BANANA

String sorting

0 6 $BANAN
1 5 A$BANA
2 3 ANA$BA
3 1 ANANA$

4 0 BANANA
5 4 NA$BAN
6 2 NANA$B

N

N
B

$

A

A

A

(d)

Figure 2: Example of reference in a prefix trie, query in prefix DAWG, and the suffix array of the input string “BANANA$”. (a) represents
reference prefix trie searching for any substring of the string by staring at the root and followingmatches down the tree until being exhausted.
(b) represents prefix DAWG constructed by collapsing nodes with the identical suffix array interval. DAWG transformed from the prefix trie
of the query sequence. (c) represents a constructed string suffix automaton (DAWG). (d) represents the suffix array for string “BANANA$”.
The dollar sign $ is a regular expression that denotes the end of a line in the reference sequence.

NGS techniques. The BWASW-PMR adopts the MapReduce
computation model for cloud computation. To support scal-
ability in BWASW-PMR, map and reduce worker nodes are
deployed on a cloud cluster consisting of VMs. For long read
alignments, the BWA-SW algorithm is adopted. The advan-
tages of adopting the BWA-SW algorithm for long read
alignments and its advantages over the existing aligners are
found in [10]. The BWASW-PMR considers the genomic
sequence alignment in dual phases, that is, map and reduce
phase. Existing long read aligners for cloud platforms adopt
the Hadoop framework. In the Hadoop framework based
solutions, the map phase is executed and then the reduce
phase is initiated. To overcome the drawbacks of Hadoop, a
parallel execution strategy of the map and reduce phases is
considered. Optimization of the Smith-Waterman algorithm
is an additional feature considered in BWASW-PMR. Execu-
tion of the map and reduce functions is modelled to run in
parallel utilizing all programming cores available in worker
VMs.

3.1. Overview and Preliminaries. Let 𝑅 represent a reference
genomic sequence and𝑄 the query sequence. BWASW-PMR

is deployed on a cloud platform comprising a master node,
map worker nodes, and reduce worker nodes. The master
node of BWASW-PMR initializes 𝑤 map and reduce worker
nodes using virtual computing nodes. Each computing node
orVM is assumed to have𝑝CPUcores available for computa-
tion. LetTVM Config represent the time taken to initialize the
virtual computing platform. The sequence 𝑅 is split into 𝑅󸀠
chunks with overlapping sections (the overlapping sections
are depicted in grey in Figure 2). The reference chunk and 𝑄
are sent to map worker nodes as input key, value pairs. The
key value pairs considering the chunk 𝑅󸀠 are represented as
(𝑘𝑟, V𝑟), where 𝑘𝑟 is a key and V𝑟 contains the overlapping
offset data. The key value pair of 𝑄 is represented as (𝑘𝑞, V𝑞),
where 𝑘𝑞 is a key and V𝑞 is the query sequence. In each
of the 𝑤 map workers, sequence 𝑄 is further split into 𝑄

󸀠

chunks and stored in the local memory available. Alignment
is performed using the BWA-SW algorithm considering 𝑅󸀠
and each 𝑄

󸀠 in a parallel fashion utilizing the 𝑝 cores.
The Smith-Waterman algorithm in BWA-SW is optimized
by a parallelization technique to reduce execution time. Let
TMAP represent the average execution time of the 𝑤 map
worker nodes. The map workers after computation provide

6 BioMed Research International

Chunk
R

󳰀

Local memory
1 2

Local memory
1 2

Map
output

data

Map
output

data

Temporary cloud storageMap workers Cloud storageReduce workers

Shuffle Sort Reduce

Shuffle Sort Reduce

Chunk 1

Chunk 2

Burrows-Wheeler Aligner’s Smith-

Burrows-Wheeler Aligner’s Smith-

Smith-Waterman
parallelized

Smith-Waterman
parallelized

BWASW-PMR master node

Sequence
alignment

results

Query genome Q

Reference genome R

Parallel execution platform

Parallel execution platform

...
...

...
...

...
...

...

Q
󳰀

Q
󳰀

Cloud storage

Waterman (BWA-SW) Alignment

Waterman (BWA-SW) Alignment

Virtual machine—map worker w

Virtual machine—map worker 1

Virtual machine—reduce worker w

Virtual machine—reduce worker 1

Figure 3: BWASW-PMR cloud model for long read sequence alignment.

alignment locations between 𝑄 and chunk 𝑅󸀠 along with the
score. Multiple alignment locations and scores (i.e., V𝑚 along
the chunk id of 𝑅󸀠 and 𝑘𝑚) are stored in the temporary cloud
memory as list(𝑘𝑚, V𝑚). The map function of BWASW-PMR
can be defined as map((𝑘𝑟, V𝑟), (𝑘𝑞, V𝑞)) → list(𝑘𝑚, V𝑚).
Reduce worker nodes 𝑤 obtain intermediate data, that is,
list(𝑘𝑚, V𝑚), to perform the shuffle and sort function. In
the reduce phase, aggregation of all alignment locations,
that is, list(V𝑑), that are nonredundant and nonoverlapping
is considered. The reduce operation can be defined as
reduce(𝑘𝑚, list(V𝑚)) → list(V𝑑). LetTREDUCE represent the
average time required by 𝑤 reduce worker nodes to perform
the shuffle, sort, and reduce computation.The totalmakespan
of the BWASW-PMR cloud platform to align the sequence 𝑄
against 𝑅 is computed as

T = TVM Config +TMAP +TREDUCE. (7)

The overview of the BWASW-PMR cloud platform is shown
in Figure 3.

In the map phase of the BWASW-PMR cloud platform,
alignment locations and corresponding scores between𝑄 and
chunk 𝑅

󸀠 are computed. The required data, that is, 𝑄 and
chunk 𝑅󸀠, is obtained from the cloud memory. Let tGet Data M
represent the time taken to obtain the data. To reduce
computation time using parallel computing techniques, the
genomic sequence𝑄 is split into𝑄󸀠 chunks. Let t

𝑄𝐼
represent

the time taken to split sequence 𝑄 into 𝑄󸀠 chunks. Sequence
alignment considering one chunk of 𝑄󸀠 and 𝑅󸀠 is performed
using the BWA-SW algorithm. DG(𝑄󸀠) and PT(𝑅󸀠) are
initially constructed. The seed matches of sequences 𝑄󸀠 and
𝑅
󸀠 are computed using a dynamic programming mechanism.

The seeds computed are extended to ensure rule alignment of
the genomic sequences using the SW algorithm. To reduce
computation time, parallelization of the SW algorithm is
considered in BWASW-PMR. The parallelization technique
to optimize computation is discussed in the latter subsection.

Let tBWASW represent the time taken to align 𝑄󸀠th chunk
and 𝑅󸀠 using the BWA-SW algorithm.The total time taken to
align the total 𝑄󸀠 chunks is (𝑄󸀠 × tBWASW). As 𝑝 computing
cores are available with each worker node, the parallel
computation of 𝑝 number of chunks of 𝑄 is possible. The
computation time considering all 𝑄󸀠 chunks and utilizing
𝑝 cores is defined as ((𝑄󸀠 × tBWASW)/𝑝). The alignment
locations and scores obtained are stored in the cloud for
reduce workers. The time taken to store this data per map
worker is represented as tStore Data M. The makespan of the
𝑤th map worker node can be defined as

T
𝑤 MAP = (tGet Data M + t

𝑄𝐼
+

𝑄
󸀠
× tBWASW
𝑝

+ tStore Data M) .

(8)

The average execution time of all the𝑤mapworker nodes
is defined as

TMAP =
∑
𝑤

𝑖=1
T
𝑖 MAP

𝑤

. (9)

3.2. Reduce Phase. Themaster node in BWASW-PMR initial-
izes𝑤 reduceworker nodes and𝑤mapworker nodes simulta-
neously.This parallel initializationmechanism enables reduc-
ing the total makespan T. In the reduce phase, the shuffle

BioMed Research International 7

Z1,1 Z1,2 Z1,3 Z1,4 Z1,5 Z1,6 Z1,7 Z1,8 Z1,9

Z2,1 Z2,2 Z2,3 Z2,4 Z2,5 Z2,6 Z2,7 Z2,8 Z2,9

Z3,1 Z3,2 Z3,3 Z3,4 Z3,5 Z3,6 Z3,7 Z3,8 Z3,9

Z4,1 Z4,2 Z4,3 Z4,4 Z4,5 Z4,6 Z4,7 Z4,8 Z4,9

Z5,1 Z5,2 Z5,3 Z5,4 Z5,5 Z5,6 Z5,7 Z5,8 Z5,9

(a)

Z1,1 Z1,2 Z1,3 Z1,4 Z1,5 Z1,6 Z1,7 Z1,8 Z1,9

Z2,1 Z2,2 Z2,3 Z2,4 Z2,5 Z2,6 Z2,7 Z2,8 Z2,9

Z3,1 Z3,2 Z3,3 Z3,4 Z3,5 Z3,6 Z3,7 Z3,8 Z3,9

Z4,1 Z4,2 Z4,3 Z4,4 Z4,5 Z4,6 Z4,7 Z4,8 Z4,9

Z5,1 Z5,2 Z5,3 Z5,4 Z5,5 Z5,6 Z5,7 Z5,8 Z5,9

(b)

Figure 4: Smith-Waterman algorithm: (a) conventional computation technique and data dependencies and (b) wavefront based parallelized
technique adopted in BWASW-PMR.

function obtains the intermediate data (produced by the
worker nodes) from the cloud storage. The alignment loca-
tions obtained from the intermediate data are sorted based
on the offset data. The time taken by the 𝑤th reduce worker
node to obtain the intermediate data and perform shuffle
and sort operations is represented as tGet Data R. The reduce
function in BWASW-PMR is used to aggregate the alignment
locations. The overlapping and redundant alignments are
neglected. Parallelization of the reduce function is achieved
by utilizing all 𝑝 computing cores available with worker
nodes. Let tFn R/𝑝 represent the time taken to compute the
reduce function utilizing the 𝑝 computing cores. The reduce
function provides the alignment results between sequences 𝑅
and 𝑄 that are written to cloud storage for further analysis.
Let tStore Data R represent the time taken by the 𝑤th reduce
worker node to write alignment results into the cloud storage.
The makespan of the𝑤th reduce worker node can be defined
as

T
𝑤 REDUCE = (tGet Data R +

tFn R
𝑝

+ tStore Data R) . (10)

The average makespan of the 𝑤 reduce worker nodes, that is,
TREDUCE, is defined as

TREDUCE =
∑
𝑤

𝑖=1
T
𝑖 REDUCE
𝑤

. (11)

Using (11) and (9), the total makespan of the BWASW-PMR
can be defined as

T = TVM Config +
∑
𝑤

𝑖=1
(T
𝑖 MAP +T

𝑖 REDUCE)

𝑤

. (12)

From (12), it can be observed thatT (the computing time
or makespan of BWASW-PMR) depends on the computation
time of map and reduce worker nodes. The core alignment
steps (based on the BWA-SW algorithm) are performed by

the map worker nodes, that is,TREDUCE ≪ TMAP. The time
taken to initialize the map and reduce computing clusters
based on VMs, that is,TVM Config, is dependent on the cloud
platform considered for deployment and can be neglected.
Therefore, it can be stated by the total makespan:

T ≈

∑
𝑤

𝑖=1
(T
𝑖 MAP)

𝑤

. (13)

Optimizing the SW algorithm in BWA-SW is a possible
solution to reduce the total makespanT.

3.3. Smith-Waterman Algorithm Optimization. In the SW
algorithm, computation of the similarity matrix score, that
is, 𝑍, requires the maximum time. Adopting a parallelization
technique for computation of 𝑍 is considered in BWASW-
PMR. Let us consider a query sequence 𝑄 and reference
sequence 𝑅, whose sizes are 4 and 8, respectively. Therefore,
the matrix 𝑍 to be computed is of size (5,9) and is shown in
Figure 4(a). Data dependencies that exist in computing each
element of 𝑍 make the parallelization technique difficult to
implement. For computation of 𝑍

3,4
(shown as black lines in

Figure 4(a)), it requires that the computation of𝑍
2,3
,𝑍
2,4
, and

𝑍
3,3

must be completed. Based on the sequences𝑄 and𝑅, and
values of 𝑍

2,3
, 𝑍
2,4
, and 𝑍

3,3
, the value of 𝑍

3,4
is obtained.

The computation of 𝑍 is more often done serially as shown
through the grey arrows in Figure 4(a). To parallelize the
computation of 𝑍, the adoption of CUDA/GPU based tech-
niques was considered by researchers [33, 41]. However, the
availability and cost of such computing platforms on public
clouds are an issue. Tomaximize resource utilization available
with theVMworker node atminimal costs in BWASW-PMR,
wavefront based parallelization technique [42] is considered.
The parallel computation technique adopted is shown by grey
diagonal lines in Figure 4(b). Computation of all cells of 𝑍
that fall under the diagonal lines can be done in a parallelized
fashion.

8 BioMed Research International

Table 1: Information of the genome sequences used as queries considering equal section lengths from the Homo sapiens chromosome 15 as
reference.

Representation Query genome definition (NCBI accession number) Length
∼5 k Adelie penguin polyomavirus isolate AdPyV Crozier 2012 (NC 026141.2) 4988 bp
∼8 k Rhesus monkey papillomavirus (NC 001678.1) 8028 bp
∼10 k Xenopus laevis endogenous retrovirus Xen1 (NC 010955.1) 10207 bp
∼15 k Japanese eel endothelial cells-infecting virus (NC 015123.1) 15131 bp

The parallelization technique adopted to compute 𝑍 in
SW algorithm enables reducing the makespan of map worker
nodes, that is,TMAP.

4. Evaluation: Experiments

In this section, we study the performance of BWASW-
PMR cloud platform. BWASW-PMR is developed using C++
and C#.Net and is deployed on the Azure cloud platform.
BWASW-PMR adopts the BWA-SW algorithm with the opti-
mization of SWalgorithm. Experiments have been conducted
to study the performance of the optimized SW algorithm.
The performance of BWASW-PMR is comparedwith Bwasw-
Cloud to perform long read alignments on the cloud plat-
form. All genomic data considered for the experiments are
obtained from NCBI database [3] that is publically available.

4.1. SW Optimization Analysis. Optimization of the SW
algorithm in BWA-SW aligner for BWASW-PMR is a novel
approach considering cloud deployment. To analyze perfor-
mance of the optimized SW algorithm, comparison with
the standard SW algorithm (hereafter referred to as the
SW algorithm in this section) available within BWA-SW is
considered. The optimization is achieved using a wavefront
parallelization technique. The optimized version of SW is
hereafter referred to as “SW-Optimized” in this section. Uni-
form SW parameter settings (i.e., gap penalty, matching, and
mismatching score) are considered for analysis. For analysis,
the sequences 𝑅 and𝑄 of equal lengths are considered. Equal
length is considered to maximize the computations required
for alignments. Section of Homo sapiens chromosome 15,
GRCh38.p2 Primary Assembly (NC 000015.10), is consid-
ered as the reference 𝑅. Query sequences considered are
obtained from the influenza virus database [43]. The query
sequences considered are summarized in Table 1.

Execution time of SW-Optimized and SW algorithm is
noted for the four alignment pairs described. The results
obtained are graphically shown in Figure 4. A logarithmic
(Base 10) representation of the execution is considered in
Figure 5. As sequence lengths for alignment are increased,
the execution time of SW and SW-Optimized increases. The
execution time of SW-Optimized is lower when compared
to the considered serial SW algorithm. All experiments are
executed on aQuadCore Intel i7machine with 8GB of RAM.
An average reduction in the execution time of about 91.8% is
observed. Results obtained prove SW-Optimized considered
in BWASW-PMR outperforms the classical SW algorithm.

Number of bp considered for alignment

Sequence alignment—execution time

SW
SW-optimized

0.1

1

10

100

Lo
g

sc
al

ed
 ex

ec
ut

io
n

tim
e (

s)

∼5 k ∼8 k ∼10 k ∼15 k

Figure 5: Execution time (in log scale—Base 10) of SW and SW-
Optimized considering varied genomic sequence lengths.

4.2. Experiments considering BWASW-PMR Cloud and
Bwasw-Cloud Single Computing Node. To evaluate the
performance of BWASW-PMR, comparison with Bwasw-
Cloud is considered. Deployments of Bwasw-Cloud and
BWASW-PMR are considered with one computing node
(i.e., onemap worker and one reduce worker are considered).
BWASW-PMR is deployed on the Azure cloud platform.
Bwasw-Cloud is designed using the Hadoop framework.
Apache Hadoop & YARN 2.4.0 version is used in the
deployment of the Bwasw-Cloud. Uniform configurations
of the computing nodes are considered in the deployments.
Bakers yeast genomic database (i.e., Saccharomyces cerevisiae
S288c) is considered for evaluation [44]. Experiments using
a reference genomic sequence and five query sequences of
varied lengths are considered. The experiments conducted
with the reference and query genomic sequences are summa-
rized in Table 2. Makespan or total execution time is noted
and the results obtained are shown in Figure 6. The results
obtained prove that the proposed BWASW-PMR cloud
aligner deployed on Azure outperforms Bwasw-Cloud
deployed onHadoop. In experiment 1, the speed-up achieved
for BWASW-PMR is about 4.5. For longer sequence align-
ments, that is, in experiment 5, the speed-up was observed
to be 7.5. As query length increases, the performance of
BWASW-PMR improves. An average speed-up of 6.7 is
achieved considering BWASW-PMR when compared to the
Bwasw-Cloud.

BioMed Research International 9

Table 2: Experiment information considered to compare the performance of BWASW-PMR with the Bwasw-Cloud.

Number Reference genome (NCBI accession
number) Length Query genome (NCBI accession

number) Length

1 TPA inf: Saccharomyces cerevisiae S288c
chromosome IV (BK006938.2) 1531933 bp TPA inf: Saccharomyces cerevisiae

S288c chromosome V (BK006939.2) 576874 bp

2 TPA inf: Saccharomyces cerevisiae S288c
chromosome IV (BK006938.2) 1531933 bp TPA inf: Saccharomyces cerevisiae

S288c chromosome XI (BK006944.2) 666816 bp

3 TPA inf: Saccharomyces cerevisiae S288c
chromosome IV (BK006938.2) 1531933 bp TPA inf: Saccharomyces cerevisiae

S288c chromosome X (BK006943.2) 745751 bp

4 TPA inf: Saccharomyces cerevisiae S288c
chromosome IV (BK006938.2) 1531933 bp TPA inf: Saccharomyces cerevisiae

S288c chromosome II (BK006936.2) 813184 bp

5 TPA inf: Saccharomyces cerevisiae S288c
chromosome IV (BK006938.2) 1531933 bp TPA inf: Saccharomyces cerevisiae

S288c chromosome XVI (BK006949.2) 948066 bp

1 2 3 4 5
Experiment number

Long read alignment—makespan time

35

55

75

95

115

135

155

175

M
ak

es
pa

n
tim

e (
s)

BWASW-PMR
Bwasw-Cloud

Figure 6: Makespan observations considering 5 long read sequence
alignment experiments.

4.3. Experiments considering BWASW-PMR Cloud and
Bwasw-Cloud on Azure. This section discusses public cloud
deployments and performance analysis of BWASW-PMR
against Bwasw-Cloud. Deployment of BWASW-PMR on the
Amazon cloud andAzure cloud is possible. Here, deployment
of BWASW-PMR on the Azure cloud is considered and
presented. The deployed BWASW-PMR considers A3 VM
instances. Each A3 VM instance consists of 4 computing
cores, 7 GB of RAM, and 120GB of local hard drive space.
The deployment of Azure cloud consists of one master node
and four worker nodes. HDInsight enables the deployment
and provisioning of Apache Hadoop clusters on the Azure
cloud platform [45]. Apache Hadoop & YARN version 2.6.0
is considered in the deployment of Bwasw-Cloud. Hadoop
cluster of Bwasw-Cloud consists of 4 worker nodes of A3 VM
instances and one master node.Homo sapiens chromosome 1
(NC 000001.11), consisting of approximately 250 million bp,
is considered for evaluations. Overlapping of 10 k is consid-
ered. The query sequence segments are obtained from the
Homo sapiens chromosome 1 segment reads. The length of
the queries is varied (based on the read lengths) in terms of
1000 bp, 5000 bp, and 10000 bp. A total of 150 reads per length
are considered. Generated log files obtained after the

1000 5000 10000
Length of reads

0
5

10
15
20
25
30
35
40
45

M
ak

es
pa

n
tim

e (
s)

BWASW-PMR
Bwasw-Cloud

Long read alignment—makespan time on public cloud

Figure 7: BWASW-PMR and Bwasw-Cloud makespan time com-
parisons for 150 reads of varied length considering the Azure public
cloud deployments.

execution are studied to derive observations and results.
The total makespan observed, that is, T, is shown in
Figure 7.The results prove that BWASW-PMR exhibits lower
makespan time when compared to Bwasw-Cloud. As lengths
of sequence reads increase, execution time increases due
to the increase in alignment length sequences considered.
Long sequence alignment considering BWASW-PMR gains
a speed-up of 1.33 when compared to the Bwasw-Cloud
aligner. The parallel executions of map and reduce phases
along with SW optimization are the main contributing
factors to the speed-up observed in this study.

Detailed analysis of the experimental data reveals parallel
execution of map function and SW optimization aid in
reducing map makespans. The major alignment computa-
tions are carried out in the map phase, considering both
BWASW-PMR and Bwasw-Cloud. An average reduction in
the map phase makespan across all the experiments achieved
by BWASW-PMR against Bwasw-Cloud is about 30%. The
accumulation of the results, that is, aggregation of the align-
ment locations, is carried out in the reduce phase. No major
computation is carried out in the reduce phase of BWASW-
PMR and Bwasw-Cloud. The parallelization of the reduce

10 BioMed Research International

Reduce worker 1
Reduce worker 2
Reduce worker 3
Reduce worker 4

Map worker 1
Map worker 2
Map worker 3
Map worker 4

Ta
sk

 ex
ec

ut
io

n

2 4 6 8 10 12 14 16 180
Makespan time (s)

Long read sequence aligner execution considering

Reduce worker 1
Reduce worker 2
Reduce worker 3
Reduce worker 4

Map worker 1
Map worker 2
Map worker 3
Map worker 4

Ta
sk

 ex
ec

ut
io

n

5 10 15 20 250
Makespan time (s)

Long read sequence aligner execution considering

Reduce worker 1
Reduce worker 2
Reduce worker 3
Reduce worker 4

Map worker 1
Map worker 2
Map worker 3
Map worker 4

Ta
sk

 ex
ec

ut
io

n

Long read sequence aligner execution considering

5 10 15 20 25 300
Makespan time (s)

Bwasw-Cloud (10000 b read)

Bwasw-Cloud (1000 b read)

Bwasw-Cloud (5000 b read)

(a)

Reduce worker 1
Reduce worker 2
Reduce worker 3
Reduce worker 4

Map worker 1
Map worker 2
Map worker 3
Map worker 4

Ta
sk

 ex
ec

ut
io

n

Long read sequence aligner execution considering

2 4 6 8 10 120
Makespan time (s)

Reduce worker 1
Reduce worker 2
Reduce worker 3
Reduce worker 4

Map worker 1
Map worker 2
Map worker 3
Map worker 4

Ta
sk

 ex
ec

ut
io

n

Long read sequence aligner execution considering

2 4 6 8 10 12 14 16 180
Makespan time (s)

Reduce worker 1
Reduce worker 2
Reduce worker 3
Reduce worker 4

Map worker 1
Map worker 2
Map worker 3
Map worker 4

Ta
sk

 ex
ec

ut
io

n
Long read sequence aligner execution considering

5 10 15 200
Makespan time (s)

BWASW-PMR (10000 b read)

BWASW-PMR (5000 b read)

BWASW-PMR (1000 b read)

(b)

Figure 8: Long read sequence alignment, execution makespans of the map, and reduce worker nodes. (a) Bwasw-Cloud on Hadoop cluster
of 4 nodes. (b) BWASW-PMR on Azure cluster of 4 nodes.

function adopted in BWASW-PMR achieves an average
reduction of 9.3% in TREDUCE when compared to Bwasw-
Cloud. To prove efficiency in adopting a parallel map and
reduce execution environment for the BWASW-PMR, mak-
espans of the tasks executed at the map and reduce worker
nodes are noted. The results obtained are shown in Figure 8.
In Figure 8(a), the makespans of the worker nodes in Bwasw-
Cloud deployed on the Hadoop cluster are shown. The
makespans of the worker nodes in BWASW-PMR deployed
on Azure are shown in Figure 8(b). From Figure 8, it is
clear that the uniform tasks executed on BWASW-PMR
exhibit lower makespans when compared to the execution on
Bwasw-Cloud. In Figure 8(a), the reduce phase is initialized
when all the map workers have completed their jobs. In
BWASW-PMR, the reduce workers are running in parallel.
The reduce phase is initiated when one or more of the map
worker nodes have completed their jobs.

The SW optimization considered in BWASW-PMR
reduces execution time of sequences to be aligned based on
the SW algorithm. The experimental study and the results

obtained prove that BWASW-PMR is capable of aligning long
sequences using the cloud computing platform.

5. Comparison Notes with
Related Work Counterparts

In this section, a comparison of BWASW-PMR with exist-
ing cloud aligners for long sequence reads is presented.
Comparisons with Bwasw-Cloud [34], MapReduce-BLAST
[33], CloudAligner [13], and the BWA-SW [10] aligners
are considered. The BWA-SW sequence aligner [10] for
long reads is memory hungry (high RAM requirements).
Moreover, execution on the cloud platform is not considered.
TheCloudAligner [13] adopts the seed-and-extend algorithm
for sequence alignment. The BWA-SW and BLAST also
adopt similar approach. Though the seed-and-extend based
aligners are fast, they suffer from low accuracy [10] and are
more suitable for short read alignments. To achieve accurate
alignment results considering long reads, the SW algorithm
is adopted in the BWA-SW. MapReduce-BLAST [33] is

BioMed Research International 11

Table 3: Comparison of BWASW-PMR with its related work counterparts.

BWASW-PMR Bwasw-Cloud
[34]

MapReduce-BLAST
[33] CloudAligner [13] BWA-SW

[10]
Long sequence alignment support Yes Yes Yes Yes Yes

Alignment algorithm adopted BWA-SW BWA-SW Blast Seed-and-extend
algorithm BWA-SW

SW for accurate alignment Yes Yes No No Yes
Cloud MapReduce platform execution support Yes Yes Yes Yes No
MapReduce platform considered Custom Hadoop Hadoop Hadoop No
SW optimization Yes No No No Yes
Parallelization of MapReduce phases Yes No No No No
Accuracy Yes Yes No No Yes

a parallelized version of BLAST using MapReduce. Bwasw-
Cloud bears the closest similarity to our work and is used for
comparison in the experimental study presented here. Cloud-
based aligners, that is, [13, 33, 34], consider the Hadoop
framework for deployment. The drawbacks of the Hadoop
framework have been discussed in the first section of the
paper. To overcome these drawbacks, BWASW-PMR has
been proposed in this paper. Comparison of BWASW-PMR
with its related work counterparts is summarized in Table 3.

6. Conclusion and Future Work

Sequencing and analyzing of genomic data are important
processes in bioinformatics. Rapid developments of the NGS
technologies produce humongous amount of genomic data.
For analysis of genomic data, alignment tools are used. The
alignment tools are classified as short read type and long read
type. The existing sequence aligners predominantly consider
short read genomic sequences and lacking of support in
cloud environment. These aligners exhibit deficiencies in the
alignment of long sequence genomic data that are currently
generated using NGS technologies. In NGS sequencers, users
are required to wait for sufficient resources to become
available in which the time needed to complete processing
becomes unpredictable. More data is increasingly being gen-
erated which leads to serious issues in storing and processing.
The existing long read aligners that adopt the cloud platform
for computation suffer from drawbacks that are discussed in
this paper. In this paper, we combined cloud infrastructure
and MapReduce framework together as a solution to support
long read sequence alignment. We proposed BWASW-PMR
cloud platform to align long read sequences. The BWA-
SW algorithm is adopted for long sequence alignment in
BWASW-PMR cloud platform. Optimization of the SW algo-
rithm and a Parallel MapReduce execution strategy are con-
sidered in BWASW-PMR. Parallel execution of the map and
reduce functions is adopted to maximize resource uti-
lization of the VM based cloud computing platform and
reduce makespans. This paper highlights comparison of
the proposed BWASW-PMR with the existing systems for
long sequence alignments. The experiments presented have
proven the efficiency of the optimized SW algorithm. More-
over, comparison with state-of-the-art Bwasw-Cloud for long

sequence alignment is presented throughout the experimen-
tal study. The results obtained indicate significant improve-
ment considering BWASW-PMR when compared to Bwasw-
Cloud. Our proposed BWASW-PMR is of use to the genomic
community to support the required computations for long
sequence alignment efficiently.Theparallel executions ofmap
and reduce phases along with SW optimization are the main
contributing factors to the speed-up observed in this study.

In the future, we propose to undertake optimization of the
BWA-SW algorithm due to its memory hungry nature and
also accelerating BWA-MEM algorithm of Burrows Wheeler
aligner [12] on different platform.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This work was supported by the National Research Founda-
tion of Korea (NRF) grant funded by the Korea government
(MEST) (no. NRF-2013R1A1A2013401).

References

[1] D. W. Mount, Bioinformatics: Sequence and Genome Analysis,
Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY,
USA, 2004.

[2] Google Cloud Genomics Platform, 2015, https://cloud.google
.com/genomics/.

[3] National Center for Biotechnology Information, 2015, http://
www.ncbi.nlm.nih.gov/.

[4] H. Li and R. Durbin, “Fast and accurate short read alignment
with Burrows-Wheeler transform,” Bioinformatics, vol. 25, no.
14, pp. 1754–1760, 2009.

[5] B. Langmead and S. L. Salzberg, “Fast gapped-read alignment
with Bowtie 2,” Nature Methods, vol. 9, no. 4, pp. 357–359, 2012.

[6] W. R. Pearson and D. J. Lipman, “Improved tools for biological
sequence comparison,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 85, no. 8, pp. 2444–
2448, 1988.

12 BioMed Research International

[7] S. F. Altschul, T. L. Madden, A. A. Schäffer et al., “Gapped
BLAST and PSI-BLAST: a new generation of protein database
search programs,” Nucleic Acids Research, vol. 25, no. 17, pp.
3389–3402, 1997.

[8] W. J. Kent, “BLAT—the BLAST-like alignment tool,” Genome
Research, vol. 12, no. 4, pp. 656–664, 2002.

[9] R. Li, Y. Li, K. Kristiansen, and J. Wang, “SOAP: short oligonu-
cleotide alignment program,” Bioinformatics, vol. 24, no. 5, pp.
713–714, 2008.

[10] H. Li and R. Durbin, “Fast and accurate long-read alignment
with Burrows-Wheeler transform,” Bioinformatics, vol. 26, no.
5, pp. 589–595, 2010.

[11] Y. Liu and B. Schmidt, “Long read alignment based onmaximal
exact match seeds,” Bioinformatics, vol. 28, no. 18, pp. i318–i324,
2012.

[12] H. Li, “Aligning sequence reads, clone sequences and assembly
contigs with BWA-MEM,” http://arxiv.org/abs/1303.3997v1.

[13] T. Nguyen,W. Shi, andD. Ruden, “CloudAligner: a fast and full-
featured MapReduce based tool for sequence mapping,” BMC
Research Notes, vol. 4, article 171, 2011.

[14] M. Bakery and R. Buyyaz, “Cluster computing at a glance,” in
High Performance Cluster Computing: Architectures and System,
R. Buyyaz, Ed., pp. 3–47, Prentice-Hall, Upper Saddle River, NJ,
USA, 1999.

[15] M. C. Schatz, B. Langmead, and S. L. Salzberg, “Cloud comput-
ing and the DNA data race,”Nature Biotechnology, vol. 28, no. 7,
pp. 691–693, 2010.

[16] J. Dean and S. Ghemawat, “MapReduce: simplified data pro-
cessing on large clusters,” in Proceedings of the 6th Symposium
on Operating SystemDesign and Implementation (OSDI ’04), pp.
137–150, San Francisco, Calif, USA, December 2004.

[17] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I.
Stoica, “Spark: cluster computingwithworking sets,” inProceed-
ings of the 2nd USENIX Conference on Hot topics in Cloud Com-
puting, Boston, Mass, USA, June 2010.

[18] G. Malewicz, M. H. Austern, A. J. C. Bik et al., “Pregel: a system
for large-scale graph processing,” in Proceedings of the ACM
SIGMOD International Conference on Management of Data
(SIGMOD ’10), pp. 135–145, ACM, Indianapolis, Ind, USA, June
2010.

[19] P. C. Church and A. M. Goscinski, “A survey of cloud-based
service computing solutions for mammalian genomics,” IEEE
Transactions on Services Computing, vol. 7, no. 4, pp. 726–740,
2014.

[20] L. D. Stein, “The case for cloud computing in genome informat-
ics,” Genome Biology, vol. 11, no. 5, article 207, 2010.

[21] Amazon Web Services Genomics, 2015, https://aws.amazon
.com/health/genomics/.

[22] Microsoft Azure: Cloud Computing Platform & Services, 2015,
https://azure.microsoft.com/en-us/.

[23] Answers to genome analysis may be in the clouds, 2015, https://
cloud.google.com/genomics/.

[24] Galaxy, 2015, https://usegalaxy.org/.
[25] R.K.Madduri,D. Sulakhe, L. Lacinski et al., “Experiences build-

ing Globus Genomics: a next-generation sequencing analysis
service using Galaxy, Globus, and Amazon Web Services,”
Concurrency Computation Practice and Experience, vol. 26, no.
13, pp. 2266–2279, 2014.

[26] J. Zhang, W. Zhang, H. Wu, and T. Huang, “VMFDF: a virtual-
ization-based multi-level fault detection framework for high
availability computing,” in Proceedings of the IEEE 9th Inter-
national Conference on e-Business Engineering (ICEBE ’12), pp.
367–373, Hangzhou, China, September 2012.

[27] C.Weng, J. Zhan, and Y. Luo, “TSAC: enforcing isolation of vir-
tual machines in clouds,” IEEE Transactions on Computers, vol.
64, no. 5, pp. 1470–1482, 2015.

[28] J. E. Smith and R. Nair,Virtual Machines: Versatile Platforms for
Systems and Processes, Elsevier, New York, NY, USA, 2005.

[29] Hadoop, http://hadoop.apache.org.
[30] M. C. Schatz, “CloudBurst: highly sensitive read mapping with

MapReduce,” Bioinformatics, vol. 25, no. 11, pp. 1363–1369, 2009.
[31] Y. Li and S. Zhong, “SeqMapReduce: software and web service

for accelerating sequence mapping,” in Proceedings of the Criti-
cal Assessment of Massive Data Anaysis (CAMDA ’09), Chicago,
Ill, USA, 2009.

[32] B. Langmead, M. C. Schatz, J. Lin, M. Pop, and S. L. Salzberg,
“Searching for SNPs with cloud computing,” Genome Biology,
vol. 10, article R134, 2009.

[33] X.-L. Yang, Y.-L. Liu, C.-F. Yuan, and Y.-H. Huang, “Paralleliza-
tion of BLAST with MapReduce for long sequence alignment,”
in Proceedings of the 4th International Symposium on Parallel
Architectures, Algorithms and Programming (PAAP ’11), pp. 241–
246, IEEE, Tianjin, China, December 2011.

[34] M. Sun, X. Zhou, F. Yang, K. Lu, andD. Dai, “Bwasw-cloud: effi-
cient sequence alignment algorithm for two big data with
MapReduce,” in Proceedings of the 5th International Conference
on the Applications of Digital Information andWeb Technologies
(ICADIWT ’14), pp. 213–218, IEEE, Bangalore, India, February
2014.

[35] J. Ekanayake, H. Li, B. Zhang et al., “Twister: a runtime for iter-
ative MapReduce,” in Proceedings of the 19th ACM Interna-
tional Symposium on High Performance Distributed Computing
(HPDC ’10), pp. 810–818, Chicago, Ill, USA, June 2010.

[36] D. Jiang, A. K. H. Tung, and G. Chen, “MAP-JOIN-REDUCE:
toward scalable and efficient data analysis on large clusters,”
IEEE Transactions on Knowledge and Data Engineering, vol. 23,
no. 9, pp. 1299–1311, 2011.

[37] D. Dahiphale, R. Karve, A. V. Vasilakos et al., “An advanced
MapReduce: cloud MapReduce, enhancements and applica-
tions,” IEEE Transactions on Network and Service Management,
vol. 11, no. 1, pp. 101–115, 2014.

[38] T. F. Smith and M. S. Waterman, “Identification of common
molecular subsequences,” Journal of Molecular Biology, vol. 147,
no. 1, pp. 195–197, 1981.

[39] O. Gotoh, “An improved algorithm for matching biological
sequences,” Journal ofMolecular Biology, vol. 162, no. 3, pp. 705–
708, 1982.

[40] P. Ferragina and G. Manzini, “Opportunistic data structures
with applications,” in Proceedings of the 41st Annual Sympo-
sium on Foundations of Computer Science, pp. 390–398, IEEE,
Redondo Beach, Calif, USA, November 2000.

[41] P. D. Vouzis and N. V. Sahinidis, “GPU-BLAST: using graphics
processors to accelerate protein sequence alignment,” Bioinfor-
matics, vol. 27, no. 2, Article ID btq644, pp. 182–188, 2011.

[42] G. F. Pfister, In Search of Clusters: The Coming Battle in Lowly
Parallel Computing, Prentice Hall, 1995.

[43] Influenza Virus Resource, 2015, http://www.ncbi.nlm.nih.gov/
genomes/FLU/FLU.html.

BioMed Research International 13

[44] Saccharomyces genome database (SGD), 2015, http://www
.yeastgenome.org/.

[45] V. K. Baheti, “Windows azure HDInsight: where big data meets
the cloud,” in Proceedings of the Conference on IT in Business,
Industry and Government (CSIBIG ’14), pp. 1–2, Indore, India,
March 2014.

