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Incorporating Midbrain Adaptation to Mean Sound Level
Improves Models of Auditory Cortical Processing
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Adaptation to stimulus statistics, such as the mean level and contrast of recently heard sounds, has been demonstrated at various levels
of the auditory pathway. It allows the nervous system to operate over the wide range of intensities and contrasts found in the natural
world. Yet current standard models of the response properties of auditory neurons do not incorporate such adaptation. Here we present
a model of neural responses in the ferret auditory cortex (the IC Adaptation model), which takes into account adaptation to mean sound
level at a lower level of processing: the inferior colliculus (IC). The model performs high-pass filtering with frequency-dependent time
constants on the sound spectrogram, followed by half-wave rectification, and passes the output to a standard linear–nonlinear (LN)
model. We find that the IC Adaptation model consistently predicts cortical responses better than the standard LN model for a range of
synthetic and natural stimuli. The IC Adaptation model introduces no extra free parameters, so it improves predictions without sacri-
ficing parsimony. Furthermore, the time constants of adaptation in the IC appear to be matched to the statistics of natural sounds,
suggesting that neurons in the auditory midbrain predict the mean level of future sounds and adapt their responses appropriately.
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Introduction
Adaptation to stimulus statistics is an important process in sen-
sory coding, whereby neurons adjust their sensitivity in response

to the statistics of recently presented stimuli (Fairhall et al., 2001;
Wark et al., 2007; Carandini and Heeger, 2012). For example,
neurons in the auditory nerve (Wen et al., 2009), inferior collicu-
lus (IC; Dean et al., 2008), and cortex (Watkins and Barbour,
2008; Rabinowitz et al., 2013) shift their dynamic ranges to com-
pensate for changes in the mean level of recent sound stimula-
tion. Neurons in the auditory periphery (Joris and Yin, 1992),
midbrain (Rees and Møller, 1983; Kvale and Schreiner, 2004;
Dean et al., 2005; Nelson and Carney, 2007; Dahmen et al., 2010;
Rabinowitz et al., 2013), and higher auditory pathways (Nagel
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Significance Statement

An ability to accurately predict how sensory neurons respond to novel stimuli is critical if we are to fully characterize their
response properties. Attempts to model these responses have had a distinguished history, but it has proven difficult to improve
their predictive power significantly beyond that of simple, mostly linear receptive field models. Here we show that auditory cortex
receptive field models benefit from a nonlinear preprocessing stage that replicates known adaptation properties of the auditory
midbrain. This improves their predictive power across a wide range of stimuli but keeps model complexity low as it introduces no
new free parameters. Incorporating the adaptive coding properties of neurons will likely improve receptive field models in other
sensory modalities too.
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and Doupe, 2006; Malone et al., 2010; Rabinowitz et al., 2011)
also adapt to the variance of recently presented stimuli. Similar
processes operate in the visual (Mante et al., 2005) and somato-
sensory (Garcia-Lazaro et al., 2007) systems, and it has been pro-
posed that these forms of adaptation allow the nervous system to
efficiently represent stimuli across the wide range of intensities
and contrasts found in the natural world (Fairhall et al., 2001).

Functional models aimed at predicting responses of sensory
neurons generally do not incorporate adaptation to stimulus sta-
tistics. In the auditory system, such models typically involve
variations of the spectrotemporal receptive field (STRF), the
standard computational model of neuronal responses (Aertsen et
al., 1980; Aertsen and Johannesma, 1981; deCharms et al., 1998;
Klein et al., 2000; Theunissen et al., 2000; Escabí and Schreiner,
2002; Miller et al., 2002; Fritz et al., 2003; Linden et al., 2003; Gill
et al., 2006; Christianson et al., 2008; David et al., 2009; Gou-
révitch et al., 2009). Each STRF is a set of coefficients that describe
the best linear approximation to the relationship between the
spiking responses of a neuron and the power in the spectrogram
of the sounds heard by the animal.

In principle, STRFs are powerful computational tools because
they provide both a way to characterize neurons, by quantifying
their sensitivity to different sound frequencies, and to predict
responses to arbitrary new stimuli (deCharms et al., 1998;
Schnupp et al., 2001; Escabí and Schreiner, 2002). In practice,
STRFs are only moderately successful in achieving this (Linden et
al., 2003; Machens et al., 2004). To improve the predictive power
of STRFs, nonlinear extensions have been proposed, including
output nonlinearities (Atencio et al., 2008; Rabinowitz et al.,
2011), feedback kernels (Calabrese et al., 2011), second-order
interactions, and input nonlinearities (Ahrens et al., 2008; David
et al., 2009; David and Shamma, 2013). However, prediction ac-
curacy remains far from perfect. Also, some of these approaches
add complexity to the model and can be difficult to interpret in
biological terms. Here we take an alternative approach that seeks
to improve the prediction accuracy of STRF-like models by in-
corporating a simple, adaptive, nonlinear preprocessing step that
mimics the physiological properties of neurons in the auditory
midbrain.

Adaptation to mean sound level in the IC has been character-
ized by Dean et al. (2008), who measured how the time constants
of adaptation in guinea pigs vary with frequency. This informa-
tion can be used to build a model of adaptation to stimulus sta-
tistics in the IC, which can then be incorporated into an STRF
model of neural responses. We recorded the responses of neurons
in ferret auditory cortex to a range of sounds and constructed
STRF models relating the responses to the sound spectrograms.
We then augmented these models by incorporating a nonlinear
transform of the spectrogram, which captures adaptation to
mean sound level in the IC. Since the IC provides an obligatory
relay for ascending inputs to the auditory cortex, this transform
was incorporated at the input stage of the model, forming a non-
linear–linear–nonlinear (NLN) cascade. This NLN model pro-
vides a substantial improvement over the standard STRF models
in describing and predicting the responses of cortical neurons.

Materials and Methods
Experimental procedures
All animal procedures were approved by the local ethical review commit-
tee and performed under license from the UK Home Office. Ten adult
pigmented ferrets (seven female, three male; all �6 months of age) un-
derwent electrophysiological recordings under ketamine–medetomidine
anesthesia. Full details are as in the study by Bizley et al. (2009). Briefly,

we induced general anesthesia with a single intramuscular dose of me-
detomidine (0.022 mg � kg �1 � h �1) and ketamine (5 mg � kg �1 � h �1),
which was then maintained with a continuous intravenous infusion of
medetomidine and ketamine in saline. Oxygen was supplemented with a
ventilator, and we monitored vital signs (body temperature, end-tidal
CO2, and the electrocardiogram) throughout the experiment. The tem-
poral muscles were retracted, a head holder was secured to the skull
surface, and a craniotomy and a durotomy were made over the auditory
cortex. We made extracellular recordings from neurons in primary au-
ditory cortex (A1) and the anterior auditory field (AAF) using silicon
probe electrodes (Neuronexus Technologies) with 16 or 32 sites (spaced
at 50 or 150 �m) on probes with one, two, or four shanks (spaced at 200
�m). Stimuli were presented via Panasonic RPHV27 earphones, which
were coupled to otoscope specula that were inserted into each ear canal,
and driven by Tucker-Davis Technologies System III hardware (48 kHz
sample rate). We clustered spikes off-line using klustakwik (Kadir et al.,
2014); for subsequent manual sorting, we used either spikemonger (an
in-house package) or klustaviewa (Kadir et al., 2014).

Stimuli
We used several stimulus classes: two types of dynamic random chords
(DRCs), temporally orthogonal ripple combinations (TORCs), modu-
lated noise, and natural sounds.

DRCs (deCharms et al., 1998; Schnupp et al., 2001; Rutkowski et al.,
2002; Linden et al., 2003) consist of sequences of superposed pure tones
whose levels are chosen pseudorandomly. Each chord contained 31 pure
tones whose frequencies were log-spaced between 1 kHz and 32 kHz at
1/6 octave intervals. Each chord lasted 62.5 ms with 5 ms linear ramps
between chords. The levels were chosen from a uniform distribution
between 30 and 70 dB sound pressure level (SPL). We also included
variable-rate DRCs, a novel stimulus designed to have a richer modula-
tion structure, while retaining the other advantages of DRCs. In this case,
each chord lasted 10.4 ms, but the level of each tone was kept constant for
between 1 and 12 chords (lengths were chosen from a uniform distribu-
tion, independently for each frequency), rather than changing on every
chord.

TORCs (Klein et al., 2000) consist of superposed noise stimuli with
spectrograms modulated by superpositions of sinusoids. We used a set of
30 TORCs (each 3 s long) covering frequency space from 1 to 32 kHz,
with temporal modulations from 4 to 48 Hz and frequency modulations
up to 1.4 cycles/octave.

The modulated noise stimulus was generated using the sound texture
synthesis algorithm developed by McDermott and Simoncelli (2011).
The modulated noise had a pink power spectrum between 1 and 32 kHz
and a white modulation spectrum between 13.3 and 160 Hz. This stim-
ulus has a somewhat naturalistic structure, but without the complex
higher-order statistical relationships of real, natural sounds.

In the first series of experiments (BigNat), we presented natural
sounds only. We made recordings from 535 units in six ferrets (five
female, one male). There were 20 sound clips of 5 s duration each, sepa-
rated from each other by �0.25 s silence. We recorded responses to the
clips, presented in random order and repeated this 20 times. The sound
clips included recordings of animal vocalizations (e.g., ferrets and birds),
environmental sounds (e.g., water and wind), and speech. The sequences
had root mean square intensities in the range 75– 82 dB SPL. We pre-
sented the sounds at a sampling rate of 48,828.125 Hz. We discarded data
recorded in the first 250 ms after the onset of each stimulus, leaving an
effective data size of 20 � 95 s (20 repeats of 20 sounds with a duration of
4.75 s each).

In the second series of experiments (Comparison), we presented natural
sounds, DRCs, TORCs, and modulated noise in an interleaved fashion, to
enable comparison between different stimulus types. We recorded responses
to the clips, presented in random order, and repeated this 10 times. Record-
ings were made from 220 units in four ferrets (two female, two male). The
stimulus sampling rate was 97,656.25 Hz. Again, we discarded the first
250 ms after the onset of each stimulus, leaving an effective data size of 5 �
10 � 45 s (five stimulus types with 10 repeats of 45 s each).

In the Comparison dataset, the natural sounds were 1 s snippets of
vocalizations (human, bird, sheep) and environmental sounds. These
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were separated by silent gaps, and the silent periods along with the first
250 ms of neural responses after each silent period were removed.

Neural responses
For each unit, we counted spikes in 5 ms time bins and averaged these
counts over all trials to compute the peristimulus time histogram
(PSTH). We smoothed the PSTH with a 21 ms Hanning window (Hsu et
al., 2004) to estimate each neuron’s evoked firing rate. We denote the
(trial-averaged) neuronal response as yt.

Unit selection criterion
Only units whose firing rate was modulated in response to the stimuli in
a reliable, repeatable manner were included for analysis. We measured
this using the noise ratio (NR; Sahani and Linden, 2003; Rabinowitz et al.,
2011) for the PSTH of each unit:

noise ratio �
noise power

signal power
�

total variance � explainable variance

explainable variance
.

Each unit was included in our analyses if it had a noise ratio of �200
across the entire dataset (i.e., across all natural stimuli for the BigNat set
or across all stimulus classes for the Comparison set). Three hundred of
535 units were included from the BigNat set and 77 of 220 from the
Comparison set.

Log-spectrograms
We characterized the power in each stimulus using a log-spaced, log-
valued spectrogram. We first calculated the spectrogram of each sound
using 10 ms Hanning windows, overlapping by 5 ms (giving 5 ms tem-
poral resolution). We then aggregated across frequency using overlap-
ping triangular windows with log-spaced characteristic frequencies to
compute the signal power in each frequency band, using code modified
from melbank.m by Mike Brookes (Imperial College London, London,
UK; http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html). For
the BigNat stimulus, we used 34 log-spaced frequencies from 500 to
22.627 Hz (1/6 octave spacing). For the Comparison stimuli, we used 31
log-spaced frequencies from 1 to 32 kHz (also 1/6 octave spacing). Fi-
nally, we took the logarithm of the resulting values, and values lower than
a threshold (approximately equivalent to the mean activity caused by a 0
dB SPL flat spectrum noise) were set to that threshold, giving the log-
spectrogram, Xtf, at time t and frequency f.

As input to the models, we reorganized Xtf as a three-tensor Xtfh, where
Xtfh gives the sound intensity (elements of Xtf) for the recent stimulus

history, h � 0 to H-1 time bins in the past, from time t, at frequency f, i.e.,
Xtfh � X(t-h),f. For STRF estimation, we used a history length of 20 bins of
5 ms duration (100 ms total).

Model testing and comparison
To fit and test our models, we used a k-fold testing procedure (k � 10) for
both datasets. Thus, each dataset was split into 10 segments consisting of
a contiguous 10% of the data. One of the 10 segments was set aside as a
test set, and the model was trained on the remaining 90% of the data (the
training set) to fit the STRF and the parameters of the nonlinearity.
Model performance was then measured with the unused test set, i.e., the
model was used to predict the neural response to the test set stimulus. We
repeated this process 10 times, each time using a different segment as a
test set, and averaged the performance measure over the 10 segments.

Linear–nonlinear STRF model
We described the responses of cortical neurons using two models. The
first was a standard linear–nonlinear (LN) model (Chichilnisky, 2001;
Simoncelli et al., 2004; Fig. 1A) relating neural responses, yt, to the log-
spectrogram, Xtf, of the stimuli. To do this, we first found the STRF kfh,
the linear approximation to the mapping between the PSTH, yt, and the
log-spectrogram, Xtf. We estimated kfh by minimizing (subject to regu-
larization; see below) the mean squared error between the PSTH, yt, and
its linear estimate from Xtf. This linear estimate, zt, is given by the follow-
ing:

zt � �
f, h

Xtfhkfh. (1)

Previous studies have used separable kernel estimation (Linden et al.,
2003; Rabinowitz et al., 2011), which sometimes provides better descrip-
tions of auditory neurons than inseparable approaches ( particularly us-
ing DRC stimuli). Here, however, we used inseparable kernels to allow
for the possibility of inseparable kernel structure with the TORCs and
modulated noise stimuli. To estimate inseparable kernels, we used glm-
net for Matlab (J. Qian, T. Hastie, J. Friedman, R. Tibshirani, and N.
Simon, Stanford University, Stanford, CA; see http://web.stanford.edu/
�hastie/glmnet_matlab/), which uses elastic net regularization. This
technique can optimize kfh using a linear combination of L1 (Willmore et
al., 2010) and L2 (Willmore and Smyth, 2003) penalties we have used in
the past, with a parameter, �, that determines the relative strength of each
penalty. We explored three approaches: using an L1 penalty (� � 1),
using an L2 penalty (� � 0), and optimizing � for each unit. Here we

Figure 1. Two models of the stimulus–response relationship for auditory neurons. A, Standard LN model. The log-spectrogram of the sound waveform, Xtf, is operated on by a linear kernel, kfh,
and sigmoid output nonlinearity to produce a model, ŷt, of the neuronal response. B, The IC Adaptation model augments the LN model by adding a nonlinear transform of the spectrogram. The
dashed arrows indicate the alternative processing paths for the Standard LN and IC Adaptation models. The nonlinear transform consists of high-pass filtering each frequency band of the
spectrogram by subtracting the convolution of that frequency band with an exponential filter with time constant � (shown by the vertical line), followed by half-wave rectification. The resulting
modified spectrogram, Xtf

IC, is then used as an alternative input to the standard LN model.
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present the results obtained using L2 regularization, but the results are
similar for the other forms of regularization. The regularization param-
eter, �, determines the strength of regularization. To determine the op-
timal choice of �, we reserved a randomly chosen 10% of each training set
for cross-validation. STRFs were estimated using the remaining 90% of
the training set, using a wide range of choices of �. We then selected the
STRF that provided the best prediction (minimum mean square error)
on the cross-validation set. The use of three separate subsets (where
STRFs are fitted using one set, the regularization parameter is chosen
using a second set, and prediction scores are measured using a third set),
minimizes overfitting in both model fitting and assessment.

We then fitted a sigmoid (logistic) nonlinearity to relate the output of
the linear model, zt, to the neural responses by minimizing the mean
squared error between the PSTH, yt, and the nonlinear estimate of the
PSTH, ŷt:

ŷt � a �
b

1 � exp ���zt � c	/d	
, (2)

where a is the minimum firing rate, b is the output dynamic range, c is the input
inflectionpoint,andd is thereciprocalof thegain(Rabinowitzetal.,2011,2012).
All parameters a, b, c, and d were fitted to the whole training set, using minFunc
by Mark Schmidt (University of British Columbia, British Columbia, Canada;
http://www.cs.ubc.ca/~schmidtm/Software/minFunc.html).

To ensure that this sequential fitting procedure did not adversely affect
our results, we also fitted the STRF and the sigmoid output nonlinearity
using two other fitting methods (for the Comparison dataset only). The
first was an iterative procedure where we estimated the STRF, then esti-
mated the sigmoid, then inverted the sigmoid and refitted the STRF, and
repeated for 10 iterations. The second was a neural network with linear
input units, one logistic hidden unit, and a final linear output unit; this
model was fitted using backpropagation. Both of these models are iden-
tical in mathematical form to the original model and only differ in the
fitting procedure. We found that they provided very similar results (data
not shown) to the sequential fitting procedure.

Nonlinear–linear–nonlinear STRF models
To extend the LN model to incorporate our knowledge about adaptation
to mean sound level in the IC, we introduced a nonlinear transformation
of the log-spectrogram, producing the IC Adaptation model (Fig. 1B). To
test the importance of different aspects of this model, we also used several
variations as controls.

IC Adaptation model. We convolved every frequency band in the log-
spectrogram of the stimulus with an exponential filter, Efh:

Xtf
l � �

h
X(t�h),f Efh, where Efh �

1

Nf
exp� � h/�f	. (3)

Nf was a normalization constant, chosen so that the exponential filter for
each frequency band summed to 1. Here, the number of time bins, H, is
499, giving 2.5 s of history. The time constants, �f, of the filters varied with
sound frequency, following the frequency dependence of the time con-
stant found by Dean et al. (2008). The relationship we used was a linear
regression (Fig. 2) relating �f (in milliseconds) to the logarithm of the
units’ characteristic frequency (in hertz):

�f � 500 � 105log10� f 	, (4)

so that �f depends on the logarithm of frequency, between �f � 500 Hz �
217 ms and �f � 32 kHz � 27 ms.

The time-varying response of each exponential filter, Xtf
l , was then

subtracted from the corresponding frequency band in the log-
spectrogram, Xtf, giving a high-pass-filtered version, Xtf

h � Xtf � Xtf
l ,

which was then half-wave rectified to give Xtf
IC � �Xtf

h� 
. We then used Xtf
IC

in place of Xtf for STRF analysis.
No-half-wave-rectification model. This model is the same as the IC

Adaptation model, but without half-wave rectification; i.e., Xtf
h was used

for STRF analysis.
Median-� model (�med). This model is the same as the IC Adaptation

model, but a fixed time constant [� med � 160 ms; equal to the median of

the time constants measured by Dean et al. (2008)] was used for all
frequency channels instead of the frequency-dependent �f.

Minimum-� model (�min). This model is the same as the IC Adaptation
model, but with � min � 27 ms.

Maximum-� model (�max). This model is the same as the IC Adaptation
model, but with � max � 217 ms.

Performance measures
Prediction performance was primarily assessed using the normalized
correlation coefficient (CCnorm), as introduced for coherence by Hsu et
al. (2004), and used for the correlation coefficient by Touryan et al.
(2005). The prediction accuracy, as quantified by the raw correlation
coefficient, CCraw, is affected both by model performance and by the
variability of neural responses to the stimulus. To correct for the contri-
bution of response variability, and measure only model performance, we
use CCnorm, defined as the ratio of the CCraw to the theoretical maximum
CCmax:

CCnorm �
CCraw

CCmax
. (5)

CCmax is the correlation coefficient between the recorded mean firing
rate across all repeats of the stimulus and the (unknown) true mean firing
rate (measured over infinite repeats) and is an upper limit on model
performance. Following Hsu et al. (2004) and Touryan et al. (2005), we
estimated CCmax using the following:

CCmax � � 2

1 � 1/CChalf
, (6)

where CChalf is the correlation coefficient of the mean PSTH for one-half
of the trials with the mean PSTH for the other half of the trials. We took
the mean CChalf over all 126 possible combinations for the Comparison
dataset (10 trials) and over 126 randomly chosen sets of half of the trials
for the BigNat dataset (20 trials).

Natural sound analysis
In addition to modeling the neural responses, we performed an analysis
of a database of natural sound recordings with the aim of asking how the
distribution of IC adaptation time constants reported in the literature
across frequencies (Dean et al., 2008) might relate to the properties of the
natural acoustic environment. Most sounds in the database were re-
corded by us under various conditions (ranging from open air to an
anechoic chamber). An additional seven sound recordings were taken
from the freesound.org database. We arranged the sounds into seven

Figure 2. Time constants of adaptation to stimulus mean observed by Dean et al. (2008) in
the guinea pig IC. The x-axis shows the characteristic frequency of each IC unit, and the y-axis
shows the time constant of an exponential fit to the adaptation curve for the corresponding
unit. The line is our regression fit to these data (Eq. 4).
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broad categories: breaking wood sounds, crackling fire, rustling foliage,
vocalizations (human, frog, bird, sheep), walking footsteps on numerous
surfaces, ocean and river water (“water”), and rain and thunderstorms
(“weather”). We calculated the log-spectrogram, Xtf, of each sound (as
for the STRF analysis) and estimated the time-varying mean level in each
frequency band, �tf, by convolution with a boxcar filter of length, Tav (for
eight log-spaced values of Tav between 15 and 1000 ms), arranged so that
�tf at time t contained the mean sound level between t and t 
 Tav. Thus,
�tf is an estimate of the mean sound level in a given frequency band in the
immediate future.

We concatenated all sounds in a given category (including, at most,
10 s from any single sound). We then estimated a set of linear filters, Efh

nat

(one per frequency band, sound category, and value of Tav), which oper-
ated over 2.5 s of sound history and were optimized to produce an esti-
mate, �̂tf, of the time-varying mean level, �tf:

�̂tf � �
h

X(t � h),fEfh
nat. (7)

The kernels, Efh
nat, were constrained to be exponential in shape as follows:

Efh
nat � Af exp� � h/�f

nat	. (8)

Estimating the kernels therefore consisted of fitting two parameters: Af

(amplitude) and �f
nat (time constant). We optimized these parameters to

minimize the mean squared error between �̂tf and �tf using fminsearch
in Matlab. Both parameters were allowed to vary freely for different
frequencies.

Results
Using the methods described above, we presented a range of
natural and synthetic sounds to anesthetized ferrets and recorded
responses of neurons in the primary cortical areas A1 and AAF.
We modeled these responses using a classical LN model of spec-
trotemporal tuning as well as using a novel model that included a
nonlinear input stage that incorporates adaptation of IC neurons
to stimulus statistics (the IC Adaptation model). We compared
the predictive power of the two models by measuring the accu-
racy of their prediction of neural responses to a reserved test set of
sounds.

The IC Adaptation model predicts responses to natural
sounds more accurately than conventional LN models
We first evaluated the performance of the IC Adaptation model
on the responses of each unit to a set of natural sounds (BigNat
dataset). Natural sounds provide the ultimate test of models of
neural responses because of their ecological relevance. A good
model should be able to predict responses to natural sounds, but
this is often challenging because of the variety and statistical com-
plexity of sounds that are encountered in daily life.

We first compared the performance of the IC Adaptation
model and standard LN model using a correlation coefficient
(CCraw). To accurately assess performance, we measured predic-
tions using a 10-fold testing procedure: for each stimulus type, we
selected 10 nonoverlapping subsets of the data to be our test
dataset. For each test set, we fitted an LN model using the rest of
the data and used the LN model to predict responses to the test
set. We measured the mean CCraw (over all 10 test sets) between
the LN model predictions and the actual neural responses. Using
this measure suggests that there is an advantage for the IC Adap-
tation model over the LN model (Fig. 3A).

However, CCraw is affected by neuronal response variability as
well as by model performance, as can be seen from the relation-
ship between the colors of the points in Figure 3A and the model
performance. The red points show data from units with a high
noise ratio; these have highly variable responses and conse-
quently have low values of CCraw. The blue points show data from

units with a low noise ratio; these have relatively reliable re-
sponses and so have high values of CCraw. To reduce this con-
found between model performance and neuronal response
variability, we used the normalized correlation coefficient

Figure 3. Comparison of the ability of the standard LN model and the IC Adaptation model to
predict neural responses to natural sounds. A, B, Scatterplots showing the correlation coeffi-
cients between model predictions and actual neural responses (BigNat dataset). The x-axis
shows performance of the standard LN model, the y-axis shows performance of the IC Adapta-
tion model, and colors indicate the NR of each unit. A, Raw correlation coefficient CCraw. B,
Normalized correlation coefficient CCnorm. C, Scatterplot showing how the difference in CCnorm

between the two models varies with NR. The solid line is a linear regression, and the shaded area
shows the 95% confidence intervals on the regression.
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(CCnorm; see Materials and Methods) as our primary measure of
model performance. CCnorm is the ratio of CCraw to the estimated
maximum possible correlation coefficient given the level of re-
sponse variability in the data, CCmax. Since CCmax is a constant
for each unit, using CCmax does not affect the relative perfor-
mance of two models for that unit (i.e., for models 1 and 2,
CCnorm

(1) /CCnorm
(2) � CCraw

(1) /CCraw
(2) ). However, it gives a more accu-

rate picture of the performance of the models across the whole
dataset.

For both the CCnorm and the CCraw measures, the IC Adapta-
tion model provided better predictions than the LN model in
77% of neurons (Fig. 3A,B). The mean CCnorm for the IC Adap-
tation model was 0.64 compared with 0.59 for the LN model. This
improvement in performance is highly significant (p �� 0.0001,
paired t test; df � 299).

It is conceivable that the advantage of the IC Adaptation
model could, at least in part, be an artifact of data quality. For
example, half-wave rectification of the stimulus spectrogram re-
moves parts of the sound whose level is lower than the mean. This
reduces the effective dimensionality of the stimulus set and may
also reduce the effective number of STRF parameters that must be
estimated. Because simple models require less data to constrain
them than complex models, it is possible that this might give the
IC Adaptation model an artificial advantage over the LN model
for noisy neurons.

To rule out this possibility, we investigated the relationship
between CCnorm and the NR. The NR quantifies the relative con-
tributions of unpredictable and stimulus-driven variability in the
neuronal responses (see Materials and Methods); a low NR indi-
cates that a neuron was reliably driven by the stimulus. A scatter-
plot of the difference in CCnorm for the two models (Fig. 3C)
shows that the advantage of the IC Adaptation model is only
weakly dependent on the NR, indicating that the IC Adaptation
model is generally superior to the LN model, regardless of the NR.

The IC Adaptation model also outperforms conventional LN
models when tested with commonly used synthetic stimuli
An important aspect of any model is its generality. If the IC Ad-
aptation model is a better model of cortical neurons than the
standard LN model, it should provide better predictions of cor-
tical responses to a wide range of stimuli. In one sense, testing the
model on natural sounds is a good test of generality, because an
appropriate collection of natural sounds will sample the space of
ecologically relevant stimuli. However, it is also important to test
the model using synthetic stimuli that have been widely used in
neurophysiology experiments because they have been designed
to exhibit well defined statistics that may provide particularly
stringent tests of the model.

We therefore tested the IC Adaptation model on a second
dataset (Comparison) in which several stimulus classes were pre-
sented to each unit, randomly interleaved. The classes were
DRCs, TORCs, modulated noise, and natural sounds (see Mate-
rials and Methods for details). We fitted the IC Adaptation model
and the LN model to each stimulus class in turn and measured
predictions using CCnorm for reserved test data from the same
class (see Materials and Methods). For every stimulus class, we
found that the IC Adaptation model performs better than the LN
model (Fig. 4A). This difference is significant at p � 0.0001 or
better (paired t test) for every stimulus class except TORCs (for
which p � 0.07). Across all stimulus classes, the mean CCnorm for
the IC Adaptation model was 0.53 compared with 0.47 for the LN
model.

How well do models fare when fitted with one class of sound
stimuli and tested with another?
Another important test of generality is that a model should be
able to generate accurate predictions across stimulus classes. For
example, if the model is trained on DRCs, it should be able to
generate accurate predictions of responses to natural sounds.
This has been a problem for STRF models of sensory neurons,

Figure 4. A, Comparison of the LN and IC Adaptation models for several stimulus classes,
when models are trained and tested on the same stimulus class (dots show the mean of the
within-class predictions for all units). B, Percentage improvement in mean model performance

between the LN and IC Adaptation models, �CC�norm
� , when models are trained (rows) on one

stimulus class and tested (columns) on another (cross-class predictions; Comparison dataset
only). C, Difference between prediction performance of control models with fixed time con-
stants (� med, � min, and � max) and without half-wave rectification, compared with the LN
model for each stimulus class (colors as in Fig. 4A).
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which often perform much worse for cross-class prediction than
for within-class prediction (Olshausen and Field, 2005).

To test cross-class predictions, we fitted the IC Adaptation
model and the LN model to each stimulus type in the Compari-
son dataset in turn and measured predictions using CCnorm for
reserved test sets of data from other sound classes. We tested all
combinations of within- and cross-class predictions by training
and testing on every combination of stimulus classes and plotted
the percentage difference in mean performance between the

IC Adaptation model and the LN model, �CC�norm
� � 100 	

�CC�norm
IC � CC�norm

LN 	/CC�norm
LN (Fig. 4B). In 20 of 25 cases, the IC

Adaptation model performed better than the LN model. The five
cases where the LN model performed better than the IC Adapta-
tion model all involve TORC stimuli. It appears that TORCs are
an unusual case where the IC Adaptation model performs partic-
ularly poorly. This may be explained by the fact that the TORCs
are regularly interleaved with periods of silence. Our log-
spectrograms thresholded all stimuli (see Materials and Meth-
ods) to prevent model predictions from being disproportionately
affected by large negative sound levels. Normally, this has little
effect on the IC Adaptation model, but during periods of silence,
the IC Adaptation will adapt to the threshold value. As a result,
the precise value of this threshold will significantly affect model
predictions.

When trained on synthetic stimuli and tested on natural
sounds (NS, right-hand column), the IC Adaptation model al-
ways outperformed the LN model, suggesting that the IC Adap-
tation model provides superior generalization from synthetic to
natural stimuli.

It is also notable that the percentage improvements are slightly
higher (though not significantly so) for cross-class predictions
(off-diagonal elements; median � 22%) than for within-class
predictions (main diagonal; mean � 13%; difference not signif-
icant according to a rank-sum test). This indicates that the IC
Adaptation model has no negative effect on the generality of
STRF models; in fact, it may improve cross-class generalization
relative to the LN model.

Both frequency-dependent time constants and half-wave
rectification contribute to the success of the IC adaptation
model
The IC Adaptation model adds two main components to the
standard LN model: high-pass modulation filtering by subtrac-
tion using exponential filters with time constants derived from
Dean et al. (2008) and half-wave rectification of the resulting
filtered log-spectrogram. To test whether both of these compo-
nents are essential to the model, or whether either component on
its own is sufficient, we investigated the effects of manipulating
the IC Adaptation model in two ways.

In one set of manipulations, we produced control models
where the frequency dependence of the time constants, �f, was
removed. We replaced the frequency-dependent time constants
with three fixed time constants: � med � 160 ms, � min � 27 ms,
and � max � 217 ms (corresponding to the median, minimum,
and maximum of the time constants observed by Dean et al.
(2008) across the range of frequencies in our log-spectrogram).
In the second set, we kept the frequency-dependent time con-
stants but removed the half-wave rectification from the IC Adap-
tation model. We compared the performance of these control
models with the LN and IC Adaptation models for within-class
predictions on all stimulus types (Fig. 4C). All of the control
models perform better than the LN model when performance is

averaged across stimulus type, and the IC Adaptation model out-
performs all of the controls (Fig. 4C, left-hand column).

For each individual stimulus class (Fig. 4C, other columns),
the IC Adaptation model performs better than or equivalently to
the controls in almost all cases. The only exception is the model
without half-wave rectification (no-HWR), which performs bet-
ter than the IC Adaptation model for a single stimulus class,
TORCs. However, the no-HWR model performs significantly
worse for DRCs, modulated noise, and natural sounds (Compar-
ison dataset). Overall, these results suggest that both frequency
dependence of the time constants and half-wave rectification are
important components of the IC Adaptation model.

Why are the adaptation time constants in IC distributed as
they are?
To investigate why the time constants of adaptation in the IC
exhibit the characteristic frequency-dependent distribution that
has been described previously, we asked whether sound levels in
natural sounds exhibit a similar frequency-dependent distribu-
tion, which would imply that the IC time constants are optimized
to match the statistical structure of natural sounds.

Specifically, we assumed that mean sound level is a nuisance
variable and that the role of adaptation to mean sound level in the
IC is to subtract this nuisance variable from the neural represen-
tation of sound. To perform this subtraction, the IC must esti-
mate the mean level in each frequency band. If the mean level is
stable over time, an adaptation process with a short time constant
should be able to reliably estimate the mean. If the mean level is
unstable, a longer time constant will be required to produce a
reliable estimate. We therefore measured the stability of the mean
level using the autocorrelation of the spectrogram of natural
sounds. A narrow autocorrelation function indicates that sound
level is poorly correlated over time (unstable), whereas a wide
autocorrelation function indicates that sound level is well corre-
lated over time (stable). Given the results of Dean et al. (2008), we
might expect that low frequencies will have narrower autocorre-
lation functions than high frequencies.

For a large set of natural sounds, we took the spectrogram of
each sound and measured the autocorrelation of the spectrogram
for each frequency band (see Materials and Methods). The mean
(across all sounds) of the resulting autocorrelation functions is
shown in Figure 5A. The width of the autocorrelation function
(Fig. 5, black lines) varies with frequency, as predicted from the
data of Dean et al. (2008). The widths range from 10 ms at the
lowest frequencies (500 Hz) to 260 ms at the highest frequencies
(32 kHz).

We also investigated what time constants are required to op-
timally estimate the mean sound level in different frequency
bands. We took a large set of natural sounds and divided them
into seven broad categories (see Materials and Methods). For
each category, we estimated a set of linear kernels (one for each
frequency channel) that optimally predict the mean level of the
next Tav ms of sound, based on the past 2.5 s of sound. Each kernel
was constrained to have an exponential shape. The time constants
of the exponential kernels were optimized separately for each
frequency channel, and for 8 log-spaced values of Tav, (between
15 ms and 1000 ms).

The time constants for the lowest and the highest frequency
bands (centered at 70 Hz and 20 kHz, respectively) are plotted as
a function of Tav in Figure 5B. In all cases, the mean time con-
stants for low frequencies (Fig. 5B, red line; error bars show SE)
are consistently higher than those for high frequencies (Fig. 5B,
blue line). This confirms that longer time constants are required
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to reliably estimate the mean for low frequencies. We find that as
the length of the averaging window, Tav, increases, the optimal
time constants increase. This effect begins to saturate above 250
ms. We also find that there is substantial variation between sound
categories (the range from the minimum to maximum value is
shown by the red and blue shaded regions). However, for every
sound category, the optimal time constants are typically larger for
low-frequency sounds than for high-frequency sounds, suggest-
ing that this is a consistent property of natural sounds.

To compare the time constants measured by Dean et al. (2008)
with the time constant range that is optimal for natural sounds,
we took the results of the above analysis and measured the whole
range of time constants obtained (across all sound categories and
values of Tav from 250 ms upward) for each frequency band. The
results, plotted in Figure 5C (solid line indicates center; shaded
region indicates range), are in good agreement with the time
constants for IC neurons from Dean et al. (2008) (dots and re-
gression line). The two datasets show very similar inverse rela-
tionships between time constant and frequency. Most of the IC
data fall within the range of time constants that might be consid-
ered optimal. Nevertheless, there is significant variation, both
within the data of Dean et al. (2008) and among the time con-
stants for different sound categories. This may reflect optimiza-
tion of subpopulations of neurons in IC for different subsets of
natural sounds with different temporal autocorrelations. Overall,
these results support our hypothesis that the time constants of
adaptation to mean level in the IC are indeed optimized to enable
neurons in the auditory midbrain to estimate and then subtract
the mean sound level in each frequency band.

Discussion
Developing predictive, quantitative models of the response prop-
erties of individual neurons is fundamental to our ability to de-
scribe and understand information processing in the brain.
Although STRF-based models have their limitations, they remain
valuable and provide simple models for describing the behavior
of sensory neurons. Many of the more sophisticated models
(Sharpee et al., 2004, 2011; Ahrens et al., 2008; Atencio et al.,
2009; Calabrese et al., 2011; Schinkel-Bielefeld et al., 2012) re-
quire many more parameters and may also be difficult to inter-
pret biologically. Thus, a key challenge is to extend STRF models
so that they more accurately describe neuronal behavior, while
remaining simple and biologically relevant. Here we have shown
that we can significantly improve STRF models of neurons in
the auditory cortex by introducing a simple nonlinear input
transform that reflects adaptation to stimulus statistics in the
midbrain.

Advantages and power of nonlinear input stages
It is widely accepted that it can be useful to add a nonlinear
output stage to the basic STRF model, resulting in an LN model
(Chichilnisky, 2001). A nonlinear output stage has numerous
advantages over the purely linear model. Sigmoid (or similar)
functions can model threshold and saturation effects that are
present in real neurons. However, the output of an LN model is
only a simply transformed version of the output of the linear
model. Introducing a nonlinear input stage is potentially far
more powerful, because it allows the model to perform poten-
tially quite complex nonlinear computations. In principle, un-
limited nonlinear processing of the input can be performed
before the linear summation stage, so that the full NLN model
can perform complex computations. However, in practice it is
difficult to harness this power because models that involve com-
plex input transformations typically involve large numbers of
free parameters, which are difficult to estimate given that neuro-
physiological datasets are always limited and noisy. We therefore
need a way to introduce appropriate nonlinear transformations
of the input without introducing many free parameters.

Here we have circumvented this problem by constraining the
model nonlinear input transformations to replicate known oper-
ations of early stages of the sensory pathway. To the extent that
the sensory systems are hierarchically organized, we can charac-

Figure 5. A, Autocorrelation of the spectrogram of an ensemble of natural sounds. The black
lines indicate the point where the autocorrelation has decreased to 1/e. B, Optimal time con-
stants for predicting the mean sound level of natural sounds in a window of length Tav ms into
the future. This is plotted as a function of the window size, for frequency bands centered on a
low value (70 Hz; red line) and a high value (20 kHz; blue line). Lines indicate mean, error bars
show SEM, and shaded regions indicate entire range. C, Optimal time constants for prediction of
the mean level of natural stimuli in each frequency band. The shaded region indicates the range
of time constants in that frequency band; the solid line indicates the middle of the range. The
dots indicate time constants observed in guinea pig IC by Dean et al. (2008), and the dashed line
is the linear regression of those time constants against log(frequency).
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terize the input by recording the response properties of neurons
at earlier stages of processing. In the present case, we have used a
model of the characteristics of neurons in the IC as the input to a
model of the behavior of cortical neurons. Because the parame-
ters of this input transformation can be determined by recording
neuronal responses in the IC, it is possible to incorporate a well
characterized transformation without introducing any free pa-
rameters whatsoever, which is what we have done here.

Relationship with other models
The IC Adaptation model includes a nonlinear input transforma-
tion with three components: adaptation to the stimulus mean,
half-wave rectification, and frequency-dependent time constants
of adaptation. Other models in the auditory literature have intro-
duced nonlinear input stages to STRF models but have not exam-
ined this particular combination. For example, the synaptic
depression model by David and colleagues (David et al., 2009;
David and Shamma, 2013) contains similar adaptation to the
stimulus level, but without half-wave rectification or frequency-
dependent time constants. It is therefore similar to one of the
controls used here. We find that both the half-wave rectification
and the frequency-dependent time constants introduced by the
IC Adaptation model significantly improve the power of the
model to predict neural responses to most new stimuli.

The context model described by Ahrens et al. (2008) has a
considerably greater model complexity than our IC Adaptation
model and is therefore, in principle, capable of far more powerful
nonlinear transformations, including nonmonotonicity. How-
ever, it also introduces many additional free parameters, which
are difficult to fit reliably to neural data. This limits the improve-
ments in predictive power that can be achieved in practice. The IC
Adaptation model, in contrast, has no more free parameters than
the LN model and therefore provides some of the benefits of the
context model without introducing extra model complexity.

Time constants of adaptation
This study builds on the results of Dean et al. (2008), who found
that neurons in the guinea pig IC adapt to the mean level of recent
sound stimulation and that this adaptation has frequency-
dependent time constants. We found that the specific time con-
stants measured in that study were valuable in improving our
models of ferret cortical neurons.

We show (Fig. 5C) that the time constants are optimized
for a specific representation of the sound waveform. We as-
sumed that the time-varying mean sound level in each fre-
quency band, �tf, is a nuisance variable, which does not need
to be included in the neuronal representation of sound. If this
is the case, then a plausible role for adaptation to mean sound
level in the IC is to subtract an estimate, �̂tf, of the time-
varying mean (in a time window, Tav) from the sound level,
Xtf, so that the responses of IC neurons are functions of Xtf �
�̂tf rather than �tf itself. We also assumed that the adaptation
process estimates future values of �̂tf by exponential averaging
over recent values of Xtf. Finally, we assumed that the time
constants of this adaptation process are optimized so that, for
each frequency band, �̂tf is as close as possible to the true
mean, �tf. Using only these assumptions, we were able to de-
rive optimal time constants for each frequency band in the
spectrogram and found that these time constants are a good
match for the real time constants measured in IC. This sup-
ports our hypothesis that adaptation in IC is optimized to
subtract the time-varying mean in each frequency band of
natural sounds.

It may initially seem surprising that time constants measured
for neurons in the guinea pig IC should be relevant for a different
species. However, since our natural sound analysis makes no as-
sumptions that are specific to guinea pigs, the time constants
should be similar for a range of species. While our assumption
that mean sound level is a nuisance variable is a good general
principle, we expect that there is some behaviorally valuable in-
formation in the absolute sound level that will also need to be
transmitted. It is notable that in the auditory system adaptation is
not complete, and even neurons which adapt optimally will not
perfectly estimate and subtract �tf. As a result, some residual
information about mean level will still be transmitted to the au-
ditory cortex.

Future directions
The IC Adaptation model is a simple, easily implemented exten-
sion of classical STRF models of auditory neurons. It improves
predictions of the behavior of neurons in the auditory cortex by
incorporating a model of adaptation to stimulus statistics at an
earlier stage of processing. Because it introduces no free param-
eters, it neither increases the complexity of the model nor the
amount of data required to fit it.

In the present study, we have modeled adaptation to mean
sound level in the IC and applied this to the responses of neurons
in A1/AAF. It is likely that this work can be generalized to other
structures in the auditory system. For example, further adapta-
tion to stimulus mean is present in the responses of cortical neu-
rons (Rabinowitz et al., 2013) and may have a thalamic or cortical
origin. Future studies could experimentally characterize adapta-
tion properties in these structures and use this to improve models
of neurons in primary and higher auditory cortices.

In the visual system, adaptation to stimulus mean luminance
is also present (Dawis et al., 1984; Rodieck, 1998; Mante et al.,
2005) but is not yet routinely incorporated into receptive-field
models of visual neurons (for review, see Sharpee, 2013).
Nishimoto and Gallant (2011) found that incorporating lumi-
nance (and contrast) normalization did not significantly improve
models of processing in MT; however, their model of normaliza-
tion was a general one that did not closely match the characteris-
tics of any particular adaptation process, and their stimuli
contained a relatively narrow range of luminances. An approach
similar to the one used here, using measured time constants of
adaptation, may be better able to improve predictions of neural
responses to motion and other visual stimuli.

Finally, neurons at multiple levels of the visual (Fairhall et al.,
2001; Carandini and Heeger, 2012), somatosensory (Garcia-
Lazaro et al., 2007), and auditory (Rabinowitz et al., 2011) sys-
tems show adaptation to higher-order statistics such as stimulus
variance. Using an approach very similar to the one presented
here, it should be possible to incorporate adaptation to higher-
order stimulus statistics into neural models at multiple levels of
different sensory pathways.
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