
NFAT as cancer target: Mission possible?

Jiang-Jiang Qina,≠, Subhasree Naga,≠, Wei Wanga,b, Jianwei Zhouc, Wei-Dong Zhangd, Hui 
Wange,f, and Ruiwen Zhanga,b,*

aDepartment of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health 
Sciences Center, Amarillo, Texas, 79106 USA

bCancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, 
Amarillo, Texas, 79106 USA

cDepartment of Molecular Cell Biology and Toxicology, Cancer Center, School of Public Health, 
Nanjing Medical University, Nanjing, Jiangsu 210029, PR China

dSchool of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China

eKey Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes 
for Biological Sciences, Chinese Academy of Sciences. Shanghai 200031, PR China

fKey Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100021, PR China

Abstract

The NFAT signaling pathway regulates various aspects of cellular functions; NFAT acts as a 

calcium sensor, integrating calcium signaling with other pathways involved in development and 

growth, immune response, and inflammatory response. The NFAT family of transcription factors 

regulates diverse cellular functions such as cell survival, proliferation, migration, invasion, and 

angiogenesis. The NFAT isoforms are constitutively activated and overexpressed in several cancer 

types wherein they transactivate downstream targets that play important roles in cancer 

development and progression. Though the NFAT family has been conclusively proved to be 

pivotal in cancer progression, the different isoforms play distinct roles in different cellular 

contexts. In this review, our discussion is focused on the mechanisms that drive activation of the 

various NFAT isoforms in cancer. Additionally, we analyze the potential of NFAT as a valid 

target for cancer prevention and therapy.
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1. Introduction

The nuclear factor of activated T cells (NFAT) was first described as an inducible nuclear 

factor binding to the antigen receptor response element-2 (ARRE-2) of the interleukin-2 

(IL-2) promoter in human T cells [1,2]. Subsequent studies revealed that NFAT was not 

only expressed in T cells, but also ubiquitously expressed in various immune and non-

immune cells in the vertebrate systems [3-5]. Recent studies have further indicated that 

NFAT plays multiple regulatory roles in cell fate determination, embryonic development, 

and organogenesis (especially the cardiac, hematopoietic, skeletal, and neuronal systems) 

[6-8].

The NFAT family contains five members, including four calcium-responsive isoforms 

named NFAT1 (NFATc2 or NFATp) [9,10], NFAT2 (NFATc1 or NFATc) [11], NFAT3 

(NFATc4) [12], and NFAT4 (NFATc3 or NFATx) [13], and a tonicity-responsive enhancer-

binding protein (TonEBP, also known as NFAT5) [14-16]. Except for NFAT5, the other 

members are activated by Ca2+ influx in the cell, either via the PLC-γ pathway or via store-

operated Ca2+ entry, typically in T lymphoid cells [17]. The calcium-responsive NFAT 

isoforms (NFAT1-NFAT4) exist in a hyperphosphorylated state in the cytoplasm [17]. They 

are usually activated by increased intracellular calcium levels, via dephosphorylation by 

calcineurin and subsequent nuclear translocation [18-20]. Once in the nucleus, NFAT1-

NFAT4 activate transcription of downstream gene targets, thus directly linking calcium 

signaling to gene expression [21-23].

Dysregulation of NFAT signaling is associated with malignant phenotypes and tumor 

progression [22]. It has been observed that NFAT isoforms are overexpressed and/or 

constitutively activated in both human solid tumors and hematological malignancies 

[5,22,24]. Indeed, the NFAT transcription factors have been shown to regulate cell survival, 

differentiation, angiogenesis, invasive migration, and the tumor microenvironment, which 

will be discussed in the subsequent sections. Therefore, a thorough understanding of NFAT's 

roles in tumor development and progression will facilitate the development of safe and 

effective treatment modalities targeting the NFAT pathway in cancer.

In this review, we focus on the recent findings related to the NFAT regulation and their roles 

in tumor development and progression. In addition, we review various inhibitors of NFAT 

and the current strategies for targeting the NFAT signaling in cancers.

2. NFAT biology

All NFAT proteins share a highly conserved Rel-homology domain (RHD) (Fig. 1) [25]. 

This domain is structurally similar to the DNA binding domain of the nuclear factor-κB 

(NF-κB) family [26-27]. As a unifying characteristic in all NFAT proteins, RHD endows the 

NFAT members with a common DNA-binding specificity [25]. In addition, the calcium-
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responsive NFAT isoforms (NFAT1-NFAT4) typically have another moderately conserved 

domain, NFAT homology domain (NHD) (Fig. 1) that binds to promoter elements, initiating 

gene transcription [10]. The NHD, located at N terminus, possesses several serine rich 

regions (SRR), providing around fourteen phosphorylation sites to the various kinases that 

target NFAT [28]. When these sites are heavily phosphorylated, the NFAT proteins are 

confined to the cytoplasm [28]. The N terminus also contains several other regulatory 

domains, including a transactivation domain (TAD) [29], and a calcineurin docking site 

(CDS) [17]. The nuclear localization sequences (NLS1 and 2) and the nuclear export signal 

(NES), also present in this domain, control the subcellular localization of NFAT [28,30]. 

Dephosphorylation of the serine residues by calcineurin unmasks the NLS, while 

rephosphorylation of the serine residues masks the NLS, exposing the NES and shuttling the 

NFAT proteins out of the nucleus [28,30]. However, NFAT5 retains only the RHD and is 

devoid of the CDS, thus being insensitive to calcium and calcineurin [14-16]. Instead, its 

transcriptional activity is dependent on extracellular tonicity [15].

NFAT proteins often perform redundant functions in cells [4]. Although no significant 

phenotypic abnormalities were found in mice lacking individual NFAT proteins (Table 1), a 

few notable exceptions are observed. For example, NFAT2 deletion causes defective cardiac 

valve formation leading to embryonic lethality [31,32], while NFAT1 deletion reduces mast 

cell cytokine production [33]. In most cases, however, pronounced physiological defects 

will not occur unless at least two NFAT proteins are absent (Table 1). For instance, 

concomitant deletion of NFAT1 and NFAT2 abolishes cytokine production in T cells [34], 

while deletion of both NFAT1 and NFAT4 increase Th2 cytokine production [35]. 

Simultaneous NFAT3 and NFAT4 deletion produces lethal defects in embryonic vasculature 

formation, while deletion of three NFAT family members NFAT1, NFAT3, and NFAT4 

causes drastic impairments in axonal outgrowth in the nervous system [38]. Several recent 

reviews comprehensively discuss the role of NFAT proteins in the immune system and in 

early embryonic development [5,24,36,37].

3. Regulation of NFAT

3.1. Calcineurin-NFAT signaling pathway

The regulation of the NFAT signaling pathway by calcium and calcineurin has been 

extensively reviewed [5,12,36]. We present here a brief overview of the calcineurin-NFAT 

signaling pathway, NFAT kinases, and other mechanisms for NFAT regulation, which have 

also been depicted in Fig. 2. Briefly, in normal, unstimulated cells, NFAT proteins are 

present in the cytosol in a hyperphosphorylated, inactive form [17,28,30]. They are activated 

by the engagement of cell surface receptors such as T-cell receptors (TCR), receptor 

tyrosine kinases (RTKs), and G-protein coupled receptors (GPCRs) with phospholipase Cγ 

(PLCγ) activation [23,41]. The activation of PLCγ leads to the cleavage of membrane bound 

phosphatidylinositol 4,5-bisphosphate (PIP2) and the release of diacylglycerol (DAG) and 

inositol-1,4,5-triphosphate (IP3) [42]. IP3 binds to IP3 receptors on the endoplasmic 

reticulum (ER) and induces release of Ca2+ from intracellular storage sites, triggering the 

opening of specialized store-operated calcium channels (SOC) [42,43]. The intracellular free 

Ca2+ binds to calmodulin, which in turn, binds to the phosphatase calcineurin. Subsequently, 
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calcineurin is activated, leading to the dephosphorylation and nuclear translocation of NFAT 

and the induction of NFAT-mediated gene transcription [42-44].

To effectively dephosphorylate NFAT, calcineurin must interact with NFAT at a specific 

motif in the NHD, which has the PXIXIT (X denotes any amino acid) consensus sequence 

(such as SPRIEIT in NFAT1 shown in Fig. 1) [28,30]. It has also been observed that NFAT 

nuclear localization is concomitant with nuclear relocalization of calcineurin [45]. In fact, 

NFAT and calcineurin are co-localized in the nucleus of pancreatic cancer cells [46]. 

Persistent calcineurin activity due to deregulation of upstream calcium signaling is also 

observed in cancer cells. For example, TRPV6-induced calcium influx in LNCaP cells 

activates calcineurin and promotes NFAT mediated cell survival and proliferation [47]. 

Under normal physiological conditions, calcineurin activity can also be negatively regulated 

in a calcium independent manner by endogenous inhibitors such as A-kinase anchor protein 

79 (AKAP79), calcineurin-binding protein 1 (CABIN1), and Down's syndrome critical 

region 1 (DSCR1) [48-50]. Deregulation of these negative regulators lead to constitutive 

calcineurin activation in cancer cells. Once inside the nucleus, the NFAT factors bind to the 

GGAAA consensus sequence in target gene promoter through homo- or heterodimerization, 

or co-operation with other transcription factors (Fig. 2) [4]. Depending on these partners and 

cofactors, NFAT transcription factors can either activate target gene promoters by enhancing 

local chromatin acetylation, or silence target genes by interacting with histone deacetylases 

[51].

3.2. Regulation of NFAT by kinases

An important mechanism for regulation of NFAT transcriptional activity is the removal of 

NFAT from the nucleus or the NFAT translocation into the cytoplasm. The balance between 

nuclear import/export of NFAT proteins is tightly controlled by several priming, export, and 

maintenance NFAT kinases (Fig. 2), such as protein kinase A (PKA) [52], dual-specificity 

tyrosine-phosphorylation regulated kinase 1a (DYRK1a) [52], glycogen-synthase kinase 3β 

(GSK3β) [53], and casein kinase (CK1) [54], respectively. In cases of low intracellular 

calcium levels, nuclear import of NFAT proteins is abolished by a highly effective nuclear 

export mechanism, comprising of nuclear priming kinases, such as DYRK1a and PKA [52]. 

DYRK1a phosphorylates nuclear NFAT(s), creating substrate sites (i.e. priming) for 

subsequent rephosphorylation by GSK3β and nuclear export [52]. Export kinases facilitate 

nuclear translocation of the NFAT proteins while maintenance kinases retain NFAT proteins 

in the cytosol in a hyperphosphorylated state and prevent their nuclear translocation. GSK3β 

rephosphorylation may not always result in negative regulation of NFAT transcriptional 

activity [55]. For example, GSK3β mediated phosphorylation of the serine rich SP2 domain 

in NFAT1 protein seems to stabilize NFAT1 in cancer cells by protecting it from rapid 

ubiquitination and proteasomal degradation [55]. This may be a mechanism by which 

GSK3β deregulation contributes to cancer development and progression [56].

NFAT retention in the cytosol is controlled via several maintenance kinases that 

phosphorylate the proteins at the N-terminus. These include CK1, mitogen activated protein 

kinases (MAPKs), c-JUN kinase (JNK), and extra-cellular signal related kinase (ERK) 

[57-63]. CK1 phosphorylates the SRR1 motif of NFAT1 and serves as both an export and 
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maintenance kinase [54,58]. CK1 docks at a conserved FSILF sequence motif near the N 

terminus [54]. Transgenic mice with a mutation at this CK1 docking site present several 

defects in embryonic and hematopoietic cell development, indicating the crucial role of CK1 

in NFAT regulation [60]. The MAPKs also promote NFAT retention in the cytoplasm but 

positively affect NFAT transcriptional activity [61,62]. JNK, ERK, and p38 physically 

interact with the NFAT N-terminal region to phosphorylate conserved NFAT Ser-Pro motifs 

and Ser-172, thereby inhibiting NFAT nuclear import [62,63]. It is noteworthy that MAPK 

pathways are often activated in human cancers [64]. Thus, NFAT export to the cytosol may 

not limit NFAT signaling, but actually facilitate NFAT signaling [59,62].

3.3. NFAT2 auto-regulation

In addition to modulation of NFAT turnover and cellular sublocalization via various NFAT 

modifying enzymes, regulation of individual NFAT isoform expression can also influence 

the physiological manifestations of NFAT transcriptional activity [5]. For example, NFAT2 

is capable of existing as three distinct isoforms: NFAT2A, NFAT2B and NFAT2C [65]. The 

longer B and C isoforms are formed via alternative splicing and polyadenylation at the distal 

pA2 promoter site, whereas the short isoform A arises from polyadenylation at the proximal 

pA1 site [66]. A positive autoregulatory loop regulates the differential expression of these 

isoforms. While NFAT2B and NFAT2C are expressed constitutively in naive T cells, 

NFAT2A (the shorter isoform) has a higher expression in effector T cells via the regulation 

by an NFAT-dependent inducible promoter [65]. The NFAT2 isoform is thus, preferentially, 

accumulated during cell lineage commitment and plays a key role in differentiation of naive 

T cells to diverse effector T cell populations [66]. Inducible synthesis of NFAT2A is also 

crucial for osteoclast generation and for cardiac valve development in the maturing heart 

[67,68]. Thus, NFAT2A is an important orchestrator of cell fate determination and, 

consequently, deletion of NFAT2A is generally more harmful to development as compared 

to deletion of other NFAT family members.

3.4. Post-translational modifications

Apart from phosphorylation, various other post-translational modifications have been 

reported for NFAT proteins. Ubiquitination provides a mechanism for NFAT deactivation 

and turnover, while sumoylation of NFAT1 and NFAT2 isoforms results in their nuclear 

retention [69,70]. SUMO1 targets the NFAT2C long isoform at two sites on its C-terminus, 

causing its nuclear translocation and interaction with promyelocytic leukemia (PML) 

nuclear bodies [69]. The sumoylated NFAT2C then recruits histone deacetylases (HDACs) 

and deacetylates histones within the IL-2 promoter, thus suppressing IL-2 activity [69]. 

Thus, sumoylation transforms NFAT2C from a transcriptional activator to a repressor [69]. 

NFAT1 is ubiquitinated by the E3 ubiquitin ligase MDM2 in breast cancer cells [70]. 

Whether all NFAT isoforms are modified by ubiquitination and subsequently undergo 

proteasomal degradation remains to be clarified. Another post-translational modification that 

influences the mode and magnitude of NFAT activity is adenosine di-phosphate (ADP)-

ribosylation. Poly-ADP-ribose polymerase (PARP) binds to NFAT proteins to induce ADP-

ribosylation, increasing its DNA binding activity [71,72].
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3.5. Transcriptional and post-transcriptional control of NFAT

NFAT transcription factors, due to their weak DNA binding capabilities, often partner with 

other factors to gain transcription regulation. For example, the transcription factor activator 

protein 1 (AP1) forms a quaternary complex with the NFAT and DNA to trigger T-cell 

activation [73,74], while NFAT partners with forkhead box P3 (FOXP3) for 

immunotolerance, and with GATA to control cell development [75,76]. Thus, the AP1 

proteins (dimers of Fos and Jun) majorly partner with NFAT during T-cell activation to 

integrate the two signaling pathways induced in response to T-cell activation: calcium 

signaling and the RAS– MAPK pathway [73]. In addition to these, other cellular proteins 

have been identified that form stable nuclear complexes with NFAT. For example, the 

transcription factor Stat3 has been shown to be activated in PANC-1 cells through an 

NFAT2 induced autocrine factor [77]. Furthermore, shRNA depletion of Stat3 decreases the 

transformative capacity of NFAT2, suggesting that both factors act co-operatively to 

mediate malignant transformation [77]. It seems that the NFAT proteins act as signal 

integrators and detectors, integrating inflammatory, developmental, or oncogenic signals 

with Ca+2-calcineurin pathway. Apart from transcriptional regulation of NFAT, proteolytic 

enzymes like caspase-3 and caspase-8 exert post-transcriptional control on NFAT activity 

[78]. NFAT1 and NFAT2 undergo rapid degradation in T-effector cells via cleavage by 

caspases. These effects can occur either via physical interaction (AP1, FOXP3, GATA, 

caspases) or through interaction with upstream components of calcineurin-NFAT pathway. 

Several of these “affectors” of NFAT activity are specific to cell type and physiological and 

pathophysiological context. We summarize these various proteins that affect NFAT activity 

in Table 2.

In summary, the sensitivity to intracellular calcium flux, the control of nuclear export/import 

by NFAT kinases, the diverse post-translational modifications, and the transcriptional and 

post-transcriptional regulation fine-tune NFAT-mediated gene transcription.

4. The NFAT signaling pathway in cancer development and progression

The wide range of cellular processes controlled by the NFAT proteins and their crucial role 

in embryonic development, organogenesis, and cell fate determination indicate a strong 

oncogenic potential for this family of transcription factors. This oncogenic potential of 

NFAT proteins is further validated by their involvement in the regulation of genes that 

control cell cycle progression, cell development and differentiation, cell motility, 

tumorigenesis, and angiogenesis [22]. Moreover, it has been observed that the NFAT family 

members are constitutively activated and/or overexpressed in several cancer types, including 

breast cancer [79,80], pancreatic cancer [46], aggressive T cell lymphoma [94], Burkitt's 

lymphoma [95], and diffuse large B cell lymphoma [94,96,97]. For example, NFAT2 was 

shown to induce cell transformation and anchorage-independent cell growth in pancreatic 

cancers via its activation and overexpression [46]. Apart from the increased protein levels of 

NFAT family members, aberrations in the NFAT gene(s) have also been identified [98-100]. 

For example, an aggressive childhood sarcoma, Ewing sarcoma presents with chromosomal 

translocation in the NFAT1 gene and formation of a frequently amplified chimera gene by 

frame-fusion with the Ewing sarcoma breakpoint region 1 (EWSR1) gene [98-100]. Here, 
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we have reviewed the studies of the NFAT expression in different cancers and presented a 

summary in Table 3.

Interestingly, the NFAT isoform NFAT1 has been shown to possess tumor suppressor 

activity in certain cellular contexts. The enforced expression of NFAT1 is seen to promote 

apoptosis of cell lines derived from Burkitt's lymphoma [115]. Similarly, NFAT1-/- mice 

show increased vulnerability to chemically induced carcinogenesis than wild-type mice 

[108,116]. Though NFAT1-/- mice are more susceptible to tumor growth, tumor progression 

is impeded in the absence of NFAT1 expression [116]. In fact, NFAT1 expression often 

correlates with aggressive invasive behavior in solid tumors [79,80,114]. This leads us to 

speculate whether the primary role of NFAT1 might be in the promotion of cell migration 

rather than tumor initiation. Although the molecular mechanisms for the oncogenic 

functions of NFAT proteins still remain to be elucidated, numerous important findings have 

been reported. In the later part of this section, we present a comprehensive overview of 

NFATs' roles in cancer development and progression, which is also depicted in Fig. 3.

4.1. Roles of NFAT in malignant transformation and cell proliferation

Several studies have investigated the role of the NFAT transcription factors in various 

aspects of malignant cell transformation and the tumorigenic process. NFAT2 mutants, 

which are constitutively localized to the nucleus, are reported to inhibit differentiation, 

induce malignant transformation, and increase cell proliferation in 3T3-L1 fibroblasts [117]. 

In contrast, nuclear localization of NFAT1 in fibroblasts leads to cell cycle arrest and 

apoptosis [115,116]. NFAT1 inhibits cyclin dependent kinase 4 (CDK4) and cyclin A2 

expression, indicating an important role in the control of cell proliferation [118,119]. Mice 

deficient in NFAT1 and NFAT4 exhibit decreased activation-induced cell death (AICD), 

impaired Fas ligand (FasL) induction, and increased lymphoproliferation, thus providing 

evidence of their tumor suppressor activities [35,120]. However, in breast cancer cells, 

NFAT1 has been shown to induce MDM2 transcription and increase inactivation of p53, 

thus exhibiting pro-proliferation and anti-apoptotic properties [121]. In pancreatic cancer, 

NFAT1 has been shown to bind and silence the tumor suppressor gene p15INK4b via the 

histone methyltransferase Suv39H1 [122]. Interestingly, NFAT1 is seen to be induced in 

advanced stages of pancreatic carcinoma, reinforcing the fact that it is central to tumor 

progression [122]. On the other hand, NFAT (especially NFAT2) and TGF-β act co-

operatively to promote TGF-β driven cell proliferation and NFAT nuclear accumulation 

[123-126]. In pancreatic cancer cells, NFAT2 mediates the displacement of the Smad3 

repressor from the c-Myc gene promoter and subsequent activation of c-Myc transcription 

[46,125]. The activated c-Myc, in turn, interacts with the NFAT complexes to transactivate 

several growth promoting elements, such as cyclin D1/D3, resulting in cell cycle 

progression [46]. NFAT2 also mediates the switch between stem cell dormancy and 

proliferation [127]. NFAT2 acts as the downstream of bone morphogenetic protein 4 

(BMP4) in dormant stem cells, leading to the inhibition of check point kinases, such as 

CDK4. This process maintains the state of dormancy in the stem cell population [127]. It can 

also promote tumor progression through the creation of a tumor cell population that 

possesses stem cell characteristics with self-renewal capacity [127,128].

Qin et al. Page 7

Biochim Biophys Acta. Author manuscript; available in PMC 2016 January 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4.2. Roles of NFAT in cell invasion and metastasis

Recent findings have established NFAT as a multifunctional and powerful regulator of the 

tumor progression and invasion process, particularly in breast cancer [79,80,129]. 

Constitutively active nuclear NFAT1 drives breast cancer cell migration and invasion 

through Matrigel in vitro, whereas NFAT5 expression promotes cell migration [79,80]. In an 

MMTV-neu breast cancer transgenic mouse model, treatment with tacrolimus (a calcineurin-

NFAT signaling inhibitor, also known as FK506) results in the reduction of tumor 

microvascular density and tumor growth rate [130]. The effects of NFAT1 on breast cancer 

cell invasion are countered by Akt which induces MDM2 mediated proteasomal degradation 

of NFAT1 [80]. Interestingly, our group has recently demonstrated the presence of a 

consensus binding site for NFAT1 in the human mdm2 P2 promoter [121]. High levels of 

both NFAT1 and MDM2 proteins were observed in human hepatocellular carcinoma tissues 

as compared to normal tissues, providing a basis for studying the NFAT-MDM2-p53 axis 

for cancer therapy [121]. Furthermore, it has been seen in breast cancer that a significant 

positive correlation exists between α6β4 integrin expression and that of NFAT1 and NFAT5 

[81]. Enhanced expression of NFAT1 and NFAT5 along with α6β4 integrin is observed in 

both invasive breast cancer cells as also in patients with this disease [81]. The α6β4 integrin 

is released from hemidesmosomes in cancer cells and attaches to the actin cytoskeleton, 

activating NFAT5 transcription and facilitating cancer cell metastasis via activation of 

downstream targets such as COX-2 [129,131]. COX-2 catalyzes the synthesis of 

prostaglandin E2 (PGE2), a potent mitogen that promotes cell invasion through the extra-

cellular membrane (ECM) [132]. Further, the anti-metastatic Wnt ligand WNT5A is seen to 

block NFAT activation in human breast epithelial cells via binding to NFAT maintenance 

kinase, CK1 [133,134]. CK1, as discussed earlier, helps to keep the NFAT protein(s) in a 

hyperphosphorylated inactive form in the cytoplasm. NFAT1 can also bind to the promoter 

of glypican-6 (GPC6) and activate its transcription, increasing the invasiveness of breast 

cancer cells [135]. In addition to COX-2, NFATs also induce the transcription of pro-

invasive genes such as autotaxin, in breast epithelial cells. Autotaxin mediates the 

conversion of lysophosphatidylcholine into lysophosphatidic acid (LPA) which promotes 

invasive and metastatic mammary carcinoma [136, 137].

As a result of their invasion promoting characteristics, NFAT proteins are expected to 

regulate the transcription of matrix metalloproteinases (MMPs) that mediate the proteolytic 

degradation of basement membrane during tumor invasion and metastasis [138]. NFATs 

have been shown to be required for MMP activation in ECM remodeling activity of atrial 

myocytes and mesangial cells [138]. In an inbred genetic mouse model (Czech-II/Ei mouse) 

that produces tumors resembling human osteosarcoma metastasizing to the lungs, cell 

invasion is correlated with elevated levels of the MMP-2 and NFAT acts as an upstream 

regulator of this metalloprotease [139]. Recently, another new signaling axis involving 

NFAT, calcineurin-NFAT-angiopoietin-2 (Ang-2) signaling, has been demonstrated to be 

critical for the establishment of lung metastases [140]. Vascular endothelial growth factor 

(VEGF) levels in the lung trigger a threshold of calcineurin-NFAT signaling that 

transactivates Ang2 in lung endothelium, promoting angiogenesis and metastases [140].
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4.3. Roles of NFAT in angiogenesis

The pro-angiogenic role of NFAT signaling was first demonstrated in Nfat3/Nfat4 null mice 

and in the calcineurin B (Cnb1) knockout mice [8]. Mice lacking Cnb1 or both Nfat3/Nfat4 

genes die at mid-gestation due to disorganized vasculature and increased and deregulated 

expression of VEGFA [8,141]. NFAT appears to modulate the expression of VEGF by 

regulating the transcription of VEGF receptor 1 (VEGFR1). In infantile haemangiomas, 

absence of NFAT1 leads to decreased levels of VEGFR1, which leads to increased and 

aberrant expression of VEGF via a feedback mechanism [91-93]. VEGF stimulates PLCγ 

receptor-mediated activation, increasing intracellular calcium levels that activate calcineurin 

to cause NFAT nuclear translocation [142]. Nuclear NFAT switches on the transcription of 

pro-angiogenic genes such as COX-2, resulting in the synthesis of PGE2 [129,131,136]. 

Though NFAT has an inhibitory effect on VEGF expression, VEGF can induce NFAT 

transcriptional activity by mediating its nuclear translocation [92,93]. NFAT activation by 

VEGF in endothelial cells also induces the pro-angiogenic factor granulocyte-macrophage 

colony-stimulating factor (GM-CSF) [143]. In fact, treatment with the calcineurin inhibitor 

cyclosporin A (CsA) leads to inhibition of VEGF-induced COX2 expression in endothelial 

cells [91]. Moreover, endogenous inhibitors of NFATs, such as DSCR1, are also potent 

inhibitors of tumor angiogenesis [144]. All these findings underscore the primary role 

played by NFAT proteins in regulation of angiogenesis.

As discussed earlier, NFAT2 regulates lymphangiogenesis, especially the lymphatic 

patterning process and subsequent valve formation [4,8]. In this case, NFAT2 functions 

downstream of VEGFC, interacting with lymphangiogenesis promoting factors such as 

forkhead box C2 (FOXC2), VEGFR3, prospero-homeobox 1 (PROX1), and podoplanin 

[145]. This role of NFAT2 may contribute to its tumorigenic activity in hematological 

malignancies. Inhibition of NFAT4 reduces the SFRP2-stimulated angiogenesis in vitro, and 

inhibition of calcineurin with tacrolimus also blocks SFRP2-stimulated angiogenesis and 

angiosarcoma growth [130]. Zaichuk et al. propose that NFAT balances its effect on 

angiogenesis by inducing c-FLIP, a caspase 8 inhibitor, while concomitantly being 

sequestered in the cytoplasm by JNK [146].

4.4. Roles of NFAT in tumor microenvironment

Early studies on NFAT identified it as a transcriptional activator of chemokines in immune 

cells [21]. Inflammatory chemokines are, often, highly expressed in advanced forms of 

cancer and mediate metastatic invasion by promoting chemotaxis and migration of epithelial 

cells [147]. NFATs, due to their close association with chemokine activity, are expected to 

play an important role in tumor microenvironment modeling. Though NFAT isoforms (both 

mRNA and protein) have been detected in several cancer cell types, it is not clear if NFAT 

family members are endogenously expressed in fibroblasts in the tumor stroma, specifically 

those associated with carcinoma. Cytokine components of tumor-associated tissue possess 

the ability to direct the differentiation of infiltrating cells toward tumoristatic or tumor-

promoting phenotypes [147]. NFAT transcription factors maintain a balance between the 

chemokine and cytokine factors via regulation of interleukin and IFN-γ expression by 

lymphocytes, and hence impact both pro- and anti-tumorigenic responses [108,116]. NFAT 

signaling in the tumor microenvironment probably impacts tumor progression and 
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metastasis positively since several murine models of leukemia and lymphoma reveal 

hyperactivation of NFAT [94-97]. NFAT hyperactivation, likely, leads to tumor cell 

migration via a paracrine signaling loop involving infiltrating macrophages that secrete EGF 

and CSF1 (colony-stimulating factor-1) and tumor cells expressing EGFR [83]. EGFR 

activates store operated calcium entry into the cells thus setting in motion the calcineurin-

NFAT signaling cascade [83]. Decreased IL-4 and TGF-β expression in the absence of 

NFAT1 also validate its ability to promote tumor progression via modulation of the tumor 

microenvironment [148].

4.5. NFAT and epigenetic mechanisms

As discussed earlier, NFAT proteins need other binding partners to activate gene 

transcription due to their imperfectly formed REL domain. Other than co-operation with 

their transcriptional partners, the NFAT proteins also increase chromatin acetylation to 

activate downstream targets or interact with histone deacetylases to silence target genes 

[51,96]. For example, NFAT2 regulates gene expression in diffuse B-lymphoma cells by 

conscripting the ATPase SMARCA4 (a chromatin remodeling complex enzyme) to NFAT2 

targeted gene promoters [96]. This complex then employs additional factors to the active 

chromatin site to modulate gene transcription and transactivate proliferative and 

antiapoptotic downstream targets. Though the roles of NFAT in controlling miRNA in 

cardiac growth have been studied [149,150], few studies exist with regards to the regulation 

of NFAT by miRNAs in cancer. Recently, miR-1246 has been identified as a novel target of 

p53 and its homologs p63 and p73 [151]. MiR-1246 suppresses the expression of DYRK1A, 

decreases nuclear export of NFAT and activates NFAT [151]. Upon oncogenic stress, it was 

postulated that p53 activation might enhance the anticancer immune response by activating 

NFAT and preventing its nuclear export via DYRK1A. In this case, NFAT is expected to 

cause increased tumor surveillance effects, exerting antitumorigenic properties. Thus, we see 

that NFAT proteins employ both genetic as well as epigenetic means to affect various 

cellular signaling molecules, and this complex interplay is expected to regulate its diverse 

roles in a wide range of functions from cell cycle control to cellular invasion.

5. Targeting NFAT for cancer prevention and therapy

Our discussion, so far, has highlighted the crucial importance of NFAT as a regulator of 

both tumor development as well as progression. Based on their oncogenic potential, the 

NFAT family seems to be an attractive target for both cancer prevention and therapy. We 

will discuss the validity of NFAT as a viable chemotherapeutic/chemopreventive target in 

the following paragraphs.

5.1. Targeting NFAT for cancer prevention

Although novel chemotherapeutic and surgical interventions have reduced cancer mortality 

over the years, several cancer types, often, are unresponsive to therapy or develop resistance 

quickly or present a high rate of relapse and metastasis [152]. Due to its multistep 

progression, prevention remains the most effective way to reduce cancer related morbidities 

[153]. Increasing evidences demonstrating the key role of NFAT in cancer development and 

progression suggest NFAT as a potential target for cancer chemoprevention [22]. 
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Interestingly, the NFAT signaling axis is activated upon exposure to known environmental 

carcinogens such as arsenite [154], benzo[a]pyrene [155], nickel [156-158], and vanadium 

[159]. Arsenite and vanadium pentoxide cause induction of COX-2 expression in an NFAT-

dependent manner, activating pro-survival pathways and mediating resistance to apoptosis in 

human bronchial epithelial Beas-2B cells [154,159]. It has been postulated that the 

carcinogenesis of vanadium to human bronchial cells may result from cell survival mediated 

by the NFAT-dependent induction of COX-2 [159]. Moreover, nickel compounds induce 

NFAT activation via generation of H2O2 [158]. These findings reveal the role of NFAT 

activation as a tumorigenesis and tumor progression mechanism. Thus, inhibition of NFAT 

activation and its downstream pro-inflammatory molecules might be an attractive and 

effective approach towards chemoprevention. For example, dietary components such as 

black raspberry extracts have been shown to block NFAT activation [160]. The flavonoids 

in blackberries inhibit NFAT activation downstream of the PI3K/Akt (phospho-inositol-3-

kinase-Akt) pathway. These fractions also inhibit VEGF activation [160]. Interestingly, a 

phosphorylated derivative of the anti-inflammatory compound sulindac, phospho-sulindac 

has been recently identified as inducing NFAT2 in pancreatic cancer cell lines [161]. 

Exogenous knockdown of NFAT2 in pancreatic cancer cell lines increased their sensitivity 

to phospho-sulindac [161]. However, few studies have been performed yet to fully explore 

the validity of NFAT as a cancer target in in vivo (especially clinical studies). Rationally 

developed combination treatments involving natural products along with chemotherapeutics 

seem to be a better choice for cancer chemoprevention. This strategy would improve the 

efficacy of cancer prevention while eliminating possible side effects. The key question 

unanswered is whether NFAT inhibition can decrease human cancer incidence in vivo and 

reduce tumor burden.

5.2. Targeting NFAT for cancer therapy

As already noted, the oncogenic potential of NFAT has led to speculation that 

pharmacological or genetic targeting of NFAT proteins would be an attractive approach in 

cancer therapy. Indeed, the two classical inhibitors of the calcineurin-NFAT signaling axis, 

CsA and tacrolimus, have shown significant anticancer activity [88,162-164]. 

Mechanistically, both CsA and tacrolimus bind to the immunophilin proteins and form a 

drug-immunophilin complex that directly binds to calcineurin, inhibiting calcineurin activity 

[45]. By interfering with calcineurin activity, both CsA and tacrolimus inhibit the 

dephosphorylation of numerous substrates, including NFAT proteins. Moreover, calcineurin 

also modulates other signaling pathways such as the mitogenic RAS-MAP kinase cascade 

and the TGF-β/Smad pathway [165,166], and regulates several pro-inflammatory molecules 

such as NF-κB, Elk-1, AP1, etc [44,45]. Thus, CsA or tacrolimus also target NFAT-

independent gene regulation in cancer. The lack of specificity may explain the neuro- and 

nephrotoxicity as well as cardiovascular and diabetic complications observed clinically with 

these drugs [167]. Nonetheless, one would predict that by virtue of the potent inhibition of 

the NFAT-calcineurin pathway, these drugs would work as effective anti-cancer therapeutics 

[22].

Though CsA and tacrolimus show effective anti-cancer activities, patients on long-term 

immunosuppressive treatments actually exhibit increased rate of cancer incidence [168]. 
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This phenomenon might be explained by the fact that immunosuppressive agents likely 

suppress local tumor immunosurveillance. Moreover, it is expected that CsA and tacrolimus 

would affect the whole tumor microenvironment with multiple diverse effects on cellular 

pathophysiology. Therefore, new treatment strategies that specifically inhibit NFAT activity 

in the tumor endothelium or act specifically at the actual tumor site, without affecting the 

local immune response, are needed. Indeed, substantial efforts have been expended in the 

past decade to identify small molecule inhibitors that work downstream of calcineurin to 

specifically inhibit NFAT activity. A summary of current NFAT inhibitors and their 

potential targets has been presented in Table 4 and Fig. 4. A peptide termed VIVIT has been 

developed that interferes with the calcineurin-NFAT interaction, and inhibits NFAT 

dephosphorylation and nuclear translocation [169,172,173]. Since peptides, as therapeutic 

entities, present several challenges with regards to delivery and stability, cell permeable 

varieties of VIVIT peptides (Table 4) have been developed [173].

Small molecule inhibitors (SMIs) of NFAT seem to be more promising therapeutic entities. 

SMIs similar in structure and function to CsA and tacrolimus but exhibiting fewer adverse 

effects, have been developed, e.g. ISA247 (voclosporin) [177-178]. Several compounds 

(Table 4) with diverse chemical structures have been synthesized and characterized as novel 

NFAT SMIs. Interestingly, classical calcium channel inhibitors such as diltiazem and 

penfluridol have been shown to have impressive anti-cancer activities [211,212]. Since 

inhibition of calcium channels would lead to decreased intracellular calcium levels, and 

consequently inhibition of NFAT activation, it may be worthwhile to develop calcium 

channel inhibitors as potential NFAT targeting anticancer therapeutics. Another class of 

drugs, originally introduced for other applications, which has turned out to act as 

calcineurin/NFAT inhibitors includes the bisphosphonate zoledronic acid [55]. Recently, 

zoledronic acid was shown to induce NFAT1 ubiquitination in breast and pancreatic cancer 

in vitro and in vivo, through inhibition of GSK-3β kinase activity and induction of MDM2 

[55].

In summary, there are at least three strategies to develop NFAT SMIs: i) target the upstream 

regulators of NFAT (such as calmodulin, calcineurin, GSK3, etc.) to inhibit NFAT protein 

dephosphorylation and nuclear translocation; ii) directly target NFAT to inhibit its 

expression, destabilize NFAT protein, inhibit NFAT nuclear translocation and/or increase 

NFAT nuclear export; and iii) block NFAT-DNA binding to inhibit NFAT transcriptional 

activity. In addition, exhaustive pre-clinical studies in validated animal models are required 

to determine if these novel calcineurin/NFAT inhibitors possess a capacity to prevent or 

reverse tumorigenesis in murine cancer models, beyond their well-established activities in 

immunosuppression. Although most of these inhibitors have not been tested in a cancer 

model, it seems they may have potential uses in cancer therapy based on their 

antiproliferative and anti-inflammatory activities. However, we reiterate the necessity of 

stringent evaluation of their toxicities due to the pleiotropic functions of NFAT.

6. Future directions and conclusions

Accumulating evidence over the past decade indicates a key role for NFAT transcription 

factors in diverse pathophysiological states such as inflammation and cancer, apart from 
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their seminal functions in immune surveillance. However, the common feature in all disease 

states is that the NFAT proteins must be activated in the nucleus and bind to the DNA to 

cause transcription of its downstream targets. NFAT activity has been shown to be crucial 

for cell survival and proliferation, invasive migration, and angiogenesis. Indeed, evidences 

from mouse models suggest that some NFAT isoforms (such as NFAT1) may be primarily 

involved in cell migration, invasion, and metastasis, instead of tumorigenesis. One must 

remember that the NFAT isoforms, though often performing redundant functions, affect the 

cancer development and progression process differently. Even their physiological effects 

seem cell type and context dependent. Therefore, there is an urgent need for developing 

targeted NFAT mouse models in which specific NFAT isoforms are either knocked down or 

activated in specific cell types or a particular cellular microenvironment. Though different 

NFAT isoforms perform different functions with regards to tumor proliferation and 

progression, the mechanisms driving these differences have yet to be deciphered. Similarly, 

up till now only few mediators (such as COX-2, glypican-6, MMP-2, c-Myc, and MDM2) of 

the NFAT signaling axis have been identified. It is likely that several other upstream/

downstream targets remain to be discovered. Finally, we need to have a clearer idea of the 

processes that drive NFAT activation. Possible mutations and/or amplifications in NFAT 

binding partners and export/maintenance kinases are frequently seen in several human 

cancers that are associated with constitutive NFAT nuclear localization. For example, 

inhibition of GSK3β activity has been shown to disrupt Stat3-NFAT1 interaction and NFAT 

transcriptional activity in both in vitro and in vivo pancreatic cancer models [77].

The NFAT transcription factor family is also closely linked with inflammation. It is, 

therefore, expected that there will be significant cross-talk between NFAT and other pro-

inflammatory signaling pathways, and these findings can facilitate development of better 

therapeutics with multi-modal mechanisms of action. Similarly, we need to understand if 

possible mutations or amplifications in NFAT isoforms exist that contribute to tumor 

development, progression, and possible chemoresistance. Finally, calcium signaling is 

known to affect cell cycle progression, cell survival, and angiogenesis. Since the calcineurin/

NFAT pathway basically integrates cellular calcium flux with other signaling pathways, it 

will be interesting to note if compounds blocking intracellular calcium release can have 

inhibitory activities on NFAT mediated cell migration and invasion. Indeed, a few calcium 

channel blockers have shown promising anti-cancer activity, and further insights into their 

anticancer mechanism of action may help repurpose these well-established drugs into novel 

therapeutics for cancer management. Answers to these important questions are necessary to 

unlock the full potential of NFAT as a valid target in human cancer.
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Abbreviations

ADP adenosine di-phosphate

AICD activation-induced cell death

AKAP79 A-kinase anchor protein 79

Ang-2 angiopoietin-2

AP1 activator protein 1

ARRE-2 antigen receptor response element-2

BMP4 bone morphogenetic protein 4

CABIN1 calcineurin-binding protein 1

CaM calmodulin

CDK4 cyclin dependent kinase 4

CDS calcineurin docking site

CK1 casein kinase 1

CnA calcineurin A

CnB calcineurin B

CsA cyclosporin A

CSF1 colony-stimulating factor-1

DAG diacylglycerol

DCA dicholoroacetate

DSCR1 Down's syndrome critical region 1

DYRK dual-specificity tyrosine-phosphorylation regulated kinase

ECM extra-cellular membrane

ECs endothelial cells

ER endoplasmic reticulum

ERK extra-cellular signal related kinase

EWSR1 Ewing sarcoma breakpoint region 1

FasL Fas ligand

FOXP3 forkhead box P3

FOXC2 forkhead box C2

GM-CSF granulocyte-macrophage colony-stimulating factor

GPC6 glypican-6

GPCRs G-protein coupled receptors
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GSK3β glycogen-synthase kinase 3β

HDACs histone deacetylases

HemECs hemangioma endothelial cells

IL-2 interleukin-2

IP3 inositol-1,4,5-triphosphate

IP3R IP3 receptor

JNK c-JUN kinase

LPA lysophosphatidic acid

MAPKs mitogen activated protein kinases

MMPs matrix metalloproteinases

NES nuclear export signal

NFAT nuclear factor of activated T cells

NF-κB nuclear factor-κB

NHD NFAT homology domain

NLS nuclear localization sequences

PARP Poly-ADP-ribose polymerase

PGE2 prostaglandin E2

PI3K phospho-inositol-3-kinase

PIP2 phosphatidylinositol 4,5-bisphosphate

PKA protein kinase A

PLCγ phospholipase Cγ

PML promyelocytic leukemia

PROX1 prospero homeobox 1

RHD Rel-homology domain

ROS reactive oxygen species

RTKs receptor tyrosine kinases

SMIs small molecule inhibitors

SOC store-operated calcium channel

SRR serine rich regions

TAD transactivation domain

TCR T-cell receptors

TEM8 tumor endothelial marker-8
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TF transcription factors

TonEBP tonicity-responsive enhancer-binding protein

VEGF vascular endothelial growth factor

VEGFR VEGF receptor
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Highlights

• Targeting NFAT signaling is a novel approach to cancer therapy and prevention;

• NFAT overexpression and constitutive activation are common in human 

cancers;

• NFAT promotes chemical-induced carcinogenesis;

• NFAT promotes cancer progression by regulating multiple cellular functions; 

and

• NFAT inhibitors have anticancer activity in various cancer models.
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Fig. 1. 
Schematic structure of NFAT. The figure depicts domains common to NFAT isoforms 1– 4. 

NFAT5 lacks the calcineurin-docking site (CDS) and is calcium unresponsive. The NFAT-

homology domain (NHD) contains the transactivation domain (TAD), CDS with SPRIEIT 

motif, the serine-rich regions (SRR), the serine-proline rich motifs (SP1-SP3), the nuclear 

localization sequence (NLS), and the nuclear export signal (NES). The export and 

maintenance kinases, casein kinase 1 (CK1), glycogen synthase kinase 3 (GSK3), and dual-

specificity tyrosine phosphorylation-regulated kinase (DYRK) bind to the SRR1, SP2, and 

SP3 domains, respectively. The Rel-homology domain (RHD) comprises the DNA binding 

domain and is similar to that present in the NF-κB transcription factor family. The RHD also 

contains the recognition sites for transcriptional binding partners such as Fos and Jun.
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Fig. 2. 
The calcineurin-NFAT pathway: Activation and regulation. Inositol-1,4,5-trisphosphate 

(IP3), generated by phospholipase Cγ (PLCγ) via cleavage of phosphatidylinositol-4,5-

bisphosphate (PIP2), binds to the IP3 receptor (IP3R) and causes the release of Ca2+ from 

the endoplasmic reticulum (ER). This Ca2+ depletion is sensed by store-operated calcium 

channels (SOC). Influx of extracellular Ca2+ into the cytosol causes calmodulin (CaM) to 

bind to calcineurin (composed of calmodulin binding part Calcineurin A-CnA, and 

regulatory subunit Calcineurin B-CnB), causing its activation. Calcineurin is a phosphatase 

that dephosphorylates NFAT and leads to its nuclear translocation. The calcineurin-binding 

protein 1 (CABIN1) and Down's syndrome critical region 1 (DSCR1) protein are 

endogenous inhibitors of calcineurin. In the nucleus, the NFAT proteins interact with 

multiple transcriptional partners (such as GATA4, MEF2, c-Fos, c-Jun, etc.) to regulate gene 

expression. NFAT proteins undergo rephosphorylation and inactivation by multiple NFAT 

kinases, such as glycogen-synthase kinase 3 (GSK3), casein kinase 1 (CK1), and dual-

specificity tyrosine-phosphorylation regulated kinase1/2 (DYRK1 and DYRK2). CK1 and 

DYRK2 also maintain NFATs in the cytoplasm in hyperphosphorylated state. ATF2: 

activating transcription factor 2; DAG: diacylglycerol; MEF2: myocyte enhancer factor-2; 

PKC: protein kinase C; TCR: T cell receptor.
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Fig. 3. 
Promotion of cancer development and progression by NFAT. In various cancers, NFAT can 

activate downstream targets to cause enhanced cell proliferation, inflammation, metastasis, 

and angiogenesis. However, the NFAT activity is cell-type and context dependent and is 

responsive to the external stimuli such as the activation of receptor tyrosine kinases (RTKs), 

integrin, and Wnt pathway. Endogenous inhibitors of calcineurin–NFAT, such as DSCR1 

and CABIN1 also block activation of NFATs in endothelial cells and are potent inhibitors of 

tumor angiogenesis. NFAT controls angiogenesis via negative regulation of VEGF. In 

normal endothelial cells (ECs), activation of β1 integrin leads to NFAT-dependent 

transcription of VEGFR1. VEGF levels are kept in check and normal angiogenesis takes 

place. This pathway can be inhibited by complex formation between β1 integrin, VEGFR2, 

and tumor endothelial marker-8 (TEM8). In hemangioma endothelial cells (HemECs), 

VEGF signaling is constitutively activated due to enhanced complex formation in HemECs 

versus normal endothelial cells, which then leads to decreased VEGFR1 transcription. In the 

normal cell, VEGFR1 inhibits VEGF expression, normalizing vascular growth. TEM8 and 

VEGFR2 negatively regulate β1 integrin activation and in turn suppress NFAT 

transcriptional activity. VEGF can activate NFAT signaling via increased Calcium influx 

and via activation of RTKs. TF, transcription factors; CABIN1, calcineurin-binding protein 

1; DSCR1, Down's syndrome critical region 1; SOC, store-operated calcium channels; 
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TEM8, tumor endothelial marker-8; VEGF, Vascular endothelial growth factor; VEGFR1, 

VEGF receptor 1; VEGFR2, VEGF receptor 2.
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Fig. 4. 
Inhibition of the calcineurin-NFAT pathway at multiple levels. Increase in intra-cellular 

calcium levels causes calmodulin (CaM) and calcineurin B (CnB) to bind Ca+2 ions and 

activate calcineurin via a conformational change. Activated calcineurin binds to NFAT via 

the PxIxIT and the LxVP motifs of NFAT and dephosphorylates it. Dephosphorylation 

unmasks the nuclear localization sequence of NFAT. Then NFAT is translocated into the 

nucleus, where it is transactivated in co-operation with other transcription factors (TF). 

Different steps in this pathway are targeted by certain compounds to finally suppress NFAT-

dependent gene expression. Some prototype inhibitors of calcineurin-NFAT signaling axis 

are depicted. Dicholoroacetate (DCA) decreases mitochondrial membrane potential to cause 

translocation of reactive oxygen species (ROS) translocation to cytoplasm. Cytosolic ROS 

activates Kv1.5 potassium ion channels, preventing intracellular calcium entry through 

VGC. CsA, Tacrolimus, and ISA247 inhibit calcineurin phosphatase activity. ST-1959 

increases nuclear export of NFAT. Genistein reduces mRNA and protein expressions of 

NFAT1. CnA, calcineurin A; SOC, store-operated calcium channels; TCR, T cell receptor; 

VGC, voltage gated calcium channels.
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Table 2

Transcriptional regulators of NFAT proteins and their biological effects.

Transcriptional regulator NFAT isoforms Effects on NFAT and/or 
biological consequences

Cell types Reference

Akt NFAT1 Inhibits NFAT1 nuclear 
localization and blocks breast 
cancer cell growth/migration; 
Induces proteasomal 
degradation of NFAT1

MDA-MB-435 [79,80]

α6β4 NFAT5 Activates NFAT5 
transcription; Increases cell 
invasion

MDA-MB-435, MDA-MB-231 [81]

AP1 NFAT1/2 Forms quaternary complex 
with NFAT and DNA to 
trigger T-cell activation

T-cells [73,74]

Bcl-2 NFAT Inhibits NFAT transcriptional 
activity and plays a pro-
apoptotic role in the aged and 
oxidatively stressed central 
nervous system

PC12,HEK293, NIH-3T3 [82]

Caspase-3 NFAT1 Induces proteolytic cleavage 
of NFAT1

T-cells [78]

EGFR NFAT Activates store-operated 
calcium entry into cells, 
leading to activation of 
NFAT and its downstream 
target COX-2

A431 [83]

FOXP3 NFAT1/2 Interacts with NFAT and 
causes immunotolerance; 
Constitutively activates 
NFAT 1/2, independent of 
calcineurin activity

T regulatory cells [75,76]

GATA NFAT Interacts with NFAT and 
increases cell growth and rate 
of proliferation (cardiac cell 
hypertrophy)

Cardiac myocytes [84]

MDM2 NFAT1 Induces the ubiquitination 
and proteasomal degradation 
of NFAT1

MDA-MB-435, MDA-MB-231, SUM-159-PT [55,79,80]

NF-κB NFAT Interacts with NFAT and 
regulates its transcriptional 
activity and subcellular 
localization

T-cells, rat cardiomyocytes [85-88]

Notch NFAT4 Induces NFAT4 nuclear 
localization

Keratinocytes [89]

p53-K120R mutant NFAT Activates NFAT U-87, HepG2, YES-4 [90]

Stat3 NFAT2 Interacts with NFAT and 
induces malignant 
transformation

PANC-1 [77]

VEGF NFAT1 Dephosphorylates and 
activates NFAT

HUVEC [91-93]
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Table 3

Epidemiological and clinical evidence connecting NFAT and cancer.

Cancer type NFAT isoform Proposed mechanism(s) Clinical/biological outcomes Reference

Ewing's sarcoma NFAT1 Amplified chimera due to 
chromosomal gene translocation

Not known [98-100]

T-cell leukemia NFAT Calcineurin activation and NFAT 
nucleus translocation

Chemoresistance [88,94, 101]

Diffuse large B-cell lymphoma NFAT2 Constitutively activated; Interacts 
with NF-κB, binds to the CD154 
promoter, and synergistically 
activates CD154 gene transcription

Increased tumor growth [94,96,97]

Chronic Lymphocytic Leukemia NFAT2 Overexpressed and constitutively 
activated

Increased cancer progression [102,103]

Chronic Myelogenous Leukemia NFAT2 Constitutively activated Chemoresistance [104]

Breast cancer NFAT1, NFAT5 Overexpressed Increased metastatic growth [79,80]

Colon cancer NFAT1 Constitutively activated Induces tumor progression [105]

Pancreatic cancer NFAT2 Overexpressed Increased tumor growth [46]

Prostate cancer NFAT Activated NFAT promoter by 
TRPV6-mediated Ca+2 influx

Increased cell proliferation [47]

Angiosarcoma NFAT4 Activated by SFRP2 Increased angiogenesis [106]

Melanoma NFAT Increased NFAT activity via 
BRAF-MEK-ERK pathway and a 
TGF-β dependent pathway

Increased migration and invasion [107,108]

Endometrial cancer NFAT Regulation of IL11 and CXCL8 
expression

Increased migration [109,110]

Non-small cell lung cancer NFAT Overexpressed Decreased postoperative survival [111,112]

Glioblastoma NFAT1 Overexpressed Increased invasiveness [113,114]
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Table 4
Summary of NFAT inhibitors and their mechanisms of action

Inhibitors Mechanism(s) of action Cancer models Pharmacological effects Reference

Strategy 1: Target upstream regulators of NFAT

PxIxIT peptides Competes with NFAT and blocks its 
binding to calcineurin

NR Inhibits NFAT driven 
gene expression in 
Jurkat T cells

[170]

LxVP peptide Competes with NFAT and blocks its 
binding to calcineurin

NR Exerts anti-inflammatory 
activity in macrophages; 
Inhibits p38 activation

[171]

VIVIT peptide Blocks calcineurin-NFAT interaction Chronic lymphocytic leukemia Prevents IgM-induced 
cell urvival; Exerts anti-
inflammatory activity

[103,172]

11R VIVIT peptide Blocks calcineurin-NFAT interaction. NR Inhibits macrophage 
cytokine expression; 
Attenuates colitis in 
experimental models

[173]

Cyclosporin A (CsA) Binds to immunophilins and inhibit 
calcineurin activity.

T-cell leukemia and colorectal 
cancer

Regulates c-Myc, p21, 
and PCNA levels and 
then reduces cell 
proliferation; Inhibits 
multidrug resistance 
proteins

[88,162, 174-176]

ISA247 (voclosporin) Binds to immunophilins and inhibit 
calcineurin activity.

NR Shows better 
bioavailability and 
efficacy than CsA

[177,178]

Tacrolimus (FK-506) Binds to FK-506 Binding Protein 
(FKBP12) and inhibit calcineurin 
activity.

Chronic lymphocytic leukemia 
and prostate cancer

Promotes apoptosis [163,164]

BTP2 (YM-58483) Decreases SOC-channel-dependent 
Ca2+ influx via depolarization of cell 
membrane

NR Inhibits proliferation and 
Ca2+-dependent cytokine 
production in stimulated 
human CD4+ T cells

[179,180]

McKeon compounds Interferes with intracellular calcium 
mobilization involving store-operated 
calcium channels

NR NR [181]

Trifluoperazine Binds to calmodulin and blocks its 
interaction with calcineurin

Gefitinib-resistant lung cancer Suppresses IL-2 
expression of αCD3/
PMA-activated Jurkat T 
cells

[182]

Kaempferol Inhibits phosphatase activity of 
calcineurin A by binding to its 
catalytic domain

Ovarian cancer Suppresses IL-2 gene 
expression in Jurkat T 
cells; Inhibits TNFα-
induced NF-κB 
activation in HEK293 
cells

[183-186]

Thiopental Inhibits phosphatase activity of 
calcineurin

NR Inhibits NF-κB 
activation in Jurkat cells 
and in primary CD3+ 

lymphocytes

[187]

INCA-1, 2, and 6 Block calcineurin-NFAT interaction 
via binding at residue Cys266 of 
calcineurin

NR Inhibit the induction of 
downstream cytokine 
mRNAs

[188]

NCI3 Blocks calcineurin-NFAT interaction 
by binding to calcineurin and causing 
allosteric change

NR Inhibits IL-2 secretion 
and cell proliferation 
upon stimulation of 
Jurkat or primary human 
T cells.

[189]
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Inhibitors Mechanism(s) of action Cancer models Pharmacological effects Reference

Dipyridamole Blocks calcineurin-NFAT interaction Breast and pancreatic cancer Inhibits NFAT-
dependent reporter gene 
and cytokine expression

[190,191]

Dicholoroacetate (DCA) Decreases intracellular Ca+2 via 
NFAT-Kv1.5 pathway

Glioblastoma, lung, breast, 
and endometrial cancer

Promotes apoptosis [192, 193]

Dehydroepiandros terone (DHEA) Inhibits Akt/GSK3-β/NFAT axis. Breast cancer Reverses systemic 
vascular remodeling 
following vascular injury

[194]

Curcumin Inhibits Ca+2 mobilization Various cancer Suppresses T-cell 
activation; Inhibits IL-2 
production

[195]

Strategy 2: Directly target NFAT

ST-1959 Enhances NFAT1 nuclear export NR Inhibits T-cell 
activation, proliferation 
and cytokine production

[196]

Roc-1, 2 and 3 Inhibit NFAT2 nuclear translocation NR Reduce expression of 
IL-2, IL-4, IFNγ and 
TNFα; Inhibit nuclear 
localization of c-jun

[197]

Helenalin Inhibits NFAT1 nuclear translocation Renal cell carcinoma Induces G2/M cell cycle 
arrest via p21; Inhibits 
IL-2 production

[198]

Genistein Reduces mRNA and protein 
expression of NFAT1

Liver cancer Promotes apoptosis [199,200]

Zoledronic acid Induces NFAT1 ubiquitination and 
degradation

Breast and pancreatic cancer Inhibits tumor cell 
growth by inducing G1 
cell cycle arrest

[55]

Strategy 3: Block NFAT-DNA binding

UR-1505 Blocks the binding of NFAT1 to 
DNA

NR Inhibits T cell 
proliferation and IL-5 as 
well as IFNγ expression; 
Exerts anti-inflammatory 
in rat colitis model

[201,202]

Triflusal Inhibits NFAT1-DNA complex 
formation, and NF-κB activation

NR Inhibits expression of 
IL-2, IL-3, GM-CSF, 
TNF-α, TGF-β1, 
lymphotactin, MIP-1α, 
MIP-1β, IFN-γ, and 
TNF-α, in Jurkat T cells

[203]

Caffeic acid phenethyl ester 
(CAPE)

Inhibits NFAT nuclear translocation 
and DNA binding

Prostate cancer Inhibits IL-2 promoter 
activity and cytokine 
synthesis

[204]

Punicalagin Inhibits NFAT nuclear translocation 
and DNA binding

Breast, lung, and cervical 
cancer

Inhibits IL-2 production 
of CD4+ T cells

[205]

Imperatorin (furanocoumarin) Inhibits NFAT transcriptional and 
DNA-binding activities.

Lung cancer Inhibits the proliferation 
of SEB-stimulated T 
cells

[206]

Quinolone alkaloids Inhibit NFAT transcriptional and 
DNA-binding activities.

NR Inhibit NFAT and NF-
κB-dependent reporter 
gene expression in 
Jurkat T cells.

[207]

1,25-Dihydroxy-vitamin D3 Inhibits NFAT transcriptional 
activities

Various cancer Inhibits GM-CSF 
transcription in Jurkat T 
cells; Inhibits IL-2 
transcription

[208]
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Inhibitors Mechanism(s) of action Cancer models Pharmacological effects Reference

Digitoxin Inhibits NFAT1 interaction with the 
proximal c-Myc promoter.

Cervical cancer Suppresses c-Myc 
dependent cell 
proliferation and induces 
apoptosis

[209]

AM-404 Inhibits NFAT1-DNA binding and 
transcriptional activity

NR Suppresses IL-2 and 
TNFα transcription, T 
cell proliferation and 
cytokine release in 
Jurkat T cells after 
αCD3/28 stimulation

[210]

NR, not reported.
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