Skip to main content
. 2016 Jan 12;6:19244. doi: 10.1038/srep19244

Table 2. Accuracy of GEBVs estimated from the simulated population-based datasets (Simulation 1) under different heritabilities.

Case Marker density Method h2 = 0.1 h2 = 0.2 h2 = 0.3 h2 = 0.4 h2 = 0.5
G1   BLUP 0.29 0.47 0.53 0.68 0.70
  HD LASSO 0.50 0.54 0.65 0.79 0.78
    RR-BLUP 0.74 0.82 0.89 0.92 0.92
    BL 0.29 0.42 0.47 0.63 0.65
    G-BLUP 0.74 0.81 0.88 0.94 0.94
    BayesA 0.74 0.82 0.88 0.94 0.94
    BayesB 0.73 0.82 0.89 0.94 0.93
  MD LASSO 0.39 0.56 0.60 0.75 0.78
    RR-BLUP 0.69 0.86 0.87 0.92 0.92
    BL 0.23 0.39 0.54 0.63 0.65
    G-BLUP 0.70 0.86 0.87 0.92 0.92
    BayesA 0.70 0.86 0.87 0.92 0.92
    BayesB 0.70 0.86 0.87 0.92 0.92
  LD LASSO 0.44 0.50 0.64 0.77 0.83
    RR-BLUP 0.47 0.72 0.88 0.90 0.92
    BL 0.23 0.33 0.43 0.55 0.66
    G-BLUP 0.69 0.82 0.84 0.90 0.92
    BayesA 0.72 0.82 0.86 0.90 0.92
    BayesB 0.76 0.82 0.90 0.90 0.92
G1- > G2   BLUP 0.24 0.37 0.57 0.59 0.76
  HD LASSO 0.39 0.62 0.61 0.68 0.81
    RR-BLUP 0.77 0.90 0.91 0.91 0.94
    BL 0.59 0.76 0.79 0.82 0.89
    G-BLUP 0.74 0.87 0.92 0.93 0.94
    BayesA 0.73 0.86 0.91 0.93 0.93
    BayesB 0.73 0.87 0.91 0.93 0.95
  MD LASSO 0.31 0.48 0.63 0.77 0.78
    RR-BLUP 0.73 0.85 0.91 0.94 0.94
    BL 0.26 0.39 0.48 0.59 0.65
    G-BLUP 0.72 0.85 0.91 0.93 0.93
    BayesA 0.73 0.85 0.91 0.93 0.93
    BayesB 0.73 0.86 0.91 0.93 0.93
  LD LASSO 0.44 0.67 0.72 0.83 0.87
    RR-BLUP 0.27 0.89 0.89 0.92 0.93
    BL 0.31 0.38 0.51 0.56 0.65
    G-BLUP 0.76 0.88 0.88 0.92 0.94
    BayesA 0.80 0.85 0.89 0.92 0.94
    BayesB 0.81 0.89 0.89 0.92 0.93