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ABSTRACT The V3 loop of the human immunodeficiency
virus type 1 (mHV-1) envelope protein is a highly variable region
that is both functionally and immunologically important. Using
available amino acid sequences from the V3 region, we have
used an information theoretic quantity called mutual informa-
tion, a measure ofcovariation, to quantify dependence between
mutations in the loop. Certain pairs of sites, including non-
contiguous sites along the sequence, do not have independent
mutations but display considerable, statistically significant,
covarying mutations as measured by mutual information. For
the pairs of sites with the highest mutual information, specific
amino acids were identified that were highly predictive of
amino acids in the linked site. The observed interdependence
between variable sites may have implications for structural or
functional relationships; separate experimental evidence indi-
cates functional linkage between some of the pairs of sites with
high mutual information. Further specific mutational studies of
the V3 loop's role in determining viral phenotype are suggested
by our analyses. Also, the implications of our results may be
important to consider for V3 peptide vaccine design. The
methods used here are generally applicable to the study of
variable proteins.

The V3 loop of the human immunodeficiency virus type 1
(HIV-1) envelope protein (env) has been the focus of intense
research efforts because it is a potent epitope for neutralizing
antibodies (1-3) and T cells (4, 5), and it plays a role in
determining cell tropism and viral growth characteristics
(6-11). While there is some propensity to conserve amino
acid side chain chemistry in the different positions in the loop
(12, 13), this conservation often breaks down upon inclusion
of phylogenetically distant viruses (13). Such variation pre-
sents a difficult challenge for those attempting to design
broadly reactive V3 loop-based vaccines (3, 4, 14, 15). Our
goal was to quantify the degree of covariation of mutations at
different sites by analyzing the available data base (13) of V3
amino acid sequences by using mutual information, a concept
from information theory (16-19). All pairs of positions in an
alignment of 308 distinct V3 loop sequences were compared,
and we determined with high confidence that certain pairs are
covarying (see Figs. 1 and 2).
The identification ofcovarying sites is potentially useful for

two biological purposes. First, coordinate mutations of these
sites may be important for phenotypic changes in the V3 loop,
and they could be used as a tentative map for researchers
attempting to define functional domains in the V3 region
through mutational analysis. Second, they could be used as
a guide for reasoned selection of sets ofV3 loops for inclusion
in a mixture of V3 peptides for vaccine design. Particular
pairings with high mutual information values are likely to
confer a selective advantage in terms of either structure or
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function. Therefore, by selecting V3 loop sequences which
include pairs of amino acids that are highly predictive ofeach
other, one may be covering important classes of V3 loop
sequences that are structurally or functionally related. These
relationships may exist across distant phylogenetic groups
through parallel or convergent evolution. Thus inclusion of
V3 peptides with highly covariant amino acids may be a
useful strategy for designing broadly reactive vaccines, in a
time when little is known about the phenotypic consequences
of the radically divergent V3 loops found throughout the
globe (13).
A formal measure of variability (17) at position i is the

Shannon entropy, H(i). H(i) is defined in terms of the
probabilities, P(s,), of the different symbols, s, that can
appear at sequence position i (e.g., s = A, S, L, . . . for the
20 natural amino acids Ala, Ser, Leu,... ). H(i) is defined
as

H(i) =- P(s,) log P(s,).
s=A,S,L...

Mutual information is defined in terms of entropies involv-
ing the joint probability distribution, P(si, sJ), of occurrence
of symbol s at position i, and s' at positionj. The probability,
P(s,), of a symbol appearing at position i regardless of what
symbol appears at position j is defined by P(s,) = X.,qP(si, sJ)
and similarly, P(sj) = X5.P(si, sJ). Given the above probability
distributions, one can form the associated entropies

H(i) = -E P(s,) log P(s,),
Si

H(j) = -E P(S) log P(sW),
Si

and

H(i, j) =- X P(si, sJ) log P(si, sJ).
Si, sIl

The mutual information, M(i, j), is defined as

M(i, j) = H(i) + H(j)- H(i, j).

An alternative, mathematically equivalent form of this equa-
tion expresses the relation to the log-likelihood ratio of the
expected occurrence of pairs (under the assumption of inde-
pendence) to the observed occurrence:

M(i, j) = -X P(si, sJ) log P(si, sj)/P(s)P(sJ).
Si, sjI

Mutual information is always nonnegative and achieves its
maximum value if there is complete covariation. The mini-
mum value of 0 is obtained either when i and j vary com-
pletely independently or when there is no variation (17).

Abbreviation: HIV-1, human immunodeficiency virus type 1.
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The above formulae assume that the true probability dis-
tributions are known. In practice, however, the true proba-
bility distributions are not known, and they must be esti-
mated from a finite data set. This introduces subtle effects in
the estimated mutual information. Just as a finite number of
tosses of a "fair" coin typically exhibits fluctuations away
from the "true" value of50% heads, so too will the estimated
mutual information of an independent distribution exhibit
fluctuations away from the "true" value of zero. Since
mutual information is always nonnegative, the mutual infor-
mation of truly independent distributions is consistently
overestimated, while the mutual information of covarying
distributions can be either overestimated or underestimated,
depending on the nature of the fluctuations. It is therefore
necessary to assess the statistical significance of any mutual
information estimate obtained from limited data. This is
complicated by selection effects, as illustrated by another
coin-tossing analogy. Consider performing the coin tossing
experiment described above on a very, very large number of
fair coins. Even if the number of tosses for each coin is large
(so one expects close to 50% heads for each coin), there will
still be a substantial probability that at least one of the large
number of coins will deviate away from the "true" value of
50% heads. This occurs because although the probability of
such a fluctuation is small, it is compounded over a large
number of coins. If one selected this coin as "interesting"
and calculated the statistical significance of the "fair coin
hypothesis" for this single selected coin, it would appear that
the selected coin was not "fair," when in fact all the coins
were "fair." A similar effect occurs in estimating mutual
information for a large number of pairs of sequence positions.
It can be misleading to select a particular high estimate and
calculate significance on the basis of a single pair of positions.
An algorithm which employed multiple randomizations of

the initial data set was used to determine the statistical
significance of the estimated mutual information values, using
a very conservative measure that addresses both small sample
bias and selection effects (for general reviews of methods of
this type, see refs. 20-22). For the final analysis, 750,000
randomizations of the initial data set were done. Highly
statistically significant mutual information scores were ob-
tained for several pairs of sites, some on opposite sides of the
V3 loop (Figs. 1 and 2). The results of these calculations are
displayed in Fig. 2, and a description of the statistical methods
is provided in the legend. The data set, and two control data
sets, are described in the legend of Fig. 1.
A detailed examination of the highly covarying pairs of

sites revealed certain amino acids that were particularly
predictive of amino acids in the paired column of the se-
quence alignment. We quantified this effect by calculating a
measure we call "specific information," I(sj), which is a
measure of how much information about site i is gained from
knowing a specific symbol, sj, occurring at j. Defining the
conditional entropy, H(ijsj), as

H(ijs) = -2 P(sIsjf) log P(sjIsf)
Si

allows us to write I(sj) as

I(sJ) = [H(i) - H(ijsjP(sJ).
Interchanging i andj defines specific information in the other
direction. Summing over the symbols sj yields the mutual
information.
Amino acids with particularly high specific information for

a given position are listed in Table 1, together with the amino
acids with which they were associated. Table 1 is limited to
the pairs of sites that had the highest mutual information
scores. These suggested pairings may have functional signif-
icance and could be tested through combinatorial mutational

P15
G14

113

N6

Ns
N4

R3

P2
T1

R7

125
126

G27

D28
129

R30
031

A32
H33

C - s - S - C

FIG. 1. Sites in the V3 loop that have high mutual information. A
consensus sequence is shown (12, 13), with lines between sites
indicating positions that have the highest mutual information with the
greatest statistical significance. The tip of the loop centers on a
relatively conserved motif (GPGR), which can form a type 11(3 turn
(23), and is the focal point of the loop's immunological reactivity. An
alignment of 610 unique V3 loop sequences was generated by using
the MASE program (24), with particular regard to aligning the tip of the
loop. This was reduced to a set of 308 sequences, containing no more
than one or two sequences per individual (13); 150 sequences from
the LaRosa et al. set (12) were used, from 111 individuals (13),
excluding probable HIV-1 IIIB contaminations (25). An additional
158 sequences were included from 143 individuals (13), using the
most common sequence from an individual when multiple sequences
were available. When distinct forms were present in a person,
differing in more than 5 amino acids from the most common form,
then two sequences were included. When sequences from the blood
and the brain of an individual were available, the most common
sequence from each set was included. This data set includes some
highly divergent sequences from Africa. When it was reduced to 271
non-African sequences, or when all unique sequences were included
without regard to limiting the number of sequences from an individ-
ual, the same highly correlated sites were observed. The complete
alignment can be obtained through the HIV-1 data base (13). Col-
umns in the alignment that were primarily gaps inserted to maintain
alignment with sequences that contained insertions were deleted.
The apparent "networks" of sites that have high mutual information
indicate that there may be higher-order interactions occurring be-
tween the sites.

analysis. As the pairings occur repeatedly in the data set,
involve positions which are known to influence antigenic
specificity (3, 27), and may influence the conformation of the
loop, it may be prudent to incorporate them into the sets of
V3 peptides that will be used in vaccine trials. It is worth
noting that the most common pairing of amino acids found in
a pair of columns that has a high mutual information value
does not necessarily have high specific information or pre-
dictive value. For example, the most common pair of amino
acids in positions 10 and 12 are Ser-10 and His-12. Ser is
found in position 10 in 50% of the sequences and His is found
in position 12 in 44% of the sequences. Thus you would
expect to see the combination in approximately 22% of the
sequences if the association were completely random, and in
the actual data it was observed in 20% of the sequences,
indicating that there is no particular association between
these two amino acids in these positions.

Evolution: Korber et al.



Proc. Natl. Acad. Sci. USA 90 (1993)
7178 Evolution: Korber et al.

FIG. 2. Mutual information (height) and statistical significance (color) of pairs of sites in the V3 loop. (Upper) The V3 consensus sequence

is drawn on each axis: each interaction represents the mutual information and statistical confidence between a pair of positions. The height scale

is proportional to the value of the mutual information. Columns with greater than 95% conservation were excluded; these are apparent as rows

of zero height. To calculate statistical significance, sequence data within each position were permuted at random. This breaks covariation

between pairs of positions and generates a data set the same size as the original set, with identical single site probabilities. This procedure was
followed 750,000 times, yielding 750,000 randomized data sets. Positive values of mutual information estimates in the randomized data sets are

due solely to finite size bias effects. Selection effects were handled the following way. For each pair of positions, a mutual information estimate

was calculated from the original data. For each such estimate the number of randomized data sets that had at least one pair of positions anywhere
in the set with a mutual information value at least as high as the original pair was calculated. The probability, P, that a randomized data set
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Table 1. Predictive amino acids in sites with high
mutual information

Most Most Predictive
significant common pair amino acids Expected

associations (% in data set) (% in data set) percentage
23-24 G-E (23%) G + E or D (42%) 30%to
12-24 H-E (14%) H .- E or D (24%) 20%

R KKorR(6%) 1%
12-18 H-A (39%) H, N, or P ++ A (60%) 54%

T +- V (8%) 1%
12-23 H-G (32%) H, T, or N ++ G (51%) 42%
19-24 F-E (19%0o) F ++ E or D (38%) 30%

V KorR(7%) 1%
10-24 S-D (17%) S ++ E or D (33%) 23%
10-12 S-H (20%) G H or R (22%) 13%

S -N or P (19%) 11%
The first column lists the pairs of sites that had the highest, most

significant, mutual information scores; these are the site pairs for
which, with confidence 1 - P > 99.9999%, the null hypothesis of
statistical independence between the sites can be rejected. (Compa-
rable scores were never observed in 750,000 randomizations of the
entire data set.) The site pairs are listed according to the ranking of
their mutual information scores, numbered as in Fig. 1. The second
column shows the most common amino acid combination observed
and the percentage of sequences which included that pair. The third
column shows amino acids with high specific information, I, as
discussed in the text. The arrows indicate which amino acids
predicted the other, and the percentage of sequences which included
the combinations is given. For example, in pair 12-18, a V (Val) in
position 18 has a high specific information, I, and is associated with
a T (Thr) in position 12, as determined by conditional probabilities;
however, T does not have a particularly high specific information,
hence the left-pointing arrow. The expected percentage of sequences
to have a T-V pairing in positions 12 and 18, if their association were
random, based on the actual frequencies of T and V in their
respective positions, is 1%, shown in the fourth column. In situations
where more than one amino acid was predicted, for example the E
(Glu) or D (Asp) in position 24 of the position 23 and 24 association,
the 42% in the third column represents the frequency that G is found
in association with either E or D, and the 30%o in the fourth column
represents the product of the frequencies of (E plus D) in position 24
and the frequency ofG in position 23. Boldface amino acid symbols
in the third column indicate that the pair was found widely distributed
in the sequence set and was likely to have arisen independently on
multiple occasions. Such pairings met the following four criteria: (i)
the pair was found in viruses that were from at least three different
continents and so were from geographically distinct sources; (ii)
there were a minimum of 20 people whose viral sequences included
the pair; (iii) the pair was found in at least three distant branches of
env fragment gpl20 trees generated by the method of maximum
parsimony (13, 26); and (iv) a minimum of four people from whom
multiple sequences were available contained a mixture of viral
sequences which included some cases of the pair in question and
some cases which did not have the pair. The pairs shown here are not
the only combinations that may be of interest, but they were the
outstanding pairs considering both "predictiveness" and frequency.

A further consideration for peptide vaccine design would
be to extend peptides to encompass the covariant sites
(between positions 10 and 24) as a minimal boundary, which
may allow peptides to more readily fold into a shape which
mimics the intact protein. In a recent study by Wang et al.
(28), features were defined that contributed to the immuno-
genicity of V3 peptides. The longest peptide they tested
served as the best immunogen. It was the only peptide among
their set that spanned the full region between positions 10 and

24; however, it also extended beyond position 10, slightly
past the N-terminal cysteine of the V3 loop (28).
High mutual information between certain sites suggests

that functional studies of the V3 loop using site-directed
mutagenesis may depend upon simultaneously altering amino
acids on both sides of the loop. Indeed, this has been shown
to be the case for some of the positions linked through mutual
information analysis-de Jong et al. (8) showed that simul-
taneous mutations were required at site 10 in conjunction
with sites 21 through 24, located across the loop, to get a
complete conversion in viral phenotype from non-syncytium-
inducing, low-replicating to syncytium-inducing, high-
replicating. Our analysis indicated sites 10, 23, and 24 were
covariant. Also, Chesebro et al. (9) have recently further
defined critical regions of the V3 loop for imparting macro-
phage tropism. Blocks of amino acids from macrophage-
tropic V3 loops were inserted into the background of T-cell-
tropic viruses. In one example from their paper, a single
amino acid change at position 12 in Fig. 1, from Ser to His,
created noninfectious virus. Altering position 12 in conjunc-
tion with positions 20-29 caused a phenotype switch from
T-cell- to macrophage-tropic. Thus virus viability as well as
such phenotypic "switches" may require simultaneous mu-
tations in covarying sites. Chesebro et al. go on to point out
that, in the critical sites which have been demonstrated to be
important for macrophage tropism, the amino acids observed
to be conserved in macrophage-tropic strains can also be
found in some T-cell-tropic strains; therefore, the amino
acids in these positions acting alone do not appear to account
for macrophage tropism and are likely to be acting coordi-
nately with other sites. We propose that rather than exchang-
ing blocks of amino acid sequences, mutational analysis
could be done which incorporates only the sites we have
observed to be strongly mutually interactive (Fig. 1), with an
emphasis on the paired amino acid combinations shown in
Table 1.
When sites related by high mutual specific information

were compared with alignments ofV3 regions of viruses with
distinct tropism and cytopathicity, several of the positions
that appear to be significant in terms of phenotype (7-11)
were also seen to covary (Figs. 1 and 2). This correlation
supports the hypothesis that mutual information can identify
functionally interactive sites. Some of the sites which are
thought to be critical for viral tropism for which we have
calculated high mutual information are 12 and 24 (Westervelt
et al., ref. 11), 10 and 24 (Fouchier et al., ref. 10), and the sites
detected by de Jong et al. (ref. 8). While several of the sites
we predicted to be mutually interactive were substantiated by
experimental evidence, additional linkages were observed
that also may be relevant for the generation ofviable V3 loops
with specific phenotypes. These positions may have been
missed in experiments to date, due to their relative conser-
vation among cloned samples used for experiments in tissue
culture (specifically, positions 18 and 23).

Several groups have hypothesized that overall charge of
the V3 loop may affect phenotype (8, 10). It is interesting to
note that 7 of the 11 informative amino acids listed in Table
1 predict alternative amino acids with conserved charge,
either negatively charged Glu (E) and Asp (D), or positively
charged Arg (R) and Lys (K) or His (H). Such charge
conservation may reflect structural constraints.
While the pairs of sites with high mutual information are

likely to be structurally or functionally related, the apparent

has at least one pair of positions anywhere in the set with a value as high as the one of interest in the real data was estimated by dividing this
number by the total number of random data sets (750,000). Color represents statistical significance with the corresponding estimated
probabilities: red, P < 1.3 x 10-6 (didn't occur in 750,000 randomized data sets); orange, 5 x 10-6 < P < 5 x 10-4; yellow, 5 x 10-4 <P <
2 x 10-3; green, 2 x 10-3 <P < 10-2; blue, 10-2 <P < 10-1. Combinations of sites that had mutual information values with P values > 10-l
are not shown. (Lower) Two-dimensional plot of Upper, with the same color coding indicating statistical significance.
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interdependence may, alternatively, result from an evolu-
tionary heritage from distinct founder viruses. A qualitative
attempt was made to rule out the latter possibility among the
pairs in V3 found to have the highest mutual information.
Each pair in Table 1 was examined independently to deter-
mine if representative pairs were found in phylogenetically
diverse sequences and among sequences with distant geo-
graphic origins, and most pairs met these criteria (Table 1).
These observations suggest that genetic linkage is not a
dominating influence in the present study. A systematic
means ofaddressing this issue would be a useful development
in the application ofmutual information algorithms to protein
sequences. An additional area of interest is the application of
this tool to proteins with known structure, to determine if
known structural elements can be detected, in contrast to the
functional elements related here. In contrast to the V3 loop
sequences considered here, there is presently not enough
data to identify statistically significant covariation in intact
genes from the HIV-1 genome; such analysis was attempted
for HIV-1 full env and reverse transcriptase. Sequence data
for HIV are rapidly accumulating, and it is reasonable to
expect that within a few years it will be possible to use mutual
information to look for potentially interactive sites in distant
regions of the linear sequences of HIV-1 genes.
The techniques described here can be of general use for

identification of functional relationships in variable proteins,
assuming that involved sites are constrained to covary and
that the covariation reflects functionality. The technique
would not, however, be able to differentiate between func-
tional constraints, which may be a consequence of interac-
tions with host molecules in the case of the HIV-1 V3 loop,
and constraints imposed by the inherent structure of the
protein. In a sense, natural selection does a first round of
mutational experiments, and the resulting ensemble of vari-
able sequences can yield valuable clues to important inter-
relationships between potentially distant domains in a pro-
tein. These putatively identified domains can then become
targets for mutational and functional analyses.
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