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Abstract

Whilst estimation of the marginal (total) causal effect of a point exposure on an outcome is 

arguably the most common objective of experimental and observational studies in the health and 

social sciences, in recent years, investigators have also become increasingly interested in 

mediation analysis. Specifically, upon evaluating the total effect of the exposure, investigators 

routinely wish to make inferences about the direct or indirect pathways of the effect of the 

exposure not through or through a mediator variable that occurs subsequently to the exposure and 

prior to the outcome. Although powerful semiparametric methodologies have been developed to 

analyze observational studies, that produce double robust and highly efficient estimates of the 

marginal total causal effect, similar methods for mediation analysis are currently lacking. Thus, 

this paper develops a general semiparametric framework for obtaining inferences about so-called 

marginal natural direct and indirect causal effects, while appropriately accounting for a large 

number of pre-exposure confounding factors for the exposure and the mediator variables. Our 

analytic framework is particularly appealing, because it gives new insights on issues of efficiency 

and robustness in the context of mediation analysis. In particular, we propose new multiply robust 

locally efficient estimators of the marginal natural indirect and direct causal effects, and develop a 

novel double robust sensitivity analysis framework for the assumption of ignorability of the 

mediator variable.
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1 Introduction

The evaluation of the total causal effect of a given point exposure, treatment or intervention 

on an outcome of interest is arguably the most common objective of experimental and 

observational studies in the fields of epidemiology, biostatistics and in the social sciences. 

However, in recent years, investigators in these various fields have become increasingly 

interested in making inferences about the direct or indirect pathways of the exposure effect 

not through or through a mediator variable that occurs subsequently to the exposure and 
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prior to the outcome. Recently, the counterfactual language of causal inference has proven 

particularly useful for formalizing mediation analysis. Indeed, causal inference offers a 

formal mathematical framework for defining varieties of direct and indirect effects, and for 

establishing necessary and sufficient identifying conditions of these effects. A notable 

contribution of causal inference to the literature on mediation analysis is the key distinction 

drawn between so-called controlled direct and indirect effects versus natural direct and 

indirect effects. In words, the controlled direct effect refers to the exposure effect that arises 

upon intervening to set the mediator to a fixed level that may differ from its actual observed 

value (Robins and Greenland, 1992, Pearl, 2001, Robins, 2003). In contrast, the natural (also 

known as pure) direct effect captures the effect of the exposure when one intervenes to set 

the mediator to the (random) level it would have been in the absence of exposure (Robins 

and Greenland, 1992, Pearl 2001). The controlled direct effect combines with the controlled 

indirect effect to produce the joint effect of the exposure and the mediator, whereas, the 

natural direct and indirect effects combine to produce the exposure total effect. As noted by 

Pearl (2001), controlled direct and indirect effects are particularly relevant for policy making 

whereas natural direct and indirect effects are more useful for understanding the underlying 

mechanism by which the exposure operates.

To formally define natural direct and indirect effects first requires defining counterfactuals. 

We assume that for each level of a binary exposure E, and of a mediator variable M, there 

exist a counterfactual variable Ye,m corresponding to the outcome Y had possibly contrary to 

fact the exposure and mediator variables taken the value (e, m). Similarly, for E = e, we 

assume there exist a counterfactual variable Me corresponding to the mediator variable had 

possibly contrary to fact the exposure variable taken the value e. The current paper concerns 

the decomposition of the total effect of E on Y in terms of natural direct and natural indirect 

effects, which expressed on the mean difference scale, is given by:

(1)

where  stands for expectation.

In an effort to account for confounding bias when estimating causal effects, such as the 

average total effect (1) from non-experimental data, investigators routinely collect and 

adjust for in data analysis, a large number of confounding factors. Because of the curse of 

dimensionality, nonparametric methods of estimation are typically not practical in such 

settings, and one usually resorts to one of two dimension-reduction strategies; either one 

relies on a model for the outcome given exposure and counfounders, or alternately one relies 

on a model for the exposure, i.e. the propensity score. Recently, powerful semiparametric 

methods have been developed to analyze observational studies, that produce so-called 

double robust and highly efficient estimates of the exposure total causal effect (Robins, 

1999, Scharfstein, Rotnitzky and Robins, 1999, Bang and Robins, 2005, Tsiatis, 2006) and 

similar methods have also been developed to estimate controlled direct and indirect effects 

(Goetgeluk, Vansteelandt and Goetghebeur, 2008). An important advantage of a double 
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robust method is that it carefully combines both of the aforementioned dimension reduction 

strategies for confounding adjustment, to produce an estimator of the causal effect that 

remains consistent and asymptotically normal provided at least one of the two strategies is 

correct, without necessarily knowing which strategy is indeed correct (van der Laan and 

Robins, 2003). Unfortunately, similar methods for making semiparametric inferences about 

marginal natural direct and indirect effects are currently lacking. Thus, this paper develops a 

general semiparametric framework for obtaining inferences about marginal natural direct 

and indirect effects on the mean of an outcome, while appropriately accounting for a large 

number of confounding factors for the exposure and the mediator variables.

Our semiparametric framework is particularly appealing, as it gives new insight on issues of 

efficiency and robustness in the context of mediation analysis. Specifically, in Section 2, we 

adopt the sequential ignorability assumption of Imai et al (2010) under which, in 

conjunction with the standard consistency and positivity assumptions, we derive the efficient 

influence function and thus obtain the semiparametric efficiency bound for the natural direct 

and natural indirect marginal mean causal effects, in the nonparametric model ℳnonpar in 

which the observed data likelihood is left unrestricted. We further show that in order to 

conduct mediation inferences in ℳnonpar, one must estimate at least a subset of the 

following quantities:

i. the conditional expectation of the outcome given the mediator, exposure and 

confounding factors;

ii. the density of the mediator given the exposure and the confounders;

iii. the density of the exposure given the confounders.

Ideally, to minimize the possibility of modeling bias, one may wish to estimate each of these 

quantities nonparametrically; however, as previously argued, when as we assume 

throughout, we wish to account for numerous confounders, such nonparametric estimates 

will likely perform poorly infinite samples. Thus, in Section 2.3 we develop an alternative 

multiply robust strategy. To do so, we propose to model (i), (ii) and (iii) parametrically (or 

semiparametrically), but rather than obtaining mediation inferences that rely on the correct 

specification of a specific subset of these models, instead we carefully combine these three 

models to produce estimators of the marginal mean direct and indirect effects that remain 

consistent and asymptotically normal (CAN) in a union model where at least one but not 

necessarily all of the following conditions hold:

a. the parametric or semi-parametric models for the conditional expectation of the 

outcome (i) and for the conditional density of the mediator (ii) are correctly 

specified;

b. the parametric or semiparametric models for the conditional expectation of the 

outcome (i) and for the conditional density of the exposure (iii) are correctly 

specified;

c. the parametric or semiparametric models for the conditional densities of the 

exposure and the mediator (ii) and (iii) are correctly specified.
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Accordingly, we define submodels ℳa, ℳb and ℳc of ℳnonpar corresponding to models 

(a), (b) and (c) respectively. Thus, the proposed approach is triply robust as it produces valid 

inferences about natural direct and indirect effects in the union model ℳunion = 

ℳa∪ℳb∪ℳc. Furthermore, as we later show in Section 2.3, proposed estimators also 

locally semiparametric efficient in the sense that they achieve the respective efficiency 

bounds for estimating the natural direct and indirect effects in ℳunion, at the intersection 

submodel ℳa∩ℳb∩ℳc = ℳa∩ℳc = ℳa∩ℳb = ℳb∩ℳc⊂ℳunion⊂ℳnonpar.

Section 3 summarizes a simulation study illustrating the finite sample performance of the 

various estimators described in Section 2, and Section 4 gives a real data application of these 

methods. Section 5 describes a strategy to improve the stability of the proposed multiply 

robust estimator which directly depends on inverse exposure and mediator density weights, 

when such weights are highly variable, and Section 6 demonstrates the favorable 

performance of two modified multiply robust estimators in the context of such highly 

variable weights. In Section 7, we compare the proposed methodology to the prevailing 

estimators in the literature. Based on this comparison, we conclude that the new approach 

should generally be preferred because an inference under the proposed method is guaranteed 

to remain valid under many more data generating laws than an inference based on each of 

the other existing approaches. In particular, as we argue below the approach of van der Laan 

and Petersen (2005) is not entirely satisfactory because, despite producing a CAN estimator 

of the marginal direct effect under the union model ℳa∪ℳc (and therefore an estimator 

that is double robust), their estimator requires a correct model for the density of the 

mediator. Thus unlike the direct effect estimator developed in this paper, the van der Laan 

estimator fails to be consistent under the submodel ℳb⊂ℳunion. Nonetheless, the estimator 

of van der Laan is in fact locally efficient in model ℳa∪ℳc, provided the model for the 

mediator’s conditional density is either known, or can be efficiently estimated. This property 

is confirmed in a supplementary online appendix, where we also provide a general map that 

relates the efficient influence function for model ℳunion to the corresponding influence 

function for model ℳa∪ℳc assuming an arbitrary parametric or semiparametric model for 

the mediator conditional density is correctly specified. In Section 8, we describe a novel 

double robust sensitivity analysis framework to assess the impact on inferences about the 

natural direct effect, of a departure from the ignorability assumption of the mediator 

variable. We conclude with a brief discussion.

2 The nonparametric mediation functional

2.1 Identification

Suppose i.i.d data on O = (Y, E, M, X) is collected for n subjects. Recall that Y is an outcome 

of interest, E is a binary exposure variable, M is a mediator variable with support , known 

to occur subsequently to E and prior to Y, and X is a vector of pre-exposure variables with 

support  that confound the association between (E, M) and Y. The overarching goal of this 

paper is to provide some theory of inference about the fundamental functional of mediation 

analysis which Judea Pearl calls “the mediation causal formula” (Pearl, 2010) and which 

expressed on the mean scale, is:
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(2)

fM|E,X and fX are respectively the conditional density of the mediator M given (E, X) and the 

density of X, and μ is a dominating measure for the distribution of (M, X). Hereafter, to keep 

with standard statistical parlance, we shall simply refer to θ0 as the “mediation functional” 

or “M-functional” since it is formally a functional on the nonparametric statistical model 

ℳnonpar = {FO (·): FO unrestricted} of all regular laws FO of the observed data O that 

satisfy the positivity assumption given below; i.e. θ0 = θ0 (FO): ℳnonpar →ℛ, with ℛ the 

real line. The functional θ0 is of keen interest here because it arises in the estimation of 

natural direct and indirect effects which we describe next. To do so, we make the 

consistency assumption:

Consistency—

In addition, we adopt the sequential ignorability assumption of Imai et al (2010) which states 

that for e, e′ ∈ {0, 1}:

Sequential ignorability—

where A ⫫ B|C states that A is independent of B given C; paired with the following:

positivity—

Then, under the consistency, sequential ignorability and positivity assumptions, Imai et al 

(2010) showed that:

(3)
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so that  and , e = 0, 1, are identified from the observed data, and so is the 

mean natural direct effect  and the mean natural indirect effect 

. For binary Y, one might alternatively consider the natural direct 

effect on the risk ratio scale  or on the odds ratio scale 

 and similarly 

defined natural indirect effects on the risk ratio and odds ratio scales. It is instructive to 

contrast the expression (2) for  with the expression (3) for e = 1 corresponding to 

, and to note that the two expressions bare a striking resemblance except the density of 

the mediator in the first expression conditions on the unexposed (with E = 0) whereas in the 

second expression, the mediator density is conditional on the exposed (with E = 1). As we 

demonstrate below, this subtle difference has remarkable implications for inference.

Pearl (2001) was the first to derive the M-functional  under a different set of 

assumptions. Others have since contributed alternative sets of identifying assumptions. In 

this paper, we have chosen to work under the sequential ignorability assumption of Imai et 

al(2010a,b) but note that alternative related assumptions exist in the literature (Robins and 

Greenland, 1992, Pearl, 2001, Petersen and van der Laan, 2005, Hafeman and Vanderweele, 

2010). Although, we note that Robins and Richardson (2010) disagree with the label 

“sequential ignorability” because its terminology has previously carried a different 

interpretation in the literature. Nonetheless, the assumption entails two ignorability-like 

assumptions that are made sequentially. First, given the observed pre-exposure confounders, 

the exposure assignment is assumed to be ignorable, that is, statistically independent of 

potential outcomes and potential mediators. The second part of the assumption states that the 

mediator is ignorable given the observed exposure and pre-exposure confounders. 

Specifically, the second part of the sequential ignorability assumption is made conditional 

on the observed value of the ignorable treatment and the observed pretreatment confounders. 

We note that the second part of the sequential ignorability assumption is particularly strong 

and must be made with care. This is partly because, it is always possible that there might be 

unobserved variables that confound the relationship between the outcome and the mediator 

variables even upon conditioning on the observed exposure and covariates. Furthermore, the 

confounders X must all be pre-exposure variables, i.e. they must precede E. In fact, Avin et 

al (2005) proved that without additional assumptions, one cannot identify natural direct and 

indirect effects if there are confounding variables that are affected by the exposure even if 

such variables are observed by the investigator. This implies that similar to the ignorability 

of the exposure in observational studies, ignorability of the mediator cannot be established 

with certainty even after collecting as many pre-exposure confounders as possible. 

Furthermore, as Robins and Richardson (2010) point out, whereas the first part of the 

sequential ignorability assumption could in principle be enforced in a randomized study, by 

randomizing E within levels of X; the second part of the sequential ignorability assumption 

cannot similarly be enforced experimentally, even by randomization. And thus for this latter 

assumption to hold, one must entirely rely on expert knowledge about the mechanism under 

study. For this reason, it will be crucial in practice to supplement mediation analyses with a 

sensitivity analysis that accurately quantifies the degree to which results are robust to a 

potential violation of the sequential ignorability assumption. Later in the paper, we develop 
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a set of sensitivity analyses that will allow the analyst to quantify the degree to which his or 

her mediation analysis results are robust to a potential violation of the sequential ignorability 

assumption.

2.2 Semiparametric efficiency bounds for ℳnonpar

In this section, we derive the efficient influence function for the M-functional θ0 in ℳnonpar, 

this result is then combined with the efficient influence function for the functional δe 

(Robins, Rotnitzky and Zhao, 1994, Hahn, 1998) to obtain the efficient influence function 

for the natural direct and indirect effects, on the mean difference scale. Thus, in the 

following, we shall use the efficient influence function  of δe which is well 

known to be:

where for e, e* ∈ {0, 1}, we define

so that , e = 0, 1.

The following theorem is proved in the appendix

Theorem 1—Under the consistency, sequential ignorability and positivity assumptions, the 

efficient influence function of the M-functional θ0 in model ℳnonpar is given by 

and the efficient influence function of the natural direct and indirect effects on the mean 

difference scale in model ℳnonpar are respectively given by 

and 
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Thus, the semiparametric efficiency bound for estimating the natural direct and the natural 

indirect effects in ℳnonpar are respectively given by  and 

.

Although not presented here, Theorem 1 is easily extended to obtain the efficient influence 

functions and the respective semiparametric efficiency bounds for the direct and indirect 

effects on the risk ratio and the odds ratio scales by a straightforward application of the delta 

method. An important implication of the theorem is that all regular and asymptotically linear 

(RAL) estimators of θ0, δ1−θ0 and θ0−δ0 in model ℳnonpar share the common influence 

functions ,  and  respectively. Specifically, 

any RAL estimator  of the M-functional θ0 in model ℳnonpar, shares a common 

asymptotic expansion:

where . To illustrate this property of nonparametric RAL estimators and as 

a motivation for multiply robust estimation when nonparametric methods are not 

appropriate, we provide a detailed study of three nonparametric strategies for estimating the 

M-functional in a simple yet instructive setting in which X and M are both discrete with 

finite support.

Strategy 1: The first strategy entails obtaining the maximum likelihood estimator upon 

evaluating the M-functional under the empirical law of the observed data:

where  and  are the empirical probability mass functions, and 

 is the expectation of Y under .

Strategy 2: The second strategy is based on the following alternative representation of the 

M-functional
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Thus, our second estimator takes the form:

with  the empirical estimate of the probability mass function fE|X.

Strategy 3: The last strategy is based on a third representation of the M-functional

Thus, our third estimator takes the form:

At first glance the three estimators ,  and  might appear to be distinct, however, we 

observe that provided the empirical distribution function 

 satisfies the positivity assumption, and thus 

, then actually  since the three representations agree 

on the nonparametric model ℳnonpar. Therefore we may conclude that these three 

estimators are in fact asymptotically efficient in ℳnonpar with common influence function 

. Furthermore, from this observation, one further concludes that (asymptotic) 

inferences obtained using one of the three representations are identical to inferences using 

either of the other two representations.

At this juncture, we note that the above equivalence no longer applies when as we have 

previously argued will likely occur in practice, (M, X) contains 3 or more continuous 
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variables and/or X is too high dimensional for models to be saturated or nonparametric, and 

thus parametric (or semiparametric) models are specified for dimension reduction. 

Specifically, for such settings, we observe that three distinct modeling strategies are 

available. Under the first strategy, the estimator  is obtained as  using 

parametric model estimates  and  instead of their 

nonparametric counterparts; similarly under the second strategy, the estimator  is 

obtained as  using estimates of parametric models  and 

 and finally, under the third strategy,  is obtained as  using 

and . Then it follows that  is CAN under the submodel ℳa, but is 

generally inconsistent if either  or  fails to be consistent. 

Similarly,  and  are respectively CAN under the submodels ℳb and ℳc, but 

each estimator generally fails to be consistent outside of the corresponding submodel. In the 

next section, we propose an approach that produces a triply robust estimator by combining 

the above three strategies so that only one of models ℳa, ℳb and ℳc needs to be valid for 

consistency of the estimator.

2.3 Triply robust estimation

The proposed triply robust estimator  solves

where  is equal to  evaluated at , 

, ; that is

(4)

is CAN in model ℳunion = ℳa∪ℳb∪ℳc, where

In the next theorem, the estimator in the above display is combined with a doubly robust 

estimator  of δe (see van der Laan and Robins, 2003 or Tsiatis, 2006), to obtain 

multiply-robust estimators of natural direct and indirect effects, where
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To state the result, we set , 

where g is a known link function h is a user specified function of (X, M, E) so that 

 entails a working regression model for 

 and  solves the estimating equation

Similarly, we set  for  a 

parametric model for the density of [M|E,X] with  solving

and we set  for  a parametric model for the density of 

[E|X] with  solving

Theorem 2—Suppose that the assumptions of Theorem 1 hold, and that the regularity 

conditions stated in the appendix hold and that βm, βe and βy are variation independent.

i. Mediation functional: Then,  is RAL under model ℳunion with 

influence function

and thus converges in distribution to a , where
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with  and , and with β* 

denoting the probability limit of the estimator 

ii. Natural direct effect: Similarly,  is RAL under 

model ℳunion with influence function  defined as 

with  replacing , and asymptotic variance 

 defined accordingly.

iii. Natural indirect effect: Similarly,  is RAL under 

model union with influence function  defined as 

with  replacing , and asymptotic variance: 

 defined accordingly.

iv. ,  and  are semiparametric locally efficient in 

the sense that they are RAL under model ℳunion and respectively achieve the 

semiparametric efficiency bound for θ0, θ0 − δ0, and δ1 − θ0 under model ℳunion at 

the intersection submodel ℳa∩ℳb∩ℳc, with respective efficient influence 

functions: ,  and .

Empirical versions of  and  are easily obtained, and 

the corresponding Wald type confidence intervals can be used to make formal inferences 

about natural direct and indirect effects. It is also straightforward to extend the approach to 

the risk ratio and odds ratio scales for binary Y. By a theorem due to Robins and Rotnitzky 

(2001), part iv) of the theorem implies that when all models are correct, , 

 and  are semiparametric efficient in model ℳnonpar at the 

intersection submodel ℳa∩ℳb∩ℳc.

3 A simulation study of estimators of direct effect

In this section, we report a simulation study which illustrates the finite sample performance 

of the various estimators described in previous sections. We generated 1000 samples of size 

n = 600, 1000 from the following model:

We then evaluated the performance of the following four estimators of the natural direct 

effect , , , and . Note that the doubly 
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robust estimator  was used throughout to estimate . To assess the impact of 

modeling error, we evaluated these estimators in four separate scenarios. In the first 

scenario, all models were correctly specified, whereas the remaining three scenarios 

respectively mis-specified only one of Model.E, Model.M and Model.Y. In order to mis-

specify Model.E and Model.M, we respectively left out the X1 X3 interaction when fitting 

each model and we assumed an incorrect log-log link function. The incorrect model for Y 

simply assumed no EM interaction.

Tables 1 and 2 summarize the simulation results which largely agree with the theory 

developed in the previous sections. Mainly, all proposed estimators performed well at both 

moderate and large sample sizes in the absence of modeling error. Furthermore, under the 

partially mis-specified model in which Model.Y was incorrect, both estimators, 

and  showed significant bias irrespective of sample size, while 

and  both performed well. Similarly when Model.M was incorrect, the 

estimators  and  resulted in large bias, when compared to the 

relatively small bias of  and . Finally, mis-specifying Model.E 

lead to estimators  and  that were significantly more biased than 

the estimators  and . Interestingly, the efficiency loss of the 

multiply robust estimator remained small when compared to the consistent non-robust 

estimator under the various scenarios, suggesting that, at least in this simulation study, the 

benefits of robustness appear to outweigh the loss of efficiency.

4 A data application

In this section, we illustrate the methods in a real world application from the psychology 

literature on mediation. We re-analyze data from The Job Search Intervention Study (JOBS 

II) also analyzed by Imai et al (2010b). JOBS II is a randomized field experiment that 

investigates the efficacy of a job training intervention on unemployed workers. The program 

is designed not only to increase reemployment among the unemployed but also to enhance 

the mental health of the job seekers. In the study, 1,801 unemployed workers received a pre-

screening questionnaire and were then randomly assigned to treatment and control groups. 

The treatment group with E = 1 participated in job skills workshops in which participants 

learned job search skills and coping strategies for dealing with setbacks in the job search 

process. The control group with E = 0 received a booklet describing job search tips. An 

analysis considers a continuous outcome measure Y of depressive symptoms based on the 

Hopkins Symptom Checklist (Vinokur, Price, & Schul, 1995; Vinokur & Schul, 1997, Imai 

et al, 2010b). In the JOBS II data, a continuous measure of job search self-efficacy 

represented the hypothesized mediating variable M. The data also included baseline 

covariates X measured before administering the treatment including: pretreatment level of 

depression, education, income, race, marital status, age, sex, previous occupation, and the 

level of economic hardship.
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Note that by randomization, the density of [E|X] was known by design not to depend on 

covariates, and therefore its estimation is not prone to modeling error. The continuous 

outcome and mediator variables were modeled using linear regression models with Gaussian 

error, with main effects for (E, M, X) included in the outcome regression and main effects 

for (E, X) included in the mediator regression. Table 3 summarizes results obtained using 

, ,  and  together with , e = 0, 1, to estimate the direct and indirect 

effects of the treatment.

Point estimates of both natural direct and indirect effects closely agreed under models ℳym 

and ℳye, and also agreed with the results of Imai et al (2010b). We should note that 

inferences under our choice of ℳym are actually robust to the normality assumption and, as 

in Imai et al (2010b), only require that the mean structure of [Y|E, M, X] and [M|E, X] are 

correct. In contrast, inferences under model ℳem require a correct model for the mediator 

density. This distinction may partly explain the apparent disagreement in the estimated 

direct effect under ℳem when compared to the other methods, also suggesting that the 

Gaussian error model for M is not entirely appropriate. The multiply robust estimate of the 

natural direct effect is consistent with estimates obtained under models ℳym and ℳye, and 

is statistically significant, suggesting that the intervention may have beneficial direct effects 

on participants’ mental health; while the multiply robust approach suggests a much smaller 

indirect effect than all other estimators although none achieved statistical significance.

5 Improving the stability of  when weights are highly variable

The triply robust estimator  which involves inverse probability weights for the 

exposure and mediator variables, clearly relies on the positivity assumption, for good finite 

sample performance. But as recently shown by Kang and Shafer (2007) in the context of 

missing outcome data, a practical violation of positivity in data analysis can severely 

compromise inferences based on such methodology; although their analysis did not directly 

concern the M-functional θ0. Thus, it is crucial to critically examine, as we do below in a 

simulation study, the extent to which the various estimators discussed in this paper are 

susceptible to a practical violation of the positivity assumption, and to consider possible 

approaches to improve the finite sample performance of these estimators in the context of 

highly variable empirical weights. Methodology to enhance the finite sample behaviour of 

 is well studied in the literature and is not considered here, see for example Robins et 

al (2007), Cao et al (2009) and Tan (2010). We first describe an approach to enhance the 

finite sample performance of , particularly in the presence of highly variable empirical 

weights. To focus the exposition, we only consider the case of a continuous Y and a binary 

M, but in principle, the approach could be generalized to a more general setting. The 

proposed enhancement involves two modifications.

The first modification adapts to the mediation context, an approach developed for the 

missing data context (and for the estimation of total effects) in Robins et al (2007). The 

basic guiding principle of the approach is to carefully modify the estimation of the outcome 
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and mediator models in order to ensure that the triply robust estimator given by equation (4) 

has the simple M-functional representation

where  is carefully estimated to ensure multiple robustness. The reason for 

favoring an estimator with the above representation is that it is expected to be more robust to 

practical positivity violation because it does not directly depend on inverse probability 

weights. However, as we show next, to ensure multiple robustness, estimation of ηpar 

involves inverse probability weights, and therefore,  indirectly depends on such 

weights. Our strategy involves a second step to minimize the potential impact of this indirect 

dependence on weights.

In the following, we assume to simplify the exposition that a simple linear model is used

Then, similarly to Robins et al (2007), one can verify that the above M-functional 

representation of a triply robust estimator is obtained by estimating 

with  obtained via weighted logistic regression in the unexposed-only, 

with weight ; and by estimating  using weighted OLS of Y 

on (M, X) in the exposed-only, with weight

provided that both working models include an intercept: The second enhancement to 

minimize undue influence of variable weights on the M-functional estimator, entails using 

 in the previous step instead of , where

with

This second modification ensures a certain boundedness property of inverse propensity 

score-weighting. Specifically, for any bounded function R = r(Y, M) of Y and M; consider 

for a moment the goal of estimating the counterfactual mean ; then it is well 

known that even though R is bounded, the simple inverse-probability weighting estimator 
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 could easily be unbounded, particularly if positivity is practically 

violated. In contrast, as we show next, the estimator  is generally 

bounded. To see why, note that

which is bounded since the second term is bounded, and the first term is a convex 

combination of bounded variables, and therefore is also bounded. Furthermore, 

 converges in probability to  provided that 

converges to fE|X, ensuring that the expression in the above display is consistent for 

. The nonparametric bootstrap is most convenient for inference using .

In the next section, we study in the context of highly variable weights, the behavior of our 

previous estimators of θ0 together with that of the enhanced estimators 

, j =1, 2, where  is constructed as described above 

using , and  uses .

6 A simulation study where positivity is practically violated

We adapted to the mediation setting, the missing data simulation scenarios in Kang and 

Schafer (2007) which were specifically designed so that, when misspecified, working 

models are nonetheless nearly correct but yield highly variable inverse probability weights 

with practical positivity violation in the context of estimation. We generated 1000 samples 

of size n = 200; 1000 from the following model:

Correctly specified working models were thus achieved when an additive linear regression 

of Y on Z, a logistic regression of M with linear predictor additive in Z and E and a logistic 

regression of E with linear predictor additive in the Z, respectively. Incorrect specification 

involved fitting these models with X replacing Z, which produces higly variable weights. For 

instance, an estimated propensitiy score as small as 5.5 × 10−33 occured in the simulation 

study reflecting an effective violation of positivity; similarly, a mediator predicted 

probability as small as 3 × 10−20 also occured in the simulation study.
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Tables 4 and 5 summarize simulation results for , , , ,  and . 

When all three working models are correct, all estimators perform well in terms of bias, but 

there are clear differences between the estimators in terms of efficiency. In fact, , , 

 and  have comparable efficiency for n = 200, 1000, but ,  is far more 

variable. Moreover, under mis-specification of a single model, ,  and 

remain nearly unbiased, and for the most part substantially more efficient than the 

corresponding consistent estimator in . When at least two models are mis-

specified, the multiply robust estimators ,  and  generally outperform 

the other estimators, although  occasionally succumbs to the unstable weights resulting 

in disastrous mean squared error; see Table 5 when Model.M and Model.E are both 

incorrect. In contrast,  generally improves on  which generally outperforms 

 and for the most part  and  appears to eliminate any possible 

deleterious impact of highly variable weights.

7 A comparison to some existing estimators

In this section, we briefly compare the proposed approach to some existing estimators in the 

literature. Perhaps the most common approach for estimating direct and indirect effects 

when Y is continuous uses a system of linear structural equations; whereby, a linear 

structural equation for the outcome given the exposure, the mediator and the confounders is 

combined with a linear structural equation for the mediator given the exposure and 

confounders to produce an estimator of natural direct and indirect effects. The classical 

approach of Baron and Kenny (1986) is a particular instance of this approach. In recent 

work mainly motivated by Pearl’s mediation functional, several authors (Imai et al, 2010, 

Pearl, 2010, VanderWeele, 2009, VanderWeele and Vansteedlandt, 2010) have 

demonstrated how the simple linear structural equation approach generalizes to 

accommodate both, the presence of an interaction between exposure and mediator variables, 

and a nonlinear link function either in the regression model for the outcome or in the 

regression model for the mediator, or both. In fact, when the effect of confounders is also 

modeled in such structural equations, inferences based on the latter can be viewed as special 

instances of inferences obtained under a particular specification of model ℳa for the 

outcome and the mediator densities. And thus, as previously shown in the simulations, an 

estimator obtained under a system of structural equations will generally fail to produce a 

consistent estimator of natural direct and indirect effects when model ℳa is incorrect 

whereas, by using the proposed multiply robust estimator valid inferences can be recovered 

under the union model , even if  fails.

A notable improvement on the system of structural equations approach is the double robust 

estimator of a natural direct effect due to van der Laan and Petersen (2005). Their estimator 

solves the estimating equation constructed using an empirical version of 

given in the online appendix. They show their estimator remains CAN in the larger 

submodel  and therefore, they can recover valid inferences even when the outcome 
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model is incorrect, provided both the exposure and mediator models are correct: 

Unfortunately, the van der Laan estimator is still not entirely satisfactory because unlike the 

proposed multiply robust estimator, it requires that the model for the mediator density is 

correct. Nonetheless, if the mediator model is correct, the authors establish that their 

estimator achieves the efficiency bound for model  at the intersection submodel 

 where all models are correct; and thus it is locally semiparametric efficient in 

. Interestingly, as we report in the online supplement, the semiparametric 

efficiency bounds for models  and  are distinct, because the 

density of the mediator variable is not ancillary for inferences about the M-functional. Thus, 

any restriction placed on the mediator’s conditional density can, when correct, produce 

improvements in efficiency. This is in stark contrast with the role played by the density of 

the exposure variable, which as in the estimation of the marginal causal effect, remains 

ancillary for inferences about the M-functional and thus the efficiency bound for the latter is 

unaltered by any additional information on the former (Robins et al 1994). In the online 

appendix, we provide a general functional map that relates the efficient influence function 

for the larger model  to the efficient influence for the smaller model 

 where the model for the mediator is either parametric or semiparametric. Our map 

is instructive because it makes explicit using simple geometric arguments, the information 

that is gained from increasing restrictions on the law of the mediator. In the online appendix, 

we illustrate the map by recovering the efficient influence function of van der Laan in the 

case of a singleton model (i.e. a known conditional density) for the mediator and in the case 

of a parametric model for the mediator.

8 A semiparametric sensitivity analysis

We describe a semiparametric sensitivity analysis framework to assess the extent to which a 

violation of the ignorability assumption for the mediator might alter inferences about natural 

direct and indirect effects. Although only results for the natural direct effect are given here, 

the extension for the indirect effect is easily deduced from the presentation. Let

then

i.e. a violation of the ignorability assumption for the mediator variable, generally implies 

that

Thus, we proceed as in Robins, Rotnitzky and Scharfstein (1999), and propose to recover 

inferences by assuming the selection bias function t (e; m; x) is known, which encodes the 

magnitude and direction of the unmeasured confounding for the mediator. In the following, 

 is assumed to be finite. To motivate the proposed approach, suppose for the moment that 
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fM|E,X (M|E,X) is known, then under the assumption that the exposure is ignorable given X, 

we show in the appendix that:

and therefore the M-functional is identified by:

(5)

which is equivalently represented as:

(6)

Below, these two equivalent representations (5) and (6) are carefully combined to obtain a 

double robust estimator of the M-functional assuming t (·,·,·) is known. A sensitivity analysis 

is then obtained by repeating this process and reporting inferences for each choice of t (·,·,·) 

in a finite set of user–specified functions  indexed by a finite dimensional 

parameter λ with  corresponding to the no unmeasured confounding 

assumption, i.e. t0 (·,·,·) ≡ 0. Throughout, the model  for the probability 

mass function of M is assumed to be correct. Thus, to implement the sensitivity analysis, we 

develop a semiparametric estimator of the natural direct effect in the union model , 

assuming t (·,·,·) =tλ* (·,·,·) for a fixed λ*. The proposed doubly robust estimator of the 

natural direct effect is then given by  where  is as previously 

described, and

with
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Our sensitivity analysis then entails reporting the set  (and the 

associated confidence intervals) which summarizes how sensitive inferences are to a 

deviation from the ignorability assumption . A theoretical justification for the approach 

is given by the following formal result which is proved in the supplemental appendix

Theorem 4

Suppose t (·,·,·) =tλ*(·,·,·), then under the consistency, positivity assumptions, and the 

ignorability assumption for the exposure,  is a CAN estimator of the 

natural direct effect in .

The influence function of  is provided in the appendix, and can be used to 

construct a corresponding confidence interval.

It is important to note that the sensitivity analysis technique presented here differs in crucial 

ways from previous techniques developed by Hafeman (2008), VanderWeele (2010) and 

Imai et al (2010a). First, the methodology of Vanderweele (2010) postulates the existence of 

an unmeasured confounder U (possibly vector valued) which when included in X recovers 

the sequential ignorability assumption. The sensitivity analysis then requires specification of 

a sensitivity parameter encoding the effect of the unmeasured confounder on the outcome 

within levels of (E, X, M), and another parameter for the effect of the exposure on the 

density of the unmeasured confounder given (X, M). This is a daunting task which renders 

the approach generally impractical, except perhaps in the simple setting where it is 

reasonable to postulate a single binary confounder is unobserved, and one is willing to make 

further simplifying assumptions about the required sensitivity parameters (VanderWeele, 

2010). In comparison, the proposed approach circumvents this difficulty by concisely 

encoding a violation of the ignorability assumption for the mediator through the selection 

bias function tλ (e, m, x). Thus the approach makes no reference and thus is agnostic about 

the existence, dimension, and nature of unmeasured confounders U: Furthermore, in our 

proposal, the ignorability violation can arise due to an unmeasured confounder of the 

mediator-outcome relationship that is also an effect of the exposure variable, a setting not 

handled by the technique of VanderWeele (2010). The method of Hafeman (2008) which is 

restricted to binary data, shares some of the limitations given above. Finally, in contrast with 

our proposed double robust approach, a coherent implementation of the sensitivity analysis 

techniques of Imai et al (2010a, 2010b) and VanderWeele (2010) both rely on correct 

specification of all posited models. We refer the reader to VanderWeele (2010) for further 

discussion of Hafeman (2008) and Imai et al (2010a).

9 Discussion

The main contribution of the current paper is a theoretically rigorous yet practically relevant 

semiparametric framework for making inferences about natural direct and indirect causal 

effects in the presence of a large number of confounding factors. Semiparametric efficiency 

bounds are given for the nonparametric model, and multiply robust locally efficient 

estimators are developed that can be used when nonparametric estimation is not possible.
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Although the paper focuses on a binary exposure, we note that the extension to a 

polytomous exposure is trivial. In future work, we shall extend our results for marginal 

effects by considering conditional natural direct and indirect effects given a subset of pre-

exposure variables. These models are particular important in making inferences about so-

called moderated mediation effects, a topic of growing interest particularly in the field of 

psychology(Preacher, Rucker and Hayes, 2007). In related work, we have recently extended 

our results to a survival analysis setting (Tchetgen Tchetgen, 2011).

A major limitation of the current paper is that it assumes that the mediator is measured 

without error, an assumption that may be unrealistic in practice; and if incorrect may result 

in biased inferences about mediated effects. We note that much of the recent literature on 

causal mediation analysis makes a similar assumption. In future work, it will be important to 

build on the results derived in the current paper to appropriately account for a mis-measured 

mediator.
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APPENDIX

PROOF OF THEOREM 1

Let FO;t =FY|M,X,E;t FM|E,X;t FE|X;t FX;t denote a one dimensional regular parametric 

submodel of , with FO;0 = FO, and let

The efficient influence function  is the unique random variable to satisfy the 

following equation

for U the score of FO;t at t = 0; and ∇t=0 denoting differentiation wrt t at t = 0: We observe 

that
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Consider the first term, it is straightforward to verify that:

Similarly, one can easily verify that

and finally, one can also verify that

Thus, we obtain

Given  the results for the direct and indirect effect follow from the fact that the 

influence function of a difference of two functionals equals the difference of the respective 

influence functions. Because the model is nonparametric, there is a unique influence 

function for each functional, and it is efficient in the model leading to the efficiency bound 

results.

PROOF OF THEOREM 2

We begin by showing that
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(7)

under model . First note that  under model  Equality (7) now 

follows because  and 

Second,  under model  Equality (7) now follows because 

 and :

Third, equality (7) holds under model  because
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Assuming that the regularity conditions of Theorem 1A in Robins, Mark and Newey (1992) 

hold for ; the expression for  follows by 

standard Taylor expansion arguments and it now follows that

(8)

The asymptotic distribution of  under model ℳunion follows from the 

previous equation by Slutsky’s Theorem and the Central Limit Theorem.

We note that  is CAN in the union model ℳunion since it is CAN in the larger model 

where either the density for the exposure is correct, or the density of the mediator and the 

outcome regression are both correct and thus . This gives 

the multiply robust result for direct and indirect effects. The asymptotic distribution of direct 

and indirect effect estimates then follow from similar arguments as above.

At the intersection submodel

hence

The semiparametric efficiency claim then follows for  and a similar argument gives the 

result for direct and indirect effects.

PROOF OF THEOREMS 3 & 4

The proofs are given in the online appendix.
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