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Abstract. Polymorphisms within Plasmodium falciparum vaccine candidate antigens have the potential to compromise
vaccine efficacy. Understanding the allele frequencies of polymorphisms in critical binding regions of antigens can help in
the designing of strain-transcendent vaccines. Here, we adopt a pooled deep-sequencing approach, originally designed to
study P. falciparum drug resistance mutations, to study the diversity of two leading transmission-blocking vaccine candi-
dates, Pfs25 and Pfs48/45. We sequenced 329 P. falciparum field isolates from six different geographic regions. Pfs25 showed
little diversity, with only one known polymorphism identified in the region associated with binding of transmission-blocking
antibodies among our isolates. However, we identified four new mutations among eight non-synonymous mutations within
the presumed antibody-binding region of Pfs48/45. Pooled deep sequencing provides a scalable and cost-effective approach
for the targeted study of allele frequencies of P. falciparum candidate vaccine antigens.

Malaria remains an important global public health threat with
approximately 3.3 billion people living in regions with ongoing
transmission. In 2013, estimates suggest that 198 million cases
and 584,000 deaths were attributed to malaria.1 The develop-
ment of an effective vaccine for Plasmodium falciparum, the
parasite species responsible for the greatest burden of disease,
is a high priority to achieve malaria elimination from endemic
countries. The most advanced malaria vaccine targets the pre-
erythrocytic stage of infection and recently completed phase III
trials with modest success.2 Vaccines targeting the erythrocytic
stage have generally been disappointing with very low efficacy.3

Transmission-blockingvaccines (TBVs) target antigensexpressed
by the gametocytes or those expressed on the parasite in the
mosquito vector and aim to block transmission to the vertebrate
host.4,5 Preclinical studies have identified several candidate
P. falciparum antigens, including Pfs25 and Pfs48/45, against
which antibodies demonstrate transmission-blocking activity.4,5

A key limitation in the development of malaria vaccines to
preerythrocytic and erythrocytic stages of malaria has been
antigen diversity, an issue not extensively considered for TBVs.6

This is because it has been suggested that TBV antigens gen-
erally receive less pressure from the human immune system,
leading to limited diversification. Pfs25 is expressed solely
during macrogametogenesis within the mosquito midgut, thus
never encountering human immune pressure. As a result, this
antigen may have limited diversity within parasite populations.
In contrast, Pfs48/45 is expressed on gametocytes within the
human host and is a target of naturally developed antibodies

during infection, which may maintain greater antigenic diver-
sity within parasite populations.7,8

Understanding the diversity of these antigens can aid in
rational vaccine design, especially for the design of strain-
transcendent vaccines.9 Previously, we have used pooled amplicon
deep sequencing to assess diversity of drug resistance alleles
in parasite populations.10,11 This approach proved to be rapid
(allowing assessment of over 1,000 samples in less than 2 months)
and cost effective. Here, we have modified this approach to
study the diversity of two vaccine candidate antigens, Pfs25
and Pfs48/45, from six globally diverse populations of parasites.
A similar approach was used to look at diversity of VAR2CSA,
a candidate antigen for a malaria in pregnancy vaccine.12 In each
case, we targeted the antigenic region to which neutralizing anti-
bodies have been predicted to bind.13,14 Our deep-sequencing
data, as well as previously published whole-genome sequenc-
ing data, show that these antigens are more conserved than
preerythrocytic- and erythrocytic-stage antigens, but can still
show significant antigenic diversity.15

In this study, DNA was extracted from 329 dried blood
spots of P. falciparum field isolates collected in previous
studies across six countries, four in Africa and two in Asia
(Supplemental Table 1). All participants provided informed
consent as approved by national institutional review boards
(IRBs). Our molecular investigation of de-identified samples
was approved by the University of North Carolina IRB.
DNA was extracted as previously described.10 Six pools were
created using 2 μL of 100 μL extracted DNA from each
sample. As individual samples may contain more than one
parasite variant, the diversity could be higher than the number
of samples included in the pool.
Part of the pfs25 gene (nucleotides 109–474 [amino acids

37–158] of PF3D7_1031000) was amplified using barcoded
primers in duplicate as previously described in a study.16
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The reaction consisted of 10XRoche FastStart Hi-Fidelity Buffer
(Roche, Indianapolis, IN), 400 nM forward primer (XXX
XXXXXXCAGATGAGTGGTCATTTGGAA [Xs represent
the barcode]), 400 nM reverse primer (TGAGCATTTGGTTT
CTCCATC), 10 nM deoxynucleotide triphosphates (dNTPs),
0.5 μL Roche FastStart Hi-Fidelity Enzyme, and 5 μL DNA
in a 50-μL volume. Cycling conditions were 95°C for
15 minutes, followed by 35 cycles at 94°C for 1 minute, 58°C
for 1 minute, and 72°C for 2 minutes, with an extension at 72°C
for 5 minutes. Library preparation, sequencing, and analysis of
Pfs25 haplotypes was done as previously described (Supplemen-
tal Material).16 Part of the pfs48/45 gene (nucleotides 706–1301
[amino acids 236–433] of PF3D7_1346700) was amplified using
non-barcoded primers, and each pool was indexed and library
prepared individually as previously described in a study.11 The
reaction consisted of 10X Roche FastStart Hi-Fidelity Buffer,
400 nM forward primer (CAAGAAGGAAAAGAAAAAG
CCTTA), 400 nM reverse primer (GCCAAAAATCCATAAT
ATGCTGA), 10 nM dNTPs, 0.5 μL Roche FastStart Hi-Fidelity
Enzyme, and 5 μL DNA in a 50-μL volume. Cycling conditions
were identical to those noted above. In addition to the pools,
3D7 genomic DNA was amplified and sequenced to control
for sequencing error as previously described in a study.11 Anal-
ysis of sequencing was carried out as previously described
using the same quality filters and a minimum 1% allele fre-
quency to call a polymorphism.11 All sequencing was done
using an Ion Torrent PGM (Life Technologies, Carlsbad, CA).
Pfs25 sequencing resulted in 414,695 reads, of which 37,038

were full length. Among the full-length reads, 35,759 were of
high quality and were used in the final sample clustering to
predict haplotypes. The average number of reads used to pre-
dict haplotypes in a population was 4,168 [range: 430–6,835].
We detected two haplotypes among the six pools—African
populations contained the 3D7 allele exclusively, while the
Asian populations were predominantly comprised of an allele
with the G131A mutation (Table 1). Sequencing of control

3D7 DNA (8,632 reads) identified only the anticipated haplo-
type with no false alleles detected.
Pfs48/45 sequencing resulted in 68,292,930 bases of data.

As the amplicon was sheared before sequencing, we could
only determine allele frequency, rather than haplotype as
with Pfs25.11 We achieved > 500-fold coverage on > 99% of
positions analyzed. At the filter settings used, we saw no false-
positive alleles detected from amplification and sequencing error
among the 3D7 control sequencing.
We identified eight non-synonymous polymorphisms and

two synonymous polymorphisms among these six populations
(Table 2). Four of the nonsynonymous polymorphisms
have not been described previously in genome data (gray in
Table 2).15 Parasite populations harbored between 0 and
5 polymorphisms, ranging from 1% to 86% frequency. The
number of polymorphisms did not correlate with the number
of parasites in a pool (correlation coefficient = 0.28). The alleles
were nearly equally distributed between private or shared,
with six private alleles and four alleles shared between two
and four populations.
In the literature, there have been eight non-synonymous

polymorphisms previously reported within the region of pfs25
that we amplified.15 In this study, we identified two pfs25
variants—the 3D7 allele and an allele with the G131A poly-
morphism. Consistent with past reports, African pools were
comprised exclusively of the 3D7 allele, while the Asian pools
were composed primarily of the G131A allele (> 80%).15 In
fact, our allele frequencies were nearly identical to those
determined from genome sequencing databases—G131A has
a reported allele frequency of 0.807 in south Asia and 0.840 in
eastern southeast Asia.15

A higher number of non-synonymous polymorphisms have
been reported for Pfs48/45, with 14 occurring within the ampli-
fied region. Pfs48/45 mutant allele frequencies tend to be higher,
and high frequencies occur in a more diverse geographic range
than with Pfs25.15 Notable differences between our results and

TABLE 2
Allele frequencies of Pfs48/45 polymorphisms in six Plasmodium falciparum populations

AA locus
Reference

allele
Mutant
allele

Nucleotide
locus

Frequency (%) of mutant allele

Madagascar Cambodia DRC India Malawi Tanzania

K253E T C 757 ND ND 51.18 1.09 ND ND
N254S T C 761 ND 1.40 ND ND ND ND
N254K G C 762 ND ND 54.01 76.74 77.66 20.67
L255L T C 765 ND ND 2.56 ND ND ND
V304D A T 911 ND ND ND 86.34 1.93 12.84
L314I A T 940 ND ND 21.23 33.01 5.51 ND
S322N C T 965 ND ND ND 73.45 ND ND
G341G A T 1,023 ND ND ND ND 7.94 ND
I376L T A 1,126 ND ND 4.75 ND ND ND
D386Y C A 1,156 ND ND ND ND 2.06 ND
DRC = Democratic Republic of the Congo; ND = not detected (mutation is either not present in population or occurs at a frequency of less than 1.0%. Bold letters represent non-synonymous

polymorphisms. Gray shading represents the novel polymorphisms described in this study.

TABLE 1
Haplotype frequency of Pfs25 in six Plasmodium falciparum populations

Haplotype (AA polymorphism
relative to PF3D7_1031000)

Haplotype frequency (%)

Madagascar Cambodia DRC India Malawi Tanzania

No variants 100 15.93 100 10.55 100 100
G131A ND 84.07 ND 89.45 ND ND

DRC = Democratic Republic of the Congo; ND = not detected (mutation is either not present in population or occurs at a frequency of less than 2%).
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previous results include 1) a lack of V304D in Cambodia
where previous allele frequencies in eastern southeast Asia
were 0.805, 2) the presence of S322N in India, and 3) the
lack of mutant alleles at amino acid 253 in Malawi and
Tanzania (K253E previously reported at 0.524). Of note, we
also described several new polymorphisms in this region includ-
ing N254S, S322N, I376L, and D386Y (Table 2). In addition,
there was a predominance of non-synonymousmutations detected
in our samples, suggestive of diversifying selection occurring
on this region of Pfs48/45 (a high dN/dS ratio).
Pooled deep sequencing provides a cost-effective and scal-

able approach to studying allele frequencies in P. falciparum
populations.10 Here we add to the available information about
variation in P. falciparum transmission blocking vaccine candi-
dates. Limitations in our study include not assessing the com-
plete length of each gene, which means some diversity was
likely missed. However, we did target regions predicted to
be important for antibody binding.13,14 Second, we used a set
of samples collected previously for other purposes, represent-
ing different ages, clinical symptoms, and years collected. This
may introduce biases for which we cannot account. Finally,
several of our populations had less than 50 samples available
for sequencing, but were included to provide a diverse geo-
graphical range for this survey.
Although genomic databases are extremely useful, our data

suggest that they may have limitations for determining allele
frequencies in important regions of candidate vaccine anti-
gens. This is in part due to the limitation in the number of
samples within these databases and the expenses associated
with whole-genome sequences. Our pooled deep-sequencing
approach has previously been shown to produce high-quality
estimates of allele frequencies within samples, is scalable and
cost effective with more than 50 samples being evaluated.10

Using this approach, we identified new alleles in populations
and provide novel insights into the diversity of TBV candidate
antigens. Future studies could use this approach to supple-
ment genome databases to provide more robust data concern-
ing allele frequencies of targeted critical antigens involved in
malaria vaccine development.
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