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Abstract
Whole-genome sequencing of 24 Proteus mirabilis isolates revealed

the clonal expansion of two cefoxitin-resistant strains among

patients with community-onset infection. These strains harboured

blaCMY-2 within a chromosomally located integrative and

conjugative element and exhibited multidrug resistance

phenotypes. A predominant strain, identified in 18 patients, also

harboured the PGI-1 genomic island and associated resistance

genes, accounting for its broader antibiotic resistance profile. The

identification of these novel multidrug-resistant strains among

community-onset infections suggests that they are endemic to

this region and represent emergent P. mirabilis lineages of clinical

significance.
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Introduction
Proteus mirabilis is a significant cause of urinary tract infections
and is a leading cause of catheter-associated urinary tract
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infections [1]. Treatment is complicated by the acquisition of

antibiotic resistance genes affording P. mirabilis a selective
advantage during therapy. Horizontal acquisition of AmpC-type

β-lactamase genes has been an important driver of resistance in
Europe and has been associated with the clonal expansion of

resistant strains [2,3]. Since the publication of the P. mirabilis
HI4320 reference genome, additional genome sequences have

become available providing a framework for genomic epide-
miology in this species [4–9]. Here, we applied whole-genome

sequencing to investigate the genomic epidemiology of emer-
gent cefoxitin-resistant P. mirabilis isolates causing community-
onset infections in Ireland.
Methods
Clinical P. mirabilis isolates, recovered by the Microbiology
Department of St James’s Hospital (Dublin, Ireland), were sub-

jected to antimicrobial sensitivity testing on a Vitek 2 system
(bioMérieux, Marcy l’Étoile, France). Infections with onset in the

community were categorized as either community acquired,
when onset of illness occurred outside a healthcare facility with

no reported discharge from a healthcare facility within the pre-
vious 12 weeks, or healthcare associated, when onset of illness

occurred within 4 weeks of discharge from a healthcare facility.
Whole-genome sequencing of P. mirabilis isolates was performed

on an Illumina MiSeq platform at the TrinSeq sequencing facility
(Trinity College Dublin, Ireland). Sequencing reads were aligned
to the P. mirabilis HI4320 genome (AM942759) using the

Burrows-Wheeler short-read aligner, while de novo assembly
was performed using the NSilico Simplicity pipeline (Simplicity

v1.2) [2,10]. Sequence data for the P. mirabilis integrative and
conjugative element ICEPmiJpn1 (AB525688.1) and Proteus

Genomic Island-1 (KJ411925) were also used as reference se-
quences for read mapping and contig alignment. Single-

nucleotide variants (SNVs) were resolved using SAMtools [11].
Phylogenetic trees were generated by neighbour-joining (BIONJ)
using PhyML and visualized with iTOL [12,13]. Raw short-read

data have been deposited at the European Nucleotide Archive
under study accession number PRJEB7631. Draft assemblies of

representative cefoxitin-resistant strains PM655 and PM593
have been deposited at DDBJ/EMBL/GenBank under accession

numbers JSUO00000000 and JSUP00000000, respectively.
Results
Between December 2012 and November 2013, 33% of P.

mirabilis isolates (n = 79) recovered by the Microbiology
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FIG. 1. Phylogenetic comparison of Irish Proteus mirabilis isolates with previously sequenced P. mirabilis strains. (A) A neighbour-joining tree was

generated on the basis of concatenated sequences of seven conserved genes present in all strains (adk; PMI0375, fumC; PMI0891, gyrB; PMI1296, icd;

PMI2184, mdh; PMI1732, purA; PMI3370 and recA; PMI3400). Sequences from 24 P. mirabilis isolates from this study and eight representative P. mirabilis

whole-genome data sets; C05028 (ANBT00000000), WGLW4 (AMGU00000000), HI4320 (AM942759), ATCC29906 (ACLE01000000), ATCC7002

(JOVJ00000000), PR03 (AORN00000000), WGLW6 (AMGT00000000) and BB2000 (CP004022) were compared. Black bar indicates average

nucleotide substitutions per site across the seven genes analysed (9 kb). To the right of the tree, under label CA, plus and minus symbols denote either

community-acquired or hospital-associated infections, respectively, while subsequent columns ‘AC,’ ‘GN,’ ‘FX,’ ‘CZ,’ ‘CP’ and ‘TP’ indicate the

resistance profile of each isolate to amoxicillin–clavulanic acid, gentamicin, cefoxitin, ceftazidime, ciprofloxacin and piperacillin–tazobactam,

respectively. Colour indicates resistance level: black, full resistance; dark grey, intermediate resistance; light grey, susceptible. (B) Unrooted neighbour-

joining tree of the observed 18-strain clonal cluster based on whole-genome comparisons across 3,207,626 called sites relative to the P. mirabilis

HI4320 genome. Circles indicate genetically indistinguishable strains. Bar below the tree indicates length corresponding to one single-nucleotide

variant.
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Department of St James’s Hospital were found to exhibit

resistance to cefoxitin (minimum inhibitory concentration
�16 mg/L). Twenty-one cefoxitin-resistant isolates, confirmed
as being from community-onset infections, were further

investigated by whole-genome sequencing. Cefoxitin-resistant
isolates had multidrug-resistance (MDR) phenotypes, exhibit-

ing coresistance to other antibiotics including amoxicillin–
clavulanic acid (100%), gentamicin (91%), ceftazidime (76%) and

ciprofloxacin (52%) but remained sensitive to piperacillin–
tazobactam, with the three control isolates exhibiting suscep-

tibility to all antibiotics tested (Fig. 1(A)). No epidemiologic
links between cases could be established on analysis of patient

records, suggesting that potential strain bias due to patient-to-
patient transmission was minimal.

Whole-genome sequence data indicated that our resistant

isolates exhibited significant genetic divergence from available
P. mirabilis genome sequences present in the Refseq database

and included a large cluster of 18 genetically related isolates
(Fig. 1(A)). Genome-wide analysis of the 18-isolate cluster

(cluster I) revealed isolates to be highly clonal, exhibiting a
New Microbes and New Infections © 2015 The Authors. Published by Elsevier Ltd on beha
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genetic divergence of between 0–30 SNVs (Fig. 1(B)). Similarly,

within the smaller isolate cluster (cluster II, n = 3), isolates
PM100 and PM593 were genetically indistinguishable, whereas
PM063 diverged by 20 SNVs (isolates in cluster I diverged from

those of cluster II by more than 19,000 SNVs).
An R391/SXT-family integrative and conjugative element

(ICE), harbouring the blaCMY-2 AmpC-family β-lactamase gene,
was identified in all cefoxitin-resistant strains (both in cluster I

and cluster II). This ICE shared high sequence identity to ICE-
PmiJpn1 (AB525688.1) and similarly contained the blaCMY-2 gene

within a composite transposon insertion [14]. The identified
ICE region was integrated at the same chromosomal location in

both strains (Fig. 2(A)). Cluster I isolates also harboured addi-
tional chromosomally integrated resistance genes; a Tn7-asso-
ciated class 1 integron was present upstream of PMI3067 (glmS)

carrying the aadA1 and dfrA1 resistance genes (Fig. 2(B)), while
the Proteus Genomic Island 1 (PGI-1) was also identified [15].

PG1-1 harboured the resistance genes aadB, aad2, aphA1b,
blaTEM-1 and sul1 associated with diverse mobile elements

within its MDR region while lacking the “right-end” of the PGI-1
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FIG. 2.Observedmobile genetic elements associatedwith chromosomally integrated resistance genes among Proteus mirabilis strains identified in this study.

Genetic environs (black) of detected resistance genes (white) among resistant P. mirabilis isolates are illustrated. Identified insertion sequences are high-

lighted in grey boxes. (A) Both strains harboured the described integrative and conjugative element (ICE) element ICEPmiJpn1, which was integrated

between chromosomal genes PMI2422 (prfC) and PMI2949. The blaCMY-2 gene was present within an ICE-embedded composite transposon flanked by IS10

elements, as observed in ICEPmiJpn1 (AB525688.1). The ICE observed in cluster I isolates also included three additional genes encoding hypothetical

proteins (underlined), which are absent from previously described ICE elements in P. mirabilis. (B) Cluster I isolates harboured the aadA1 and dfrA1 genes

associated within a Tn7-associated class 2 integron, chromosomally located between PMI3067 (glmS) and PMI3068. (C) PGI-1 genomic island was identified

among cluster I isolates, chromosomally integrated between PMI3127 (hipB) and PMI3127 (trmE). Resistance genes identified within the PGI-1 region

included aphA1b, blaTEM-1, sul1, aadA2 and aadB, which were embedded among a mosaic of mobile genetic elements in the PGI-1 MDR region.
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MDR region as well as the IS26-mediated recombination event

originally described among French P. mirabilis isolates (Fig. 2(C))
[15]. The three antibiotic-susceptible isolates investigated

lacked the R391/SXT-family ICE, class 2 integron-borne aadA1
and dfrA1, and PGI-1. Although we failed to identify mutations

within the quinolone-resistance-determining regions of gyrA,
gyrB, parC or parE among ciprofloxacin-resistant isolates, loss-
of-function mutations in transcriptional regulators of efflux

acrR (frameshift: c.90_93dup) and soxR (stop gain;
p.Gln147Stop) were identified in four of five resistant isolates

exhibiting ciprofloxacin minimum inhibitory concentrations of
>4 mg/L. These mutations were absent from susceptible

(n = 13) or intermediately resistant (n = 6) isolates.
Discussion
Proteus mirabilis exhibits a clonal population structure whereby

the emergence of pathogenic strains is often observed in as-
sociation with the acquisition of exogenous antibiotic resistance

genes [3,14,16]. Here the application of whole-genome
sequencing allowed fine-structure comparative genomic anal-
ysis of locally emergent P. mirabilis strains identifying two novel

clonal lineages among community-onset infections. While both
strains harboured the ICE-located blaCMY-2, accounting for

observed cephamycin resistance, cluster I strains were distin-
guished by the presence of a chromosomally located Tn7-

associated class 1 integron and the PGI-1 genomic island. These
gene mobilization platforms harboured several additional anti-

biotic resistance genes accounting for the broader resistance
profile of the cluster I strain such as invariable gentamicin

resistance, which was accounted for by the presence of class 1
integron-associated aadB in the PGI-1 MDR region (Fig. 2(C)).
Thus, the acquisition of multiple resistance genes via distinct

gene mobilization platforms has likely been a key contributor to
the clonal expansion of this novel strain among community-

onset infections. Worryingly, a number of cluster I isolates
were also resistant to ciprofloxacin, further limiting therapeutic

scope for treatment of community-acquired infection. While
the mechanism of fluoroquinolone resistance in these strains

awaits formal validation, mutational disruptions in soxR and acrR
were noted. Similar mutations in acrR and soxR are known to
contribute to fluoroquinolone resistance in other pathogenic

members of the Enterobacteriaceae by altering expression of the
AcrAB efflux system, while increased expression of acrB has

been confirmed among fluoroquinolone-resistant P. mirabilis
isolates [17–19]. The predominance of the MDR strains

described here among apparently epidemiologically unrelated
patients suggests that they represent P. mirabilis lineages

endemic to this region, warranting further local surveillance. It
New Microbes and New Infections © 2015 The Authors. Published by Elsevier Ltd on beha
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will be interesting to assess whether these strains are localized

to this region or have a broader global distribution. In the
absence of a widely accepted and portable typing scheme in P.

mirabilis, whole-genome sequencing provides an important tool
in addressing such questions.
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