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Abstract

Studies investigating individual differences in reading ability often involve data sets containing a 

large number of collinear predictors and a small number of observations. In this paper, we discuss 

the method of Random Forests and demonstrate its suitability for addressing the statistical 

concerns raised by such datasets. The method is contrasted with other methods of estimating 

relative variable importance, especially Dominance Analysis and Multimodel Inference. All 

methods were applied to a dataset that gauged eye-movements during reading and offline 

comprehension in the context of multiple ability measures with high collinearity due to their 

shared verbal core. We demonstrate that the Random Forests method surpasses other methods in 

its ability to handle model overfitting, and accounts for a comparable or larger amount of variance 

in reading measures relative to other methods.
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Multivariate datasets are the chief currency of reading research. Such datasets are 

characterized by a large number of predictors p (usually over ten) and a relatively small 

number of observations n (frequently below one hundred), where each observation is an 

aggregate measure of an individual's behavior (e.g. mean response time or a cumulative test 

score). This “small n large p” problem overshadows analytical strategies for the entire field 

of research, since if left untreated it causes overfitting and the concomitant loss of 

generalizability in statistical models. One common attempt to address this problem is to 

reduce p through removing variables, merging of variables into composite scores, or the use 
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of components or factor analyses. While valuable, this type of data reduction can preclude 

interpretation of results in terms of the relative contributions of original predictors, and often 

requires exclusion of hard-won data. Moreover, it minimizes the usefulness of compiling 

comprehensive test batteries aimed at assessing the contribution of multiple reading-related 

abilities, and of making theoretical advances that rely on the knowledge of which specific 

abilities and skills underlie reading performance for the given population.

The core of this paper is an overview of exploratory statistical techniques geared towards 

estimating the relative importance of variables in studies of reading performance1. This goal 

follows the tenets of exploratory statistics in that it uses a bottom-up data-driven approach 

that can guide hypothesis-building and -testing in a formal confirmatory procedure. This 

goal has both theoretical and practical advantages. On a practical level, this enables a more 

efficient choice of skill assessments in both research and clinical settings (Blalock, 1961). 

This is crucial when studies have resource limitations that preclude the use of multiple 

assessments for a single construct. Moreover, a theory-blind method can be particularly 

important when utilizing assessments of complex skills (e.g., Reading Comprehension, Oral 

Language ability, Executive Function), as any particular assessment may emphasize specific 

component dimensions of the skill over others (cf. Francis, Fletcher, Catts, & Tomblin, 

2005; Keenan, Betiemann, & Olson, 2008; Nation & Snowling, 1997). At a theoretical level, 

information about the relative import of predictors provides a foundation for developing 

more thoroughly articulated models of reading behaviour. For example, while the construct 

of working memory plays a strong role in most theories of reading comprehension, there is 

now growing evidence that its supposed import has come about because of shared variance 

between typical assessments of the construct and other measures (Hamilton, Freed, & Long, 

2013; Traxler, et al., 2012; cf. Van Dyke, Johns, & Kukona, 2014 for detailed discussion.)

Examination of the relative importance of variables is not new to the field of reading 

research and is commonly implemented through hierarchical or simultaneous regression 

techniques (e.g., Catts, Fey, Zhang, & Tomblin, 1999; Jenkins, Fuchs, van den Broek, Espin, 

& Deno, 2003). In what follows, we will contrast the Random Forests method with the 

family of (generalized) linear regression methods that subsume the former techniques, 

namely, a) Dominance Analysis (also known as Shapley value regression or hierarchical 

partitioning, Budescu, 1993; Chevan & Sutherland, 1991; Lipovetsky & Conklin, 2001; 

Shapley, 1953; Stufken, 1992), and b) Multimodel Inference (Burnham & Anderson, 2002). 

Random Forests is a non-parametric classification and regression method (Breiman, 2001; 

Strobl, Malley, & Tutz, 2009) which has so far not gained much attention in the reading 

field, although it has been utilized in psycholinguistic research (cf. Tagliamonte & Baayen, 

2012). While the discussion of methods for obtaining a meaningful and accurate index of 

relative importance has been ongoing for decades (e.g., Darlington, 1968), the current 

consensus is that there is no single “best” solution available (Johnson, 2000; Grömping, 

2009). Nevertheless, we find that these methods differ drastically in their ability to address 

two issues critical for the validity of statistical analyses, namely, model overfitting and 

collinearity (a more detailed discussion than the current space allows is available in 

1The term “relative importance” is used here in line with the existing statistical literature, which refers to the term “importance” as a 
statistic associated with a variable, rather than an interpretational value for theory building or policy making.
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Supplementary Materials, S1). We conclude that the Random Forests method outperforms 

the others in its ability to overcome statistical issues typical of reading studies.

To contrast these methods we use a dataset that includes a skills battery comprised of 15 

subtests, which we will aggregate in two different ways in order to manipulate the number 

of predictors in the analyses. Similarly, our behavioural measure consists of eye-movements 

collected while reading text passages. These also will be aggregated differently for our two 

analyses. In so doing, we vary the parameters that influence the severity of model 

overfitting. In both cases, however, the issue of collinearity of predictors persists, as it must 

in all reading research because of the common verbal or cognitive core among reading-

related skills. Thus, the extent to which the contrasted methods address the collinearity issue 

becomes especially important when weighing their usefulness for reading research.

Dominance Analysis and Multimodel Inference

These methods represent two examples of alternative approaches for estimating variable 

importance (see Supplementary Materials, S2, for a more detailed presentation). In 

Dominance Analysis, model variance (R2) is decomposed via a method that averages across 

all possible ways that the contribution of each predictor can be calculated (see Tighe & 

Schatschneider, 2014, for a review). In other words, Dominance Analysis subsumes methods 

based on both hierarchical regression and simultaneous regression. Multimodel Inference is 

similar in that it uses all combinations of p predictors to construct a power set of 2p linear 

models fitted to a dependent variable (Burnham & Anderson, 2002). Whereas Dominance 

Analysis gives an equal weight to each model, Multimodel Inference weighs each based on 

its goodness-of-fit (commonly, the Akaike Information Criterion corrected for the finite 

sample size). For each predictor, summing all the weights of the models in which predictor 

appears defines how important the predictor is. By examining the set of all possible models, 

both these methods work around the issue of collinearity, however the Dominance Analysis 

method does not address the problem of overfitting. If the ratio of model parameters to 

observations is too high, all models will have poor ability to generalize (i.e. predict unseen 

data) and their fit will be affected too strongly by random noise in the specific data set. The 

Multimodel Inference method does offer some protection against overfitting (Burnham & 

Anderson, 2002) because it takes into consideration the amount of evidence that a given 

model is the best-performing model in the set, however this may be insufficient to control 

overfitting when the majority of models have many more parameters than can be reliably 

estimated (see below for the case of p = 19, n = 51). Thus, while the method represents an 

improvement over Dominance Analysis, it is still vulnerable to overfitting in “small n large 

p” situations.

Random Forests

The method of Random Forests is a generalization of the decision tree method, in which the 

data space is recursively partitioned (usually a binary split) according to the value of one of 

the predictor variables, such that the observations within a partition become more and more 

homogeneous. Figure 1 provides an illustration of a decision tree based on Analysis 1 

discussed below. Random Forests builds multiple decision trees using random samples of 
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observations for each tree and (at each split point) random samples of predictors. The 

resulting forest of those trees provides fitted values, which are more accurate than those of 

any single tree (Breiman, 2001). Moreover, the Random Forests method comes with a built-

in protection against overfitting by using part of the data that each tree in the forest has not 

seen to calculate its goodness-of-fit. Variable importance is assessed by randomly permuting 

the values of one predictor across all trees and estimating the loss in prediction accuracy of 

the forest: little loss implies low importance. For a detailed description of the decision tree 

and Random Forests method, see Supplementary Materials, S3.

Whereas the relative importance metrics obtained from Dominance Analysis or from 

Multimodel Inference are independently interpretable (e.g. amount of explained variance), 

the metric of variable importance obtained from the Random Forests model is contingent on 

the scale of the dependent variables and other parameters. Thus, Random Forests’ estimates 

of variable importance can only be interpreted comparative to each other, rather than as 

absolute values (Strobl et al, 2009).

Worked Examples

In what follows we demonstrate that Dominance Analysis, Multimodel Inference and 

Random Forests vary in their treatment of overfitting when applied to a typical multivariate 

dataset collected to study individual variability in reading behavior. We report the 

performance of the methods in the dataset in two ways. In Analysis 1 we averaged eye-

movements by participant, introducing potential overfitting due to the low number of 

observations and a high number of predictors. In Analysis 2, word (or passage) served as the 

unit of analysis and no aggregation was applied, which allowed for a direct comparison of 

methods unencumbered by overfitting.

Methods

The study uses data from 51 undergraduate students (40 females; age ranging from 17 to 

27), who read texts from the Gray Oral Reading Test 4 (GORT; Wiederholt & Bryant, 2001) 

for comprehension, while their eye-movements are monitored. Participants also completed a 

battery of cognitive and verbal skills that assessed word-level reading, phonological 

processing, processing speed, reading experience and IQ. These are enumerated explicitly in 

Table 1; see Methods in Supplementary Materials, S4 for full details. As these tests are 

commonly assessed in reading research, we expected that the collinearity index among them 

would typify that found in many reading studies.

Dependent variables—Eye-movements provide a rich, multi-dimensional record of 

online reading behaviour (Rayner, 1998). For our current analyses, we only consider two of 

the many eye-movement measures as dependent variables, both based on the word as the 

unit of analysis: total reading time, which is the most general measure of word-level reading 

time (comprised of the summed duration of all fixations on the word) and skipping. This 

choice was guided by our desire to include a continuous variable (total reading time) and a 

binary variable (skipping) so we could illustrate the use of two different generalized linear 

regression modeling types, i.e., multiple regressions with a Gaussian and a binomial 

underlying distribution. As a third dependent variable, we consider comprehension scores, 
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calculated as the sum of the participant's correct responses to five questions following one of 

five GORT passages presented for reading (maximum 5 data points per participant per 

passage, with a value range [0:5] of each data point). Because some passages were not 

completed by individual participants, the total number of available scores was 243. As 

comprehension scores represent count data, we use them to illustrate the use of the 

generalized linear regression with a Poisson distribution. Taken together, comprehension 

accuracy and eye-movement measures provide a detailed time-course of both online reading 

behavior and its end-result, i.e. comprehension of continuous text.

Independent variables—The skill test battery contained widely used standardized 

assessments (see Supplementary Materials, S4 for details). Table 1 presents the labels used 

to refer to these assessments throughout the paper.

For illustrative purposes, we confine ourselves to only considering these participant-level 

variables, although it is recognized that text-level variables, such as word length, frequency, 

and predictability also affect eye-movements. A detailed investigation of the interactions 

among these variables is beyond the scope of this paper.2

Results

The original data contained 33,455 data points. After trimming, we analyzed the data pool of 

16,584 data points for skipping and the data pool of 12,890 data points (not skipped during 

reading) for fixation durations (and derivative measures like total reading time). The 

trimming procedure, as well as descriptive statistics and the correlation matrix for the scores 

obtained for the skill test battery are available in Supplemental materials, S5.

Analysis 1: Model over-fitting

The count of 14 predictor variables in the current dataset is by no means exceptional for 

reading research, yet it poses problems for regression modeling. The number of models to be 

considered in Dominance Analysis and Multimodel Inference is 2p – 1 and 2p, respectively, 

where p is the number of estimable parameters in the model (see Supplementary materials 

S2). For p = 19 (i.e. 14 parameters for individual skills, 4 for contrast coefficients of 

complexity, and one for intercept) this translates into half a million regression models, 

which is computationally demanding. This is less problematic for the Random Forests 

method, because the number of trees to be fitted is controlled by the user defined parameter 

ntree.

One notable statistical property of the linear regression model with 19 predictors is rampant 

collinearity (see Supplemental material S5, Figure S1, for correlations between all pairs of 

the 14 participant-level predictors). One common way of quantifying collinearity among 

predictors is referred to as condition number (Harrell, 2001). A value of 30 is held up as a 

threshold signalling “potentially harmful collinearity” (Baayen, 2008, p. 182; Dormann et 

al., 2012). In our dataset, the value of condition number is 102.94, a level that is problematic 

2In Matsuki, Kuperman, and Van Dyke (in preparation) we use the Random Forests technique to establish relative variable importance 
in the joint pool of participant variables, which gauge individual differences and text variables at the level of word (length, frequency, 
contextual predictability), sentence (word position in a sentence, word's syntactic role), and passage (text complexity).
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for the accuracy of all methods that rely on a single (best) regression model: the problem is 

alleviated for Dominance Analysis, Multimodel Inference and Random Forests (see 

Supplementary material S2).

An additional problem with regression models is that the large number of predictors 

necessitates a large number of observations to avoid overfitting. For instance, a multiple 

regression model with 15 estimated parameters (14 coefficients for continuous predictors 

and the intercept) would require 225 observations, according to Harrell's (2001) guideline. 

While eye-tracking data analyzed at the word-level easily meets this requirement (over 

12,000 observations), and so do comprehension scores aggregated per passage (243 

observations), the data averaged by participant (51 observations), as we have done for this 

example, would not. Yet, virtually all indices of individual differences produce a single 

observation per participant: either a score on a test, or an average of performance over sets 

of trials. Hence, a typical data set with per-participant scores like the one we present here 

can only be used to reliably estimate 2-3 parameters of the regression model, one of which is 

the model's intercept.

To illustrate this problem, we fit a linear regression model with 19 estimated parameters to 

total reading time aggregated by participant, which yielded 51 data points. With this model, 

we conducted the bootstrapping validation procedure in which a linear model with the same 

structure was fitted 200 times, each time to a different random training sample drawn with 

replacement from the 51-point dataset. The degree of model overfitting was assessed via the 

measure called optimism (Harrell, Lee, & Mark, 1996), which is the difference between the 

average R2 of the models fitted to the random training samples and the average R2 of the 

same models fitted to the testing set (consisting of the entire sample). While the average R2 

of the training models was 0.53, the average R2 for the testing set was −0.11. The extremely 

high value of optimism (i.e., the discrepancy between the training set and the test set) of 

0.64 indicates that linear regression models grossly overfit the data in the “small n large p” 

conditions and provide terrible fit to unseen data. Validated estimates of the mean squared 

error, intercept and slope showed a similarly large degree of optimism.

The remainder of this section demonstrates that the Random Forests method is able to 

provide meaningful estimates even when applied to the smallest data pool resulting from 

aggregation over each participant. We trained the Random Forest model using mtry (the 

number of predictor variables to be sampled as candidates at each split point) of 5 and ntree 

of 1,000 (see Supplemental Materials, S3 for further description). We assessed the optimism 

of the Random Forest model with the same bootstrapping validation with exactly the same 

bootstrap samples as described above. The average R2 of the training models was 0.12, and 

for the testing set it was 0.15. The optimism of −.03 suggests that, unlike linear regression 

models, the Random Forests method does not have the problem of overfitting in the “small n 

large p” setting, as its fits to testing and training datasets are stable. If anything, the method 

slightly underestimated its predictive power for unseen data.

Figure 2 presents the relative importance of variables as applied to the by-participant mean 

total reading time, pointing to word reading measures (SightWordEfficiency, 

WordDecoding) and the subjective measure of reading speed as the most important 
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predictors of mean total reading time. This result is consistent with research on eye-

movement control, which has implicated word identification as a primary cause of 

differences between emerging and proficient readers (Kuperman & Van Dyke, 2011; 

Reichle et al., 2013).

Analysis 2: Adequate predictor-to-observation ratio

To further contrast the methods under consideration, we reduced the number of predictors so 

that the Dominance Analysis, Multimodel Inference, and Random Forests methods can be 

compared directly. The reduction was done by creating composite scores from the separate 

subtests of standardized measures and, in the case of the subjective reading habit measures, 

selecting a few key predictors based on a preliminary correlational analysis (not reported). 

This resulted in eight participant-level variables (see Table 1 and Supplemental materials, S4 

for full details): WasiFullIQ, ReadEfficiency, PrintExposure, ReadingSpeed, 

UnderstandingMaterial, ComplexityMaterial, VocabScore, and RANNameTime. Text 

complexity (Complex) was included as a ninth independent categorical variable with 5 

levels. The correlations between predictors in this set were lower overall (see Supplemental 

material, Table S1 for the full table), with condition number of 54.18 (compared to 102.94 in 

Analysis 1). We note that collinearity may still be an issue for single regression models, as 

this value is still larger than the common threshold of 30, which signals potentially harmful 

collinearity.

We avoided the problem of overfitting in this analysis by choosing the word (or passage, for 

comprehension) as the unit of analysis for the eye-movement data, such that all eye-

movements to a given word (passage) would be included in the model, rather than an 

average value by word. Thus, the resulting data represented both the individual differences 

and linguistic variability. This yielded 12,890 data points for total reading time, 16,584 for 

skipping, and 243 for comprehension scores. In what follows we compare the relative 

importance of predictors of these three dependent variables as estimated by six different 

metrics; the first three are derived from single regression models. The first is the absolute 

value of standardized beta coefficients (|β|).3 The second metric is single-R2, which is the 

amount of variance explained by a regression model with only one predictor. The third 

metric is unique-R2, which corresponds to the increase in R2 from a model with all but one 

predictor to a model with all the predictors. As described earlier, this way of calculating 

variable importance is commonly used when the simultaneous regression method is applied. 

The fourth metric is based on Dominance Analysis (DA). The fifth presents relative 

importance as obtained with the Multimodel Inference (MMI). The sixth metric is the 

estimate of permutation importance yielded by Random Forests using conditional inference 

trees (RF).

Models

To model continuous (log total reading time), binary (skipping) and count (comprehension 

scores) data, we used generalized linear mixed-effects regression models with Gaussian, 

binomial and Poisson distributions, respectively. Participant-level random intercepts were 

3Text complexity is not included as a predictor in these models because it requires 4 regression coefficients.
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included to account for within-participant dependencies in the data: as mentioned above, we 

do not account for word-level variability in fixed or random effects in this paper and 

consider it elsewhere (Matsuki et al., in preparation). Because the Random Forests method is 

non-parametric, no specific distribution had to be defined (see Supplementary materials S3). 

The Random Forests with conditional inference trees are not currently equipped to model 

random effects or to accommodate clustered data (c.f. Hajjem, Bellavance, & Larocque, 

2014; Karpievitch, et al., 2009). However, the type of predictors used in the current study 

(i.e, all but Complex are participant-level predictors) automatically makes the trees in the 

forests treat observations as nested under participants, such that the observations from the 

same participant (or at least their subsets with the same level of Complexity) would always 

end up in the same terminal node. All the Random Forests models in Analysis 2 were trained 

using mtry of 3 and ntree of 1,000. Several methods that we use are based on partitioning 

explained variance (i.e., Dominance Analysis, single-R2 and unique-R2). Although there are 

many ways to calculate R2 for mixed-effects models, we used marginal R2 (or the 

proportion of variance explained by fixed effects alone) introduced by Nakagawa and 

Schielzeth (2013) as it is easily and equally applicable to models of different distributions.

Goodness of fit

We compared the goodness of model fit using three methods of estimating predictors’ 

relative importance– Dominance Analysis, Multimodel Inference and Random Forests. In 

order to have comparable statistics across methods, we calculated proportion of explained 

variance as either (a) the squared coefficient of the correlation between the observed and 

predicted data from the model of interest (corresponding to R2) for continuous data, or (b) 

the squared coefficient of the correlation between the observed data and predicted 

probability from the model of interest (corresponding to pseudo R2 of Efron, 1978) for 

binary and count data. For Dominance Analysis and Multimodel Inference, we calculated 

the proportion of explained variance from the full regression model (a linear model in which 

all the predictors are used simultaneously) as the upper bound for the methods.

Predictions for unseen data

We further evaluated the ability of models to predict unseen data. Because linear regression 

based models do not come with a “built-in” test sample that can be used for an unbiased 

estimate of the goodness-of-fit, unlike Random Forests, goodness-of-fit values calculated 

from linear regression based methods could be biased (see our use of the optimism value in 

Analysis 1). In order to obtain unbiased estimates of goodness-of-fit for all the models using 

the identical procedure, we opted for validation through repeated random sub-sampling, 

where data is split into a training subset (70% of the original) and a test subset (30%); the 

model is trained on the training subset, and its goodness-of-fit to the test subset is calculated. 

The resulting goodness-of-fit is averaged over 100 splits.

Discussion

Figures 3-5 display the outcome of the six methods side by side for each dependent measure. 

In each Figure, the order of predictors on the y-axis follows the values of unique-R2, as this 

measure is commonly used to assess variable importance.
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Total Reading Time

As Figure 3 demonstrates, the pairwise agreement among the six metrics has some 

variability, but is relatively high overall (in pairwise comparisons of ranked variable orders, 

mean Spearman's rho=.71, ranging from .43 to .98). The metrics based on unique-R2, 

Dominance Analysis (DA), and Multimodel Inference (MMI) agreed with one another 

highly in terms of ranking, favoring Text complexity (Complex) as the most important 

predictor. The ranking based on Random Forests method is in modest agreement with all the 

other methods (mean rho = .65, ranging from .45 to .78).

Goodness-of-fit indices show that the linear mixed-effect regression based methods and 

Random Forests explain approximately the same amount of variance (R2 of .075 vs. .080 

based on the test data), see Table 2. While amounts of explained variance are overall quite 

low in Analysis 2, it is worth noting that they are obtained from a very large dataset (12,890 

observations) of inherently noisy eye-movement data where each predictor offers one value 

for all observations associated with a given participant (e.g. participant's IQ; an average of 

253 observations per participant) or a given text (e.g. text complexity; an average of 2,578 

per text complexity level). Moreover, strong sources of text variability have not been 

modeled (e.g., word length, frequency, predictability). In Analysis 1 where data are 

aggregated by participant, the predictor to observation ratio is 1:1, so more variance can be 

explained.

Skipping

As Figure 4 shows, the six metrics are generally in agreement with one another (mean rho=.

84, ranging from .62 to 1.0). Across all metrics, vocabulary size, text complexity, self-

assessed reading speed and TOWRE reading efficiency measures appear to be particularly 

important determinants of an individual's skipping rate. Once again, the linear mixed-effect 

regression and Random Forests show similar fit to the data (R2 of .022 vs. .026 based on the 

test data, see Table 2).

Comprehension Score

All metrics converged on GORT text complexity as the most important variable in 

determining reading comprehension (see Figure 5). Other important predictors included 

RAN naming time and the print exposure score. All six metrics were generally in agreement 

in ranking (mean rho = .90, ranging from .69 to 1). Once again, the linear mixed-effect 

regression and Random Forests provided equal fits to the data (R2 of .171 vs. .173 based on 

test data).

General Discussion

Our findings point to the Random Forests classification method as a reliable method, 

capable of addressing the “small n large p” problem. Analysis 1 demonstrated this for a 

multivariate dataset that combines eye-movement measures and comprehension scores as 

dependent variables and outcomes of a large test battery of predictors, i.e. a dataset with a 

very low ratio of predictors (19 estimated model parameters) to observations (51). The 

Random Forests method evaluated the relative importance of all predictors in the dataset 
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without data reduction and without overfitting (i.e. low optimism value): it also offered 

protection against the impact of rampant collinearity between predictors. Methods that we 

compared against Random Forests were based on linear regression and, as became evident 

in Analysis 1, were strongly affected by the “small n large p” problem of overfitting and 

further encumbered by collinearity.

Analysis 2 compared methods against non-aggregated data analyzed at the word-level and 

passage-level, where the large size of the dataset removed the threat of overfitting. Different 

methods converged on similar estimates of the relative importance of predictors of skipping 

rate and comprehension scores (Figures 4 and 5). Despite their inability to incorporate 

random effects as implemented in the mixed-effects models, Random Forests treated 

observations as nested under participants and consistently explained approximately the same 

amount of variance than the upper-bound of the linear regression-based methods (see Dilts, 

2013; Hajjem et al, 2014, for similar observations). The advantage that Random Forests 

demonstrates in both the ability to handle the “small n large p” data set (Analysis 1) and its 

equally strong performance compared to other methods in a much larger dataset (Analysis 2) 

suggests that this method is an excellent solution for the specific statistical goal examined 

here, i.e. to assess variable importance among a battery of highly collinear assessments in 

datasets that vary in size, nature of aggregation and the predictor-to-observation ratio. In 

sum, we recommend the use of the Random Forests method for establishing the relative 

importance of variables in exploratory studies of reading behavior. We further recommend, 

where data allow, to avoid data reduction and use raw, non-aggregated data on the single 

trial level: a dramatic increase in the sample size (from 51 to over 12,000 observations) is a 

better solution to the “small n large p” problem than data reduction methods that diminish 

interpretability and generalizability of results.

While the practical utility of Random Forests is demonstrable, it is important to characterize 

what theoretical questions Random Forests are and are not designed to address. What can 

Random Forests not do? The Random Forests method considers the structure in the set of 

independent variables to be flat, that is, the Random Forests model does not assume (nor can 

it implement) any causal or correlational dependencies between those variables. In this 

fundamental premise, the Random Forests method differs from any method that requires an 

a priori theory about hierarchy in the data structure: this includes Structural Equation 

Modeling with its notion of latent variables, and hierarchical regression with its theoretically 

driven ordering of variables. In our data, most variables are individual tests, and so the 

outcome is the metric of relative importance of those tests. However, an approximation of 

latent structure is possible with the Random Forests method still, if a researcher provides 

composite scores that represent theoretically determined blocks of variables (e.g. composites 

of measures of oral comprehension, phonological awareness, RAN, etc.). In this case, 

relative contributions of entire components of reading ability to predicting reading behavior 

can be evaluated, though not the dependencies between such components.

What can Random Forests do? First, the Random Forests method is an excellent tool for 

data-driven identification of variables of importance that are overlooked in the literature. For 

instance, the present data identify subjective measures of reading habits as more influential 

than rapid automatized naming measures in our cohort of skilled readers, even though the 
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latter measures are discussed in thousands of papers (cf. meta-analysis by Swanson, Trainin, 

Necoechea, & Hammill, 2003), while the former are hardly explored at all (Acheson et al., 

2008 and references therein) but are in line with predictions of existing models of eye 

movement control in reading (Reichle et al., 2013). Also, Figures 3-5 reveal a strong role for 

the TOWRE reading efficiency measures (sight word efficiency and decoding) in predicting 

eye-movements in skilled undergraduate readers. This is despite the widespread assumption 

that word reading efficiency has reached the ceiling level for those meeting admission 

criteria for most 4-year universities. Second, studies of reading often represent hypothesized 

latent constructs by multiple redundant individual tests. The Random Forests enables 

reduction of this redundancy, and the selection of a subset of tests that predict the data most 

strongly. This is of crucial importance when testing time is limited. Finally, the Random 

Forests method offers the theoretically attractive possibility of an inductive process whereby 

latent constructs (i.e. components of reading behavior) are hypothesized by the researcher on 

the basis of individual tests that are identified as important predictors of reading behavior in 

a theory-free way. This “reverse-engineering” process is conceptually similar to one that 

researchers apply when considering the results of a principal components or a factor 

analysis, where the goal is to induce a theoretical explanation for why individual tests load 

on one component/factor and not another. To give an example from Analysis 1 in the 

present data, the fact that both decoding (non-word reading) and sight word efficiency (word 

reading) come out on top of the variable importance ranking, while vocabulary size is 

relatively low in the ranking, suggests a strong role of phonological awareness and decoding 

skills. If word reading and vocabulary size came out on top, with non-word reading lower in 

the list, that would suggest a much stronger role of word knowledge, with a reduced 

influence of decoding skills.

To summarize, identification of variable importance affords new insights into the structure 

of the data and sheds new light on extant theories of reading. The recently developed 

statistical method of Random Forests enables researchers to garner these insights while 

overcoming the typical limitations of datasets common in studies of individual variability of 

reading.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A decision tree fit to a random bootstrap sample of the eye-movement data (see Analysis 1). 

Nodes 1 and 2 represent split points that are optimal for this random sample (score of 57 in 

the Sight Word Efficiency test and 10 in the Author Recognition Test (ART). Terminal 

nodes (3-5) report the number of data points in each partition. The tree in Panel A 

corresponds to the partitions shown in Panel B. The box plots at the terminal nodes of the 

tree in Panel A display the distribution of mean total reading time of the data points that fall 

into the corresponding partition in panel B. The values under the node labels in Panel B 

represent the fitted values. The decision rule for Node 3 (the leftmost branches) corresponds 

to “If SightWordEfficiency ≤ 57, and if ARTScore ≤ 10, then mean total reading time = 380 

ms.”
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Figure 2. 
The relative importance of variables obtained from a Random Forests model applied to the 

by-participant mean total reading time in Analysis 1.
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Figure 3. 
Relative importance of predictors of total reading time during text reading. Six metrics 

compared are the absolute value of standardized beta coefficients (|β|), the amount of 

variance explained by a regression model with only one predictor (Single), the increase in 

R2 from a model with all but one predictor to a model with all the predictors (Unique), and 

variable importance measures from Dominance Analysis (DA), Multimodel Inference 

(MMI), and Random Forests (RF). Numbers inside panels indicate the predictor's 

importance rank within the predictor set.
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Figure 4. 
Relative importance of predictors of word skipping during text reading, estimated by six 

statistical methods. Six metrics compared are the absolute value of standardized beta 

coefficients (|β|), the amount of variance explained by a regression model with only one 

predictor (Single), the increase in R2 from a model with all but one predictor to a model with 

all the predictors (Unique), and variable importance measures from Dominance Analysis 

(DA), Multimodel Inference (MMI), and Random Forests (RF). Numbers inside panels 

indicate the predictor's importance rank within the predictor set.
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Figure 5. 
Relative importance of predictors of GORT comprehension scores. Six metrics compared 

are the absolute value of standardized beta coefficients (|β|), the amount of variance 

explained by a regression model with only one predictor (Single), the increase in R2 from a 

model with all but one predictor to a model with all the predictors (Unique), and variable 

importance measures from Dominance Analysis (DA), Multimodel Inference (MMI), and 

Random Forests (RF). Numbers inside panels indicate the predictor's importance rank within 

the predictor set.
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Table 1

Labels and corresponding skills assessed. For complete details of instruments used, see Supplementary 

materials, S4.

Label Construct

VocabScore Vocabulary Size

SightWordEfficiency Sight Word Efficiency (TOWRE-2)

WordDecoding Phonemic Decoding Efficiency (TOWRE-2_

ReadEfficiency Reading Efficiency composite score (TOWRE-2)

RANLetterNameTime, RANNumberNameTime Rapid Automatized Naming

RANNameTime Rapid Automatized Naming (composite of RANLetterNameTime and 
RANNumberNameTime)

MRTScore, ARTScore Print Exposure

PrintExposure Print Exposure composite of MRTScore and ARTScore

TimeSpentReading
ReadingSpeed
ComplexityMaterial
UnderstandingMaterial
ReadingEnjoyment

Subjective measure of Reading Habits

WasiVerbalIQ
WasiReasonIQ
WasiFullIQ

IQ (WASI)

Complex Text Complexity (GORT)
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Table 2

Proportion of variance accounted for by the models.

Dependent Variable Sample used Upper-bound for the regression based models Random Forests

Total Reading Time

All .083 .082

Test .075 .080

Skipping

All .029 .027

Test .022 .026

Comprehension Score

All .236 .174

Test .171 .173

The R2 of the full regression model with all predictors is reported as the upper bound for Dominance Analysis and Multimodel Inference. The R2 

values for the All sample are based on the models trained on the entire dataset, and are calculated based either on the models’ fitted values to the 

entire dataset (for full regression model), or on the model's prediction to the out-of-bag samples (for Random Forests). The R2 values for the Test 
sample are based on the models trained on the 70% random training subsamples and are calculated using the models’ prediction to the remaining 
30% testing subsamples, averaged over 100 runs.
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