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Abstract

Microbial evolution experiments enable us to watch adaptation in real time, and to quantify the 

repeatability and predictability of evolution by comparing identical replicate populations. Further, 

we can resurrect ancestral types to examine changes over evolutionary time. Until recently, 

experimental evolution has been limited to measuring phenotypic changes, or to tracking a few 

genetic markers over time. However, recent advances in sequencing technology now make it 

possible to extensively sequence clones or whole-population samples from microbial evolution 

experiments. Here, we review recent work exploiting these techniques to understand the genomic 

basis of evolutionary change in experimental systems. We first focus on studies that analyze the 

dynamics of genome evolution in microbial systems. We then survey work that uses observations 

of sequence evolution to infer aspects of the underlying fitness landscape, concentrating on the 

epistatic interactions between mutations and the constraints these interactions impose on 

adaptation.

Introduction

Laboratory evolution experiments complement studies of natural populations, by making it 

possible to more directly investigate the underlying factors that shape observed patterns of 

genetic diversity. While these experiments neglect many important complexities of the 

natural world, they offer a number of advantages. In experimental systems, we can observe 

evolutionary dynamics in real time, and exploit a “frozen fossil record” to resurrect ancestral 

types and directly compare them to their descendants. We can also maintain many 

populations in parallel, and replay the tape of life thousands of times in identical (or 

different) conditions. Finally, we can tune key evolutionary parameters such as population 

sizes and mutation rates, and assess their importance with other parameters held constant.

A large body of work has exploited these advantages to investigate how evolutionary 

history, chance, and natural selection influence evolutionary outcomes [1, 2]. For example, 

recent work has examined how the distribution of fitness effects of available mutations 
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determines the power of natural selection [3, 4]. Additionally, multiple studies have 

analyzed the role of epistasis in creating ‘historical contingency,’ where an initial mutation 

constrains or potentiates future evolution [5–7]. Finally, laboratory evolution has been used 

to investigate how parameters such as population size affect evolutionary dynamics [8, 9]. 

All of these studies aim to describe how features of the evolutionary landscape combine to 

determine evolutionary outcomes — a general process that is not confined to laboratory 

systems. When used for this purpose, laboratory microbial evolution experiments have the 

potential to be a model system for understanding the structure and diversity of genomes.

Until recently, experimental evolution has been limited primarily to phenotypic 

measurements. Numerous studies have examined how fitness changes over time, and how 

the rate of adaptation depends on factors such as the population size, initial genotype, 

population structure, or environmental conditions. Many studies have also tracked the 

frequencies of observable markers (e.g. drug resistance or fluorescent reporters) through 

time [3, 4, 10, 11] to draw inferences [3, 12, 13] about the evolutionary process. In recent 

years, however, advances in sequencing technology have made it possible to sequence 

clones or whole-population samples from hundreds of parallel experimental lines [14–16]. 

In this review, we summarize recent work that has begun to apply these technical advances 

to long-term laboratory evolution experiments, to directly observe how microbial genomes 

evolve in the laboratory. We focus particularly on the influence of epistasis on genome 

evolution (for a more general and comprehensive review, see [17]).

The dynamics of adaptation

The population genetic forces of mutation, selection, and drift govern the dynamics of 

genome evolution, determining which mutations will survive competition to fix in the 

population, and the signatures this process will leave on patterns of genetic diversity. An 

extensive population genetics literature has explored these connections theoretically. 

However, until recently it has been impossible to directly observe these dynamics in 

laboratory populations. Empirical studies of this type are necessary to determine which 

theoretically proposed regimes evolving populations actually experience. For example, is 

adaptation typically mutation limited, and hence in a regime where beneficial mutations fix 

independently, on their own merits? Or do beneficial mutations typically arise in multiple 

different lineages, resulting in a “clonal interference” regime where many mutations 

compete for dominance? Studies that directly observe genome evolution in real time can 

distinguish between these and other possibilities. They can also point the way to 

complications that theory has overlooked, but that may be essential to the evolutionary 

process.

The first experiments to directly observe genomic evolution were in bacteriophage, where 

several studies Sanger-sequenced individual phage clones at multiple timepoints in several 

replicate populations to describe patterns of parallel and convergent evolution [18–23]. 

Next-generation sequencing now makes similar studies possible in microbial populations. 

Recent studies have exploited both whole-population (“metagenomic”) sequencing of 

samples isolated at multiple timepoints from one or more evolving lines, and also 

sequencing of clones, to understand genomic evolution in these populations. These 
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approaches offer somewhat different perspectives on the dynamics of molecular evolution 

(Figure 1).

The first major study to examine the dynamics of genome evolution in microbial laboratory 

populations focused on a single line of a long-term evolution experiment in E. coli. By 

analyzing a clone sampled from each of 5 timepoints during 20,000 generations of 

adaptation, Barrick and Lenski [24] showed that mutations continue to accumulate steadily 

through time despite a dramatic slowdown in the rate at which fitness increases. This 

divergence between phenotypic and sequence-level evolution points to the potential 

importance of epistasis in shaping adaptation [25–27]. More recent studies have sequenced 

clones isolated from multiple timepoints in several replicate populations [28, 29]. This work 

demonstrates that adaptation is typically not mutation-limited: instead, there is clonal 

interference between competing beneficial mutations. Clonal interference affects which 

mutations fix in the population, and hence influences both molecular diversity and the 

dynamics of adaptation. In particular, the competition among beneficial mutations ensures 

that many are wasted, reducing the efficiency of selection and the predictability of molecular 

evolution. Clonal interference also affects the efficacy of other evolutionary processes, such 

as indirect selection on mutation rates [30].

Sequencing whole-population samples through time in multiple replicate populations offers 

an alternative view of the dynamics of adaptation [31–33]. For example, one large-scale 

study in budding yeast highlighted the importance of pervasive clonal interference and 

hitchhiking in determining the outcomes of adaptation and in limiting the degree of 

parallelism in the genome evolution of replicate lines [31]. Other studies have shown that 

frequency-dependent interactions can evolve spontaneously and play an important role in 

both lineage dynamics and the maintenance of genomic diversity [34, 35]. Finally, while 

most laboratory evolution experiments start from clonal populations, and hence focus 

entirely on evolution from new mutations, another body of work has used whole-population 

timecourse sequencing to analyze the dynamics of adaptation from standing genetic 

variation. Much of this work is carried out in Drosophila [36–38], but recent work has 

addressed similar questions using extensive sequencing of yeast populations founded from 

outcrossed lines [39].

Epistasis, historical contingency, and the structure of the landscape

Genome evolution is shaped both by the dynamics of the evolutionary process and by the 

spectrum of available mutations and their fitness effects (i.e. the “fitness landscape”). Thus 

we can use observations of genome evolution as a tool to infer relevant aspects of the 

landscape. Here we focus on recent progress in characterizing patterns of epistasis (i.e. how 

the fitness effects of mutations depend on the genetic background), and in understanding 

how epistasis constrains evolution. In principle, acquiring one mutation can change the 

entire distribution of fitness effects of future mutations. This “macroscopic epistasis” 

summarizes many underlying details of individual genetic interactions [26], and can lead to 

historical contingency where an initial mutation constrains the future course of adaptation. 

Even without extensive macroscopic epistasis, interactions among specific sets of mutations 

(“microscopic epistasis”) can affect the mutational trajectories open to an evolving 
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population, and hence lead to historical contingency in patterns of molecular evolution. 

Microbial experimental evolution is particularly well-suited to probing patterns of both 

macroscopic and microscopic epistasis, because replicate populations will probabilistically 

explore available areas of the local landscape, and mutations that arise during evolution can 

be reconstructed in arbitrary combinations. Extensive replication also makes it possible to 

conduct large-scale studies of the mutations that occur during evolution and their statistical 

associations with one another, providing another type of evidence for epistasis [40].

Recent work has explored whether patterns of epistasis reflect the modularity of cellular 

organization. Within the smallest modular unit, a single gene, studies of the antibiotic 

resistance enzyme beta lactamase [41] and comprehensive reconstructions of mutations 

within a 9 amino acid region in yeast Hsp90 [42, 43] have revealed widespread epistasis. 

This includes sign epistasis, in which a mutation shifts from beneficial to deleterious (or vice 

versa) depending on the genetic background it occurs in. Epistatic interactions may also 

occur at the protein complex or pathway level. In a landmark paper, Tenaillon et. al. [44] 

demonstrated such an effect in E. coli adapting to heat stress. By evolving 114 replicate 

populations and sequencing their genomes after evolution, this study uncovered two 

mutually exclusive routes to heat adaptation: populations acquired mutations either in the 

RNA polymerase pathway or in the termination factor rho, but not both [44, 45] (see also 

[28] for a related effect). Further, in a single line there were often multiple mutations in one 

or the other pathway. To explore epistasis at the pathway level more broadly, two recent 

studies in E. coli and yeast evolved replicate populations with particular gene deletions, and 

found an enrichment in compensatory mutations targeting complexes associated with the 

deleted gene [46, 47]. Together these studies indicate that a mutation in a particular 

pathway, either beneficial or deleterious, may potentiate beneficial mutations in this 

pathway. In contrast, within a single gene, one mutation is more likely to exclude further 

changes.

Several recent studies have found indications of a different, broader form of epistasis. In 

viruses, bacteria, and yeast, fitter genotypes reliably adapt more slowly than less-fit 

genotypes [5, 27, 48–51]. This slowdown indicates that the distribution of fitness effects of 

available beneficial mutations depends on genotype, either because there are fewer 

beneficial mutations available to fitter genotypes, or because the beneficial mutations have 

weaker effects (“diminishing returns epistasis”). Studies in E. coli and methylobacterium 

reconstructed all combinations of 4 or 5 mutations from an adaptive walk, finding a general 

pattern of diminishing returns [52, 53]. More recently, Kryazhimskiy et. al. [5] used 640 

replicate yeast populations to show that the rate of adaptation declines systematically with 

the fitness of the initial genotype – not because more-fit populations run out of beneficial 

mutations, but rather because the effects of beneficial mutations become weaker in fitter 

backgrounds. This effect is largely independent of the specific mutations involved, 

indicating a potentially general negative coupling among beneficial mutations.

Occasionally more dramatic effects of epistasis arise, where a mutation potentiates a major 

shift in the DFE, sometimes including changes to the population structure. The most 

extensively studied example of such an effect is from Richard Lenski’s long-term evolution 

experiment in E. coli. In one of 12 replicate lines, after about 30,000 generations one lineage 
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evolved the ability to utilize citrate under aerobic conditions [6]. This lineage stably 

coexisted for thousands of generations with the wild-type Cit- lineage, indicating the 

presence of frequency-dependent selection. Recent work has described the genetic basis of 

this transition, including multiple potentiating mutations [54, 55]. While this example is so 

far unique, the effects of epistasis in potentiating the evolution of coexisting lineages have 

also been observed in another replicate population from the same experiment [56]. In both of 

these cases, historical contingency was essential: multiple interacting mutations are required 

to create the new phenotype. Related examples where sign epistasis limits potential 

evolutionary trajectories, leading to important effects of historical contingency, have been 

described in other systems [57, 58].

Larger-scale genomic changes, including shifts in ploidy, amplifications, deletions, 

inversions, copy number variation, and transposon-mediated insertions, can also represent an 

important aspect of the fitness landscape. Due to the limitations of short-read sequencing 

technology, these events have been comparatively overlooked in many laboratory evolution 

experiments [59]. However, they are a potential avenue for rapid innovation [59–62], and 

can clearly have dramatic effects on the future course of adaptation (e.g. they can lead to 

substantial macroscopic epistasis). The rates at which these events occur and the selective 

forces that act on them remain incompletely understood. For example, ploidy is clearly 

tuned rapidly by natural selection [63]. However, while recent studies find that experimental 

budding yeast populations quickly converge towards diploidy, these changes do not always 

have clear selective advantages [64–68]. In addition to changes in ploidy, amplifications or 

deletions of individual chromosomes (or parts of chromosomes) can also be rapidly selected, 

particularly in stressful conditions [69–74] or when starting from novel genotypes [75, 76]. 

These amplifications or deletions can change the local fitness landscape, opening new 

avenues for adaptation. For example, a study of yeast adapting to high temperature [69] 

demonstrated that the initial phases of adaptation often involve a duplication of chromosome 

III. This duplication eventually reverts, and is replaced by a more “refined” solution that 

upregulates only specific genes on this chromosome. Copy number variation can also 

provide a rapid avenue to dosage adjustment. For example, studies of yeast in a variety of 

nutrient-limited conditions have found adaptive amplifications of transporters of the limiting 

nutrient [32, 73, 74].

Conclusions and Future Directions

Experimental evolution makes it possible to observe genome evolution in real time in a 

controlled, replicated laboratory setting. It also allows us to directly measure (and in some 

cases control) the underlying evolutionary parameters that influence which mutations fix and 

hence how genomes evolve. With the advent of inexpensive high-throughput sequencing, it 

has become possible to examine the dynamics of new mutations within adapting populations 

in unprecedented detail. Although experimental systems cannot reproduce the complexities 

of natural populations, the same rules of population genetics govern evolutionary dynamics 

in both systems, and so the dynamics observed in laboratory populations may be common to 

more complex natural cases. For example, recent studies have demonstrated the prevalence 

of clonal interference in microbial laboratory populations; this regime may be common in 

natural systems, such as Pseudomonas infections in the lungs of cystic fibrosis patients [77]. 
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Recently, studies have also begun moving beyond the typical isolated population of 

laboratory evolution, to examine the emergence and maintenance of population structure 

[34, 35, 78–85]. In these studies, frequency-dependent selection gives rise to stable ecotypes 

readily even in very simple laboratory environments. Understanding the prevalence, 

dynamics, and long-term fate of these structured populations will help bridge the gap 

between the rich ecology of the natural world and the simplicity of laboratory evolution.

Recent progress has also been made towards understanding the structure of the fitness 

landscape, which plays a key role in determining evolutionary dynamics and patterns of 

genomic diversity. In particular, recent work has shown that diminishing-returns epistasis 

(where beneficial mutations generally damp each others’ effects) may be a general feature of 

adaptation. Studies have also begun to examine how cellular organization influences the 

mutations that fix during evolution. Future work will likely bring increasing power to 

understand the fitness landscape and the cell via statistical associations between mutations 

that fix during evolution. New approaches, such as massive barcoding systems [86], also 

promise to provide a yet more detailed view of evolutionary dynamics, and also to 

significantly increase power to understand epistasis. These systems offer the prospect of 

measuring the dependence of the distribution of fitness effects on both genotype and 

environment, as well as the interactions between individual mutations.

To date, most microbial laboratory experiments have used model organisms, notably E. coli 

and S. cerevisiae. While the tractable genetics in these systems provides a strong advantage, 

in the future it will also be important to investigate the evolutionary process in a wider 

variety of organisms. This breadth will be necessary to help us distinguish which features of 

the evolutionary process are general, rather than specific to common laboratory models. 

Early progress has been made in describing mutational processes [87–89] and evolutionary 

outcomes [35, 76, 90] across a broader variety of microbes. Further studies along these lines 

will provide a more comprehensive view, and help connect with clinical and industrial 

applications where specific non-model microbes may be of particular interest.

Finally, the last few years has seen an explosion of data on microbial communities in nature 

and their roles in animal and plant health. However, relatively little is known about 

evolution in these complex environments. Studying evolution in these scenarios, and the 

interplay between the host and the community, is an exciting avenue of future research (e.g. 

see [29] for a pioneering study).
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Figure 1. 
Schematic of the evolutionary dynamics in a microbial evolution experiment. (A) Muller 

diagram depicting the frequencies of each genotype in the population over time. Only 

lineages that reach substantial frequency are shown (many lower-frequency lineages will 

typically also exist). (B) Allele frequencies in the population from (A), as they would be 

measured using whole-population metagenomic sequencing. This strategy reveals the 

dynamics of major alleles, but low-frequency mutations are undetectable. This metagenomic 

data also yields incomplete haplotype information: it is not always clear which mutations 

Jerison and Desai Page 12

Curr Opin Genet Dev. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



arise on which genetic backgrounds. (C) A phylogenetic tree built from clones that could be 

sampled from the population in (A; black dots). Colored boxes show the major mutations 

pictured in (A) and (B); grey boxes show ‘private’ mutations shared only by this clone and 

close relatives. This clone sequencing approach can be used to measure mutation rates and 

genetic diversity statistics such as heterozygosity, but provides limited information about 

allele frequencies over time.
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