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Introduction

Galanin is a 29- to 30-amino acid neuropeptide widely 
expressed in the central and peripheral nervous systems 
(Ch’ng et  al. 1985; Melander et  al. 1986; Podlasz et  al. 
2012; Skofitsch and Jacobowitz 1985). It is coexpressed in 
neurons with several small molecular classical neurotrans-
mitters (Mazarati et al. 2000) and exerts strong inhibitory 
action on synaptic transmission by reducing their release 
(Hokfelt et  al. 1998; Misane et  al. 1998; Pieribone et  al. 
1995; Zini et al. 1993). The first reported biological activity 
of galanin was its effect on plasma glucose levels in dogs 
and rats (Tatemoto et al. 1983). Immunohistochemical stud-
ies have demonstrated galanin-positive nerve fibers in the 
pancreas in several species including humans (Ahren et al. 
1991; McDonald et  al. 1992; Shimosegawa et  al. 1992), 
rat and mouse (Adeghate and Ponery 2001; Lindskog et al. 
1991), dog (Dunning et al. 1986; Taborsky et al. 1999), cat 
(Furuzawa et al. 1996), pig (Adeghate et al. 1996; McDon-
ald et  al. 1992; Messell et  al. 1990), ruminants (Baltazar 
et al. 2000, 2001), chicken (Hiramatsu and Ohshima 1995), 
lizards (Della Rossa and Putti 1995), bullfrog (Kawakami 
et  al. 1995), and also fish (Bosi et  al. 2004, 2007; Putti 
et al. 2000). The suppression of insulin release by galanin 
has been demonstrated in dogs (Dunning et al. 1986), and 
this effect is mediated by Gi-protein (Nilsson et al. 1989). 
However, the function of galanin in the endocrine pancreas 
is not fully elucidated. There are many species-related dif-
ferences regarding galaninergic innervation of the endo-
crine pancreas and function of galanin in the regulation of 
blood glucose level. For instance, in humans intravenous 
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administration of galanin does not affect glucose-stimu-
lated insulin secretion (Ahrén 1990; Gilbey et  al. 1989), 
although galanin inhibits glucose-stimulated insulin secre-
tion from the isolated human islets (Ahren et  al. 1991). 
Moreover, galaninergic fibers innervating pancreatic islets 
are numerous in the dog and mouse, but very rare in the 
rat (Ahren et al. 1990; Lindskog et al. 1991). Some studies 
have revealed that galanin is a sympathetic neurotransmit-
ter in the islets (Ahren et al. 1990; Taborsky et al. 1999). 
However, other origins of this peptide cannot be excluded 
as far as glucose homeostasis is concerned.

Pancreatic islets are richly supplied with autonomic 
nerves. The fibers usually follow the blood vessels, pen-
etrate into the islets, and terminate close to the endocrine 
cells. In mammals, the adrenergic/sympathetic axons inner-
vating the islets are postganglionic with most nerve cell 
bodies located in the celiac ganglion or in the paravertebral 
sympathetic ganglia (Ahren et  al. 1986; Brunicardi et  al. 
1995). The preganglionic parasympathetic fibers derive 
from the dorsal motor nucleus and travel within the vagus 
nerve. The preganglionic fibers synapse at intrapancreatic 
ganglia where postganglionic fibers reaching the pancreatic 
islets originate from (Miller 1981).

The zebrafish (Danio rerio) has become known as an 
excellent model organism for studies of vertebrate biol-
ogy, particularly for those dealing with vertebrate genetics 
and embryonal development. It is also a potential model 
for human diseases. There are many zebrafish models of 
human diseases including genetic disorders and acquired 
diseases, including diabetes (Jopling et  al. 2010; Kawa-
hara et  al. 2011; Olsen et  al. 2010; Panula et  al. 2006; 
Santoriello et  al. 2010; Swanhart et  al. 2011; Xi et  al. 
2011). Zebrafish have a number of features making them 
an attractive research tool. A fundamental advantage is 
that they share a considerable amount of genetic iden-
tity with humans, and several of their organ systems are 
remarkably similar to those found in mammals. Also, the 
zebrafish pancreas shares morphological and physiological 
similarities with the human pancreas. Many laboratories 
use the zebrafish to study pathological processes affecting 
this organ in humans (for review, see Kinkel and Prince 
2009). The extensive innervation of the mammalian pan-
creatic islets during the ontogeny suggests that the nerves 
may regulate the islet development and maturation and can 
be a source of extrinsic factors supporting these processes 
(Proshchina et al. 2014). Galanin, in addition to the classic 
role of neurotransmitter, also has other functions. There is 
some evidence that it plays a role of the trophic factor dur-
ing the ontogeny (Hobson et al. 2010). However, the litera-
ture in the field contains no information on the autonomic 
innervation of the zebrafish pancreas or on the potential 
influence of (one of the autonomic neurotransmitters) gala-
nin on function of its endocrine portion. Therefore, the aim 

of the present study was to investigate the galaninergic 
innervation of the endocrine pancreas including sources of 
the galaninergic nerve fibers, and the influence of galanin 
receptor agonists on blood glucose level in the zebrafish.

Materials and methods

Animals

The animals were housed and treated in compliance with 
the rules of the local Ethics Commission (affiliated to the 
National Ethics Commission for Animal Experimenta-
tion, Polish Ministry of Science and Higher Education). In 
the study, the wild-type Tubingen and Tg(mnx1:TagRFP) 
zebrafish were used. The transgenic zebrafish line 
Tg(mnx1:TagRFP) (Jao et al. 2012) was used to localize β 
cells. Mnx1 (motor neuron and pancreas homeobox 1) gene 
was reported to be expressed in motor neurons and pan-
creas. In the zebrafish pancreas, mnx1 is expressed exclu-
sively in β cells by 20 hpf (Wendik et al. 2004).

The adult zebrafish were reared on a 14:10-h light–dark 
photoperiod cycle, at 28.5 °C. Fish feeding, breeding, and 
maintenance were done according to Westerfield (2000). 
The embryos were obtained by natural mating. They were 
kept at 28.5 °C.

Zebrafish galanin probe synthesis

The pGEM-T-Easy vector containing galanin-cDNA was 
linearized with either SpeI (antisense) or NcoI (sense). 
Digoxigenin (DIG)-labeled sense and antisense RNA 
probes were made using SP6 and T7 polymerase, respec-
tively, using DIG RNA labeling kit. DIG-labeled probes 
were purified, quantified, and checked for integrity as 
described in detail elsewhere (Chen et al. 2009).

Whole‑mount in situ hybridization

The embryos were fixed in 4 % paraformaldehyde in phos-
phate buffer (PB), pH 7.4 (PFA), dehydrated with a series 
of phosphate-buffered saline + 0.1 % Tween 20 (PBSTw)–
methanol solutions (3:1, 1:1, 1:3) at room temperature 
(RT) for 10 min each, and finally stored in 100 % methanol 
overnight at −20  °C. They were rehydrated with a series 
of PBSTw–methanol solutions (1:3, 1:1, 3:1) and digested 
with proteinase K. Prehybridization and the subsequent 
hybridization were conducted with a probe at 70 °C over-
night. After hybridization, the embryos were washed in 
a series of the following solutions: 50  % formamide, 5× 
SSC, 0.1 % Tween 20 (Hyb−)—2× 0.15 M NaCl, 0.015 M 
Na citrate, 0.1  % Tween 20 (SSCT) solution (3:1, 1:1, 
1:3), 2× SSCT and 0.2× SSCT—all at 70 °C for 15 min 
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each. Next, they were washed in a series of other solutions: 
0.2× SSCT–PBSTw (3:1, 1:1, 1:3), PBSTw and blocked 
in a blocking buffer for 3  h, followed by incubation with 
alkaline phosphatase-conjugated anti-DIG antibody 
(1:2000 dilution) in blocking solution overnight at 4  °C. 
The specimens were washed with PBSTw three times and 
then once in alkaline phosphatase buffer (100 mM Tris, pH 
9.5, 50 mM MgCl2, 100 mM NaCl, and 0.1 % Tween 20). 
The embryos were allowed to develop color in HNPP/Fast 
Red TR mix (Roche Diagnostics) in alkaline phosphatase 
buffer. After they developed color, the coloring reaction 
was stopped by washing twice with PBSTw and then fix-
ing in 4 % PFA in PB, pH 7.4. The embryos were analyzed 
with LSM 700 confocal laser scanning microscope (Zeiss, 
Germany). Fluorophores were excited at 555 nm by a solid-
state laser.

Immunohistochemistry and microscopy

The specimens were fixed with 4 % PFA o/n at +4 °C. The 
embryos and larvae were whole-mount-fixed. In the older 
fish, the abdomen cavity was opened before fixation and 
guts were dissected. The guts from the adults were cryo-
protected in sucrose (20 % in 0.1 M PB) and kept for addi-
tional 24–48  h at 4  °C followed by freezing and embed-
ding (Tissue-Tek® O.C.T™ Compound, Sakura). Then, 
they were cryosectioned (20 µm) and the sections were col-
lected on gelatin-coated slides. Next, the specimens were 
washed and preincubated in PBS containing Triton X-100 
0.3 % (PBS-T, pH 7.4), 1 % dimethyl sulfoxide (DMSO), 
0.1 % sodium azide, and 4 % normal goat serum (NGS) for 

4–6 h at RT. The specimens were then incubated with the 
primary antibodies (Table 1) in the preincubation solution 
for 14–24 h at RT. Afterward, they were washed thoroughly 
with PBS-T and incubated with the secondary antibodies 
(Table  1) diluted 1:1000 in the preincubation solution for 
12–24  h at 4  °C for whole-mount immunohistochemis-
try and for 1 h at RT for sections. After extensive washing 
with PBS and with 50 % glycerol in PBS, the specimens 
were mounted in 80 % glycerol in PBS. They were exam-
ined with a LSM 700 confocal laser scanning microscope 
(Zeiss, Germany). Stacks of images were compiled to pro-
duce maximum intensity projection images with ZEN 2009 
software (Zeiss, Germany). Additionally, each optical sec-
tion was analyzed separately, section by section, to detect 
every minor detail.

Careful control investigations for antiserum specificity 
were carried out. Preabsorption controls of the galanin anti-
serum were done by preincubating the antibody with the rat 
galanin peptide (Bachem, Bubendorf, Switzerland; 10 μg/
ml) for 24 h under slow stirring at 4 °C. Negative controls 
were performed by omitting all primary or secondary anti-
bodies in the staining protocol. All types of controls led to 
complete elimination of the immunostaining.

Intraperitoneal (IP) injections

For the functional experiment, the adult fish (12  months 
old, males and females) were used. Before the injections, 
the fish were fasted for 72 h. Weight (g) was measured by 
putting the animal into a small beaker of facility water on a 
scale and subtracting the non-fish weight.

Table 1   Primary and secondary antibodies used in the study

Antigen Immunogen Host Clonality Dilution Company Catalog no.

Primary antibodies

 Galanin Rat galanin synthetic peptide Rabbit Polyclonal 1:5000 Millipore AB2233

 HuC/D Human HuC/D neuronal protein Mouse Monoclonal 1:1000 Invitrogen A-21271

 AcTub Acetylated alpha-tubulin from the axoneme  
of sea urchin sperm flagella

Mouse Monoclonal 1:1000 Invitrogen 32-2700

 TH1 Tyrosine hydroxylase purified from PC12 cells Mouse Monoclonal 1:2000 Millipore MAB318

 ChAT Human placental enzyme Goat Polyclonal 1:100 Millipore AB144P

 Sst Somatostatin conjugated to thyroglobulin Rat Monoclonal 1:100 Serotec 8330-0009

Antigen Fluorophore Host Dilution Company Catalog no.

Secondary antibodies

 Rabbit IgG Alexa 635 Goat 1:1000 Invitrogen A-31576

 Mouse IgG Alexa 488 Goat 1:1000 Invitrogen A-11029

 Rabbit IgG Alexa 555 Goat 1:1000 Invitrogen A-21431

 Rabbit IgG Alexa 488 Donkey 1:1000 Invitrogen A-21206

 Goat IgG Alexa 555 Donkey 1:1000 Invitrogen A-21432

 Rat IgG Alexa 488 Goat 1:1000 Invitrogen A-11006
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To anesthetize the fish for IP injection, it was placed in 
a beaker containing 0.02  % MS-222 (tricaine; Sigma) in 
facility water at 28.5 °C. When the animal reached stage II 
of anesthesia (Brown 1993; Iwama and Ackerman 1994), 
it was placed on a surgical table constructed as described 
elsewhere (Eames et al. 2010). The sponge was cut in half, 
and a shallow trough was cut into the flat face. The trough 
was used for holding the fish securely during the injection. 
The surgical table with the fish was immediately transferred 
to an adjacent dissecting microscope stage (SteREO Dis-
covery.V8 Stereomicroscope, Zeiss, Germany) for injec-
tion. The injection was performed using a 10-μl Hamilton 
syringe (Hamilton Company). The needle was inserted at 
the midline into the ventral posterior abdomen, between 
the pelvic fins. The injection site was located closer to the 
insertion of the fins on the pelvic girdle rather than to the 
anus. The needle was directed cranially to reduce the pos-
sibility of causing damage to internal organs.

The fish in the first group (n = 10) were injected with 
15 µg/g of NAX 5055, a galanin peptide analog and non-
selective galanin receptor agonist (kindly granted by Drs. 
Steve White and Grzegorz Bulaj from the University of 
Utah (White et al. 2009)), and 0.5 mg/g d-glucose (Sigma) 
dissolved in Cortland salt solution, pH 7.45. The animals 
of the second group (n = 10) were injected with 5 µg/g of 
galnon, a non-peptide, non-selective galanin receptor ago-
nist (Bachem) and 0.5  mg/g d-glucose. The control fish 
(n = 10) were injected only with 0.5 mg/g d-glucose.

Whole blood glucose measurement

The fish were anesthetized with 0.02 % MS-222, 2.5 h after 
the injection (tricaine; Sigma). When they had reached 
stage III, plane 2 of anesthesia (surgical plane) (Brown 
1993; Iwama and Ackerman 1994), whole blood was col-
lected from the caudal artery by cutting out the fish tail with 
scissors, and then the animals were killed by decapitation. 

Whole blood was analyzed immediately using OneTouch 
Select glucometer (LifeScan) (Fig. 1).

Statistical analysis

The analysis was performed using GraphPad Prism, version 
5.02, and one-way ANOVA test. The averages are reported 
as mean ± SE of the mean.

Results

Immunofluorescent stainings revealed a very dense network 
of galanin-IR varicose fibers innervating the endocrine pan-
creas in the zebrafish in every developmental stage studied, 
from the second day post-fertilization (dpf; data not shown) 
to the adult fish (Figs. 2, 3, 4, 5, 6). The fibers were very 
densely packed with intensely stained galanin-immunore-
active (IR) vesicles (Figs. 2, 3, 4, 5, 6).

Confocal analysis of whole-mount galanin stainings in 
the larvae and juvenile fish revealed that the fibers origi-
nated from neurons located rostral to the pancreatic tissue 
(Figs.  2a, b, 3a, b, 4a, 5a, b). These galaninergic neurons 
were mostly clustered in two ganglia found bilaterally on 
both sides of the sagittal plane (Fig.  3a, b). The remain-
ing galanin-IR neurons were distributed among galanin-
negative nerve cell bodies forming large diffused ganglia 
(Figs.  2a, d, 3a). The ganglia were located on the dorsal 
side of the initial part of the anterior intestinal segment 
(Figs.  2b, 3a, 4a, 5a, b), close to the intestinal branch of 
the vagus nerve (Fig. 3b). The galanin-IR neurons usually 
formed strips of single cells distributed along the vagus 
nerve (Fig. 3b). Some of the galanin-IR neurons were scat-
tered near the main ganglion (Figs. 2c, d, 3a, b). The small 
clusters of galanin-IR neurons and single perikarya were 
distributed mostly along ramifications of the vagus nerve, 
in particular at their branching points (Fig. 3b), which ran 
in the caudal direction toward the primary islet of the endo-
crine pancreas. The bundle of galanin-IR fibers supplied the 
primary islet and then ran into the caudal direction reach-
ing next islets (Figs. 3c, 5e). From the 5 dpf, the galanin-IR 
nerve terminals richly innervated the intestine (Fig. 5a). In 
the adult fish, the galanin-IR ganglia were distributed in a 
way similar to that found in the juvenile animals, i.e., close 
to the anterior intestinal segment, outside the pancreatic tis-
sue (Fig.  6). There were single neurons embedded in the 
pancreatic tissue; however, they rarely exhibited immunore-
activity to galanin (Fig. 6b). The neurons found within the 
pancreatic tissue were mostly small-sized cells (7–10 µm) 
and resembled morphologically enteric neurons, whereas 
the majority of galanin-IR neurons distributed outside the 
pancreas were larger in diameter (10–20 µm; Fig. 6).

Fig. 1   Whole-mount fluorescence in  situ hybridization of galanin 
expression of 3  day post-fertilization (dpf) zebrafish larvae. Arrows 
point to galaninergic neurons in the autonomic ganglion. E eye, I 
intestine, Rho rhombencephalon, Y yolk. Scale bar 100 µm
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In situ hybridization investigations with a probe for 
mRNA encoding galanin revealed groups of galaninergic 
cells in the same location which was occupied by neurons 
identified with the galanin antiserum (Fig. 1).

The galanin-IR neurons did not show immunoreactiv-
ity for applied antibody against tyrosine hydroxylase (TH), 
although TH-IR perikarya and nerve fibers were observed 

in the other parts of the central and peripheral nervous sys-
tem (Fig.  4). Also, immunofluorescent investigations with 
antibodies against choline acetyltransferase (ChAT, Fig. 5a) 
or vesicular acetylcholine transporter (VAChT, data not 
shown) did not reveal immunoreactivity in the studied neu-
rons. Interestingly, the antibodies against the cholinergic 
markers detected the appropriate immunoreactivities in 

Fig. 2   Whole-mount immunofluorescence staining of the zebrafish 
larvae (a, b) and juvenile zebrafish gut (c, d) using antibody against 
galanin (a–d) and neuronal marker Hu (a, d), somatostatin (Sst) (c). 
Red fluorescence protein (RFP) marked mnx1+ population of β cells 
(b, b′). Arrows show galaninergic neurons in the autonomic gan-

glion. In the primary islet of the endocrine pancreas, galanin-IR fibers 
formed a very dense network (arrowheads). CrG cranial ganglia, E 
eye, I intestine, Me mesencephalon, Rho rhombencephalon, Y yolk. 
Scale bars 100 µm
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perikarya and fibers in the brain and spinal cord, but not in 
nerve elements found outside the central nervous system.

Investigations with antibody against somatostatin (Sst) 
used on WT and Tg(mnx1:TagRFP) fish revealed immu-
noreactivity for this peptide in a large number of cells in 
all pancreatic islets (Figs. 5b–d, 6c). The marker of mnx1+ 
population of β cells (TagRFP) was found in a smaller 
number of cells in the primary islet (Figs. 2b, 5d, e, 6). In 

the secondary islets, single RFP+ cells were observed only 
occasionally. The secondary islets were also very densely 
supplied with galanin-IR fibers (Figs. 3c, 5e, 6). Moreover, 
the galanin-IR fibers more intensely innervated Sst+ cells 
than RFP+ cells in the primary islet (Fig. 6).

Intraperitoneal injection of galanin analog NAX 5055 
resulted in a statistically significant increase in the blood 
glucose level. The injection of another galanin receptor 
agonist, galnon, also caused a raise in the blood glu-
cose level; however, it was not statistically significant 
(Fig. 7).

Fig. 3   Whole-mount immunofluorescence staining of the 30 dpf 
zebrafish gut using antibody against galanin (a–c), neuronal marker 
Hu (a), and acetylated tubulin (b, c). Arrows point to galaninergic 
neurons in the autonomic ganglion, and the arrowhead shows a very 
dense network of galanin-IR fibers in the primary islet of the endo-
crine pancreas. The secondary islets (hollow arrows, c), the vagus 
nerve (hollow arrowheads, b, c) and its associated galanin-IR neu-
rons are also visible. Dashed line indicates the pancreas (a, c). I intes-
tine, L liver. Scale bars 100 µm

Fig. 4   Whole-mount immunofluorescence staining of the 4 dpf 
zebrafish larvae (a), 22  dpf juvenile zebrafish (b) using antibody 
against galanin and adrenergic marker—tyrosine hydroxylase (TH). 
Arrow points to galaninergic neurons in autonomic ganglia. Arrow-
heads show the primary islet of the endocrine pancreas. Galanin-IR 
cells and fibers did not express immunoreactivity to TH. However, 
very intensely stained TH-IR neurons were found in the celiac gan-
glion (a) and in the brain (b). CeG celiac ganglion, E eye, I intestine, 
Me mesencephalon, Rho rhombencephalon. Scale bars 100 µm
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Fig. 5   Whole-mount immunofluorescence staining of the zebrafish 
larvae (a, b, d), juvenile (c, e), and adult (f) guts using antibody 
against galanin (a–c, e–f), cholinergic marker—choline acetyltrans-
ferase (ChAT) (a), δ cell marker somatostatin (b–d). RFP marked 
mnx1+ population of β cells in the transgenic line of the zebrafish 
(d, e). Arrows point to galaninergic neurons in autonomic ganglia. 
Arrowheads show the primary islet of the endocrine pancreas, and 
hollow arrows point to the secondary islets. a There was no ChAT 
immunoreactivity in the cells and fibers associated with the pancreas 

and intestine. ChAT-IR neurons were observed only in the brain and 
spinal cord (not shown). Galanin-IR fibers were also visible, project-
ing from the autonomic ganglion to the intestine. c, d Pancreatic islets 
at a higher magnification. Somatostatin did not colocalize with β cell 
marker (d). Delta cells were very intensely supplied by galaninergic 
fibers (c, d). Note that the secondary islets did not contain RFP+ 
cells until 60 dpf (e). Dashed line indicates the pancreas. I intestine, 
L liver, Rho rhombencephalon. Scale bars 100 µm, except d = 50 µm
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Discussion

The present paper provides detailed information on gala-
ninergic innervation of the zebrafish endocrine pancreas 
considering the source of the nerve fibers for the first time. 
Galaninergic innervation of the endocrine pancreas has 
been demonstrated in many species (see “Introduction” 
section). However, these studies have revealed prominent 

species-dependent differences dealing with both the density 
and possible sources of the galaninergic nerve supply.

In the dog, in which the effect of galanin on the blood 
glucose level was demonstrated for the first time (Tatemoto 
et  al. 1983), galaninergic innervation of pancreatic islets 
is extensive (McDonald et al. 1992; Taborsky et al. 1999). 
Also in the mouse, the galanin-IR fibers are rather numer-
ous (Lindskog et  al. 1991). On the other hand, in the rat, 

Fig. 6   Section from the adult 
pancreas stained with antibody 
against galanin (a–c) and Hu 
(b), and somatostatin (c). RFP 
marked mnx1+ population of 
β cells in the transgenic line 
of the zebrafish (a–c). RFP+ 
cells were present mostly only 
in one (primary) islet, whereas 
somatostatin-positive cells 
were located in all the islets 
(a–c). Ganglion containing 
galanin-IR neurons is visible 
outside the pancreatic tissue, 
close to the intestinal wall (a, 
a″, c, c′). Neurons inside the 
pancreatic tissue are also vis-
ible; however, they were mostly 
galanin-negative (arrowheads, 
b). Galanin-IR fibers richly 
supplied pancreatic islets (c). 
I intestine, Pi pancreatic islet. 
Scale bars 100 µm
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pig, and humans, the endocrine pancreas is scarcely sup-
plied by galaninergic nerves (McDonald et al. 1992; Lind-
skog et al. 1991). In our study, we have demonstrated that 
in the zebrafish, pancreatic islets receive very abundant 
galaninergic innervation. In other fish species, the gala-
ninergic fibers are also quite numerous (Bosi et  al. 2004; 
Putti et al. 2000). However, it seems that in the zebrafish, 
galaninergic innervation of pancreatic islets is much denser 
than in any animal species investigated so far.

The reason for such intense innervation in the zebrafish 
is not clear. One of the explanations could be that galanin 
plays a role as a trophic factor for the developing endocrine 
pancreas and this function of galanin has been well recog-
nized (Hobson et  al. 2010). However, the present results 
contradict this theory to some extent because the intense 
innervation was observed in each developmental stage 
studied and thus was also abundant in the adult animals.

The origin of galanin nerve fibers for the endocrine pan-
creas investigated previously in other species is not clear. 
There is a common view that in mammals, galanin is local-
ized in the islet-projecting adrenergic/sympathetic nerve 
terminals (Ahren 2000). The source of these galaninergic 
fibers could be the celiac ganglion where galanin colocal-
izes with TH in some ganglionic neurons (Ahren et  al. 
1990). However, in at least certain species the galanin-
IR nerve terminals have been found to be predominantly 
non-adrenergic, parasympathetic in nature (Verchere et al. 
1996). Our study has revealed that sympathetic nerves are 
very rare or absent in the zebrafish islets and the galanin-
ergic innervation of the endocrine pancreas is provided 
by neurons located in ganglia found close to the intestinal 
branch of the vagus nerve. Neurons in these ganglia do 

not contain TH which indicates that they do not belong to 
the sympathetic/adrenergic part of the autonomic nervous 
system.

The present study is the first to demonstrate non-adren-
ergic, non-sensory ganglia in the zebrafish and that these 
ganglia contain many galaninergic neurons projecting to the 
pancreas. The ganglia investigated most likely consist of 
postganglionic neurons derived from the vagal neural crest, 
and they are closely associated with the intestinal branches 
of the vagus nerve. It is tempting to assume that these gan-
glia, supplying the endocrine pancreas, are homologues of 
intrapancreatic/pancreatic ganglia described in mammals 
(Baltazar et  al. 2001; Furuzawa et  al. 1996; Myojin et  al. 
2000; Verchere et al. 1996) and other fish (Putti et al. 2000; 
Yui and Fujita 1986). They belong to the parasympathetic/
cholinergic part of the autonomic nervous system; however, 
besides vagal innervation, their neurons receive sympa-
thetic, enteric, and sensory supply (for review, see (Love 
et al. 2007). Most pancreatic neurons are ChAT-IR, which 
indicates they are cholinergic in nature (Liu et al. 1998). In 
our study, staining with antibodies against ChAT revealed 
no immunoreactivity in the ganglia. The antibody applied 
has been found to mark cholinergic structures very effec-
tively in the zebrafish central nervous system (Castro et al. 
2006; Yu et al. 2011). Also, in our investigations ChAT-IR 
neurons and fibers were visible in the larval brain and spi-
nal cord. Other authors who performed immunostainings 
with the same ChAT antibody have reported lack of the IR 
structures in the peripheral nervous system in the juvenile 
stages of the zebrafish (Olsson et al. 2008; Uyttebroek et al. 
2010). It is difficult to speculate about the reasons for the 
absence of immunoreactivity to ChAT in the ganglia stud-
ied. It is possible that the concentration of the antigens in 
the neurons is too low. Another explanation is that there is 
another isoform of the enzyme in the peripheral nervous 
system of the zebrafish larvae and the applied antibody rec-
ognizes only the isoform expressed in the central nervous 
system. This unrecognized isoform could be a counterpart 
of the peripheral type of ChAT (pChAT) described in mam-
mals (Tooyama and Kimura 2000) or a product of dupli-
cated ChAT gene (chatb) (Hong et al. 2013). The intrapan-
creatic ganglia, in addition to acetylcholine, express some 
neuropeptides including galanin (Baltazar et  al. 2001; 
Furuzawa et  al. 1996; Putti et  al. 2000; Verchere et  al. 
1996), which confirms the present results.

Intraperitoneal injections of galanin analog NAX 5055 
performed in our study resulted in an increase in blood glu-
cose level in the adult zebrafish. Similar results have been 
obtained recently in the study on mice, where NAX 5055 
produced a comparable effect (Flynn and White 2015). 
Our findings are also consistent with those of previous 
investigations which have revealed hyperglycemia in dogs 
after intravenous galanin infusion (Manabe et  al. 1986; 

Fig. 7   Effect of galanin receptor agonists (NAX 5055 and galnon) 
on blood glucose level. Results obtained in the NAX 5055-treated 
group were statistically significantly different from those obtained in 
the control group, p  <  0.05. The level of blood glucose found after 
administration of galnon was not statistically significantly different 
from that observed in the control group, p > 0.05. One-way ANOVA 
with Tukey’s posttest. Data represent mean  ±  SE of the mean 
(N = 10)
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McDonald et al. 1985). Surprisingly, administration of gal-
non, a non-peptide galanin receptor agonist, had no signifi-
cant influence on blood glucose level in the zebrafish. The 
lack of an apparent increase in blood glucose level after 
administration of galnon is consistent with the results of 
another study where galnon even stimulated insulin release 
in isolated rat pancreatic islets (Quynh et al. 2005). It has 
been shown that galnon has a moderate affinity to galanin 
receptors (Saar et  al. 2002). It has multiple sites of inter-
action within the G protein-coupled receptor signaling cas-
cade (Florén et al. 2005), and its effect is mediated by a site 
unrelated to galanin receptors which could explain differ-
ences in the influence on blood glucose level between gal-
non and NAX 5055.

The mechanism of galanin action on blood glucose 
level is not fully elucidated. However, there is a strong evi-
dence that galanin inhibits insulin release from β cells of 
the endocrine pancreas (Flynn and White 2015; Gregersen 
et  al. 1991; Lindskog and Ahren 1987; Lindskog et  al. 
1995). The inhibition of the insulin secretion by galanin has 
been postulated to be achieved by the reduction in intra-
cellular cyclic AMP levels (Dunning et  al. 1986; McDer-
mott and Sharp 1995), direct modulation of the islet cell 
membrane potential (Amiranoff et  al. 1988), inhibition of 
dihydropyridine-sensitive voltage-dependent L-type chan-
nels (Homaidan et al. 1991), and inhibition of islet exocy-
tosis (Sharp et al. 1989). All three types of galanin recep-
tors have been found in the pancreatic islets (Barreto et al. 
2011). It can be assumed that an increase in blood glucose 
level observed in the present study after injection of NAX 
5055 is mediated by galanin receptor 1 (GalR1), because 
NAX 5055 is a GalR1-preferring analog of galanin (Bulaj 
et  al. 2008; White et  al. 2009) and the expression of this 
receptor is the highest among other galanin receptors in the 
pancreatic islets (Barreto et al. 2011).

Galanin may act directly on the β cells and inhibit 
insulin release. The present study has revealed a very 
dense network of galanin-IR fibers supplying pancreatic 
islets in the zebrafish. However, the β cells visualized in 
Tg(mnx1:TagRFP) zebrafish line with RFP were localized 
only in the primary islet. On the other hand, the intense 
galaninergic innervation was observed in both the pri-
mary and secondary islets. As mentioned, Wendik et  al. 
(2004) have reported that in the zebrafish pancreas, mnx1 
is expressed exclusively in β cells by 20 hpf. However, 
Maddison and Chen (2012) have found that in the animals 
of Tg(mnx1:TagRFP) line, not all the β cells express RFP. 
It is thus possible that galaninergic fibers observed in our 
study in the secondary islets also innervate β cells which 
were RFP-negative. It can also be assumed that galanin 
influences blood glucose level indirectly and the main 

target of the galaninergic fibers could also be the popu-
lation of the δ cells because a close association between 
galanin-IR nerve terminals and the somatostatin-express-
ing cells was apparent. Thus, the effect on blood glu-
cose level could be achieved through the involvement of 
somatostatin. It has been found that galanin exerts inhibi-
tory effect on the somatostatin release from the pancreas 
(Dunning et  al. 1986; Boyle et  al. 1994). Several studies 
indicate that somatostatin is a physiologically important 
paracrine factor (de Heer et  al. 2008; Hauge-Evans et  al. 
2009) involved in the regulation of insulin and glucagon 
release from the pancreatic islets (Hauge-Evans et  al. 
2009). This peptide may exert a tonic inhibitory influence 
on insulin and glucagon secretion, which may facilitate the 
islet response to cholinergic activation. It is also possible 
that galanin influences blood glucose level through other 
pathways because some studies indicate that the peptide 
stimulates glucagon secretion (Boyle et al. 1994; Dunning 
et al. 1986; Lindskog and Ahren 1987). However, the exact 
mechanism of galanin action on the pancreatic hormone 
production and/or secretion should be elucidated by fur-
ther studies.

In conclusion, the present study has disclosed the 
existence of non-adrenergic, non-sensory ganglia in the 
zebrafish for the first time. They provide an abundant inner-
vation to the endocrine pancreas and to other viscera. Neu-
rons in these ganglia express neuropeptide galanin which 
regulates blood glucose level, a phenomenon also found 
in other species investigated. The present study has also 
demonstrated that administration of galanin analog NAX 
5055 causes an increase in the blood glucose level in the 
zebrafish. The present findings suggest that, like in mam-
mals, in the zebrafish galanin is involved in the regulation 
of blood glucose level. However, further studies are needed 
to elucidate the exact mechanism of the galanin action.
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