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De Novo Emergence of Odor Category Representations in the
Human Brain
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Categorization allows organisms to efficiently extract relevant information from a diverse environment. Because of the multidimensional
nature of odor space, this ability is particularly important for the olfactory system. However, categorization relies on experience, and the
processes by which the human brain forms categorical representations about new odor percepts are currently unclear. Here we used
olfactory psychophysics and multivariate fMRI techniques, in the context of a paired-associates learning task, to examine the emergence
of novel odor category representations in the human brain. We found that learning between novel odors and visual category information
induces a perceptual reorganization of those odors, in parallel with the emergence of odor category-specific ensemble patterns in
perirhinal, orbitofrontal, piriform, and insular cortices. Critically, the learning-induced pattern effects in orbitofrontal and perirhinal
cortex predicted the magnitude of categorical learning and perceptual plasticity. The formation of de novo category-specific representa-
tions in olfactory and limbic brain regions suggests that such ensemble patterns subserve the development of perceptual classes of

information, and imply that these patterns are instrumental to the brain’s capacity for odor categorization.
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ignificance Statement

semantic knowledge base of the olfactory world.

How the human brain assigns novel odors to perceptual classes and categories is poorly understood. We combined an olfactory-
visual paired-associates task with multivariate pattern-based fMRI approaches to investigate the de novo formation of odor
category representations within the human brain. The identification of emergent odor category codes within the perirhinal,
piriform, orbitofrontal, and insular cortices suggests that these regions can integrate multimodal sensory input to shape category-
specific olfactory representations for novel odors, and may ultimately play an important role in assembling each individual’s
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Introduction

A critical function of the brain is to create perceptual representa-
tions of external stimuli. Given that humans and other animals
are immersed in a highly complex environment, the brain must
develop mechanisms for object recognition and identification.
Categorization serves as one such strategy by which the brain
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can organize sensory representations into common perceptual
classes that share similar meaning (Seger and Miller, 2010).

Most of our knowledge about the neural basis of object cate-
gorization is derived from visual studies. Single-cell recordings in
monkeys (Sheinberg and Logothetis, 1997; Sigala et al., 2002) and
functional imaging in humans (Gauthier and Tarr, 1997; Ishai et
al., 1999; Haxby et al., 2001; Grill-Spector and Weiner, 2014)
have highlighted the role of the inferior temporal and fusiform
cortices as key regions of visual object processing. Additional
studies point to the medial temporal lobe and neighboring re-
gions (Kreiman et al., 2000; Kourtzi and Kanwisher, 2001; Bussey
and Saksida, 2005; Litman et al., 2009; Huffman and Stark, 2014)
for the synthesis of higher-order visual information, object rec-
ognition, and the binding of stimulus features.

In contrast, we know relatively little about how the brain en-
codes olfactory object categories. Rodent studies suggest that
odor-evoked activity takes the form of sparse, distributed pattern
representations in piriform cortex (Illig and Haberly, 2003; Ren-
naker et al., 2007; Stettler and Axel, 2009), and in humans, these
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piriform patterns encode perceptual information about odor
identity (Zelano et al., 2011) and category (Howard et al., 2009).
In turn, categorical information about smell can be modulated
through learning and experience (Li et al., 2006; Wu et al., 2012).
To date, most studies of odor category coding have relied on
using familiar and well-established odors, for which category
membership is built up over a lifetime. How these representa-
tions are acquired, and how the brain assigns novel stimuli to
categorical classes, has not yet been explored.

Here we combined a novel cross-modal learning paradigm
with fMRI and multivariate pattern-based approaches to charac-
terize the emergence of new odor category representations. Given
that odors map loosely onto semantic representations (Lawless
and Engen, 1977; Herz, 2005; Olofsson et al., 2014), olfactory
perceptual processing typically relies on additional contextual
cues (e.g., visual, gustatory, or other) to shape our understanding
of odor space (Small et al., 2004; Jadauji et al., 2012; Bensafi et al.,
2014). Therefore, to guide odor category learning, we devised an
olfactory-visual paired-associates learning task in which novel
but category-specific pictures of fruits and flowers were system-
atically paired with novel odors of ambiguous fruity-floral char-
acter (see Fig. 1). Subjects underwent fMRI scanning before and
after the paired-associates task, enabling us to assess the de novo
emergence of odor-evoked category-specific templates.

Our main prediction was that, through direct cross-modal
association, we could guide the perceptual organization of novel
odors into discrete perceptual categories. We also expected that
these olfactory perceptual changes would be accompanied by
category-specific pattern changes in piriform cortex, as well as in
multimodal olfactory-associative regions, including orbitofron-
tal cortex, insula, and/or medial temporal lobe areas. In par-
ticular, the entorhinal cortex receives dense monosynaptic
projections from the olfactory bulb (Haberly and Price, 1977;
Carmichael et al., 1994; Shipley and Ennis, 1996) and shares re-
ciprocal connections with the perirhinal cortex (Burwell and
Amaral, 1998; Pitkanen et al., 2000). In turn, the perirhinal cortex
receives input from visual associative regions (Suzuki and Ama-
ral, 1994; Ranganath and Ritchey, 2012) and is implicated in
visual object representation (Buckley and Gaffan, 1998; Murray
and Richmond, 2001; Clarke and Tyler, 2014), as well as associa-
tive and cross-modal learning (Pihlajamiki et al., 2003; Taylor et
al., 2006; Haskins et al., 2008). Based on these observations, we
hypothesized that entorhinal or perirhinal cortex, along with ol-
factory associative areas, would support the synthesis of newly
formed odor categorical representations.

Materials and Methods

Participants. Eighteen right-handed, nonsmoking participants (11
women; mean age, 25.3 years) without respiratory dysfunction or history
of neurological disorders participated in the main fMRI experiment.
Because of excessive head movement or technical difficulties during
scanning, three fMRI subjects (all female) were excluded from analysis,
leaving a total of 15 subjects. An independent group of 11 subjects (4
women; mean age, 27.2 years) also participated in a visual categorization
task, and a second group of 11 subjects (8 women; mean age, 26 years)
participated in a behavioral odor-picture matching task. All subjects gave
informed consent to participate in the experiment according to protocols
approved by the Northwestern University Institutional Review Board.
Stimuli. All visual stimuli were color images of fruits and flowers. Fruit
pictures included orange, strawberry, banana, mangosteen, dragonfruit,
and cherimoya. Flower pictures included rose, jasmine, lavender, silver
vase plant, Asiatic lily, and bearded iris. Odorants were prepared for
testing either in pure form, mixed with other odorants, or diluted with
mineral oil. Synthetic and natural odorants were purchased from the
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following: Sigma-Aldrich (SA), Lhasa Karnak Herb (LK), Old Hickory
(OH), or Aroma Workshop (AW). The six familiar odor stimuli were
strawberry (93% AW Strawberry fragrance, 7% SA citronellyl acetate),
orange (99% AW Sweet Orange Oil, 1% LK Bitter Orange Oil), banana
(96% mineral oil, 2% OH Banana Extract, 2% SA amyl acetate), lavender
(91% mineral oil, 9% AW Lavender Oil), rose (100% Rose Oil), and
jasmine (100% Jasmine Oil). Novel odors, which were mixtures made
with fruity and floral components, were novel-1 (67% mineral oil, 20%
LK Grapefruit Oil, 13% LK Violet Oil), novel-2 (99% mineral oil, 1% AW
Plum Blossom Fragrance), novel-3 (94% mineral oil, 3% AW Acai Fra-
grance, 3% AW Pikaki Fragrance), and novel-4 (96% mineral oil, 2% AW
Honeysuckle Fragrance, 2% SA methyl-3-nonenoate). During both the
behavioral ratings and scanning, odorants were delivered using a
custom-built, MRI-compatible olfactometer. Odorless air was delivered
at 3.2 L/min through Teflon-coated tubes inserted into the headspace of
amber bottles containing small volumes of liquid odorants, bringing
odorized air to the subject’s nose.

Respiratory monitoring. Subjects were affixed with respiratory breath-
ing belts to monitor breathing (Gottfried et al., 2002). Sniff waveforms
were extracted for each trial, sorted by condition, and normalized within
prescanning and postscanning sessions. Sniff volume as well as sniff du-
ration (time to peak) were calculated for each trial, averaged, and entered
into group analysis. Because we found differences in sniff volume be-
tween conditions (main effect of familiarity: F, ,,, = 13.074, p = 0.003;
time X category interaction: F(, ), = 9.726, p = 0.008), the trial-by-trial
sniff parameters were convolved with a canonical HRF and entered as
nuisance regressors into a GLM for fMRI data analysis.

Prescanning behavioral ratings. Day 1 of the experiment was used to
select picture and odor stimuli for use in the main experiment, as well as
to obtain baseline perceptual ratings of these stimuli. Each subject pro-
vided familiarity ratings for a set of 12 pictures, as well as familiarity,
intensity, and pleasantness ratings for a set of 10 odors (stimuli listed
above). Subjects also rated the congruency of odor-picture pairs during
which a picture and its corresponding odor were presented simultane-
ously. All ratings were made on a visual analog scale. They also provided
fruity/floral ratings for all odors on a visual analog scale ranging between
“Fruity” and “Floral.” Finally, subjects made pairwise similarity ratings
(2 trials/pair) for all experimental odors. To confirm robust picture cat-
egory classification, an independent group of subjects (n = 11) was asked
to make category ratings for all pictures. Matching accuracy for the novel
odors was also collected from a second group of independent subjects
(n = 11) to confirm that no odor-picture biases existed.

Experimental stimulus selection. Experimental stimuli were individu-
ally selected for each subject based on the prescanning behavioral ratings
to optimize perceptual differences between novel and familiar items (see
Fig. 1A). Eight pictures and eight odors were selected for each subject
from the pool of 12 pictures and 10 odors (see Fig. 1B). Different ap-
proaches were used to select familiar and novel stimuli. Familiar stimuli
were selected using each subject’s odor-picture congruency ratings,
whereby the two fruit and two flower odor-picture pairs (from a total of
4 possible pairs per category) rated as most congruent were assigned as
the familiar pairs. This ensured that the final set of 4 familiar odor-
picture pairs (2 fruity, 2 floral) was maximally familiar and congruent to
each subject. Novel stimuli were selected in a two-step procedure. First,
the two most unfamiliar fruit pictures and the two most unfamiliar
flower pictures (from a total of 6 unfamiliar pictures) were selected using
each subject’s familiarity ratings. (Of note, while these specific fruit and
flower exemplars were highly unfamiliar, they were explicitly identified
as fruits and flowers; see Results). Second, these 4 unfamiliar pictures
were paired with the 4 novel odors, thus constituting the final set of 4
novel odor-picture pairs (2 fruity, 2 floral) for the duration of the exper-
iment. The assignment of the novel odors to the unfamiliar pictures was
counterbalanced across subjects.

fMRI scanning experiment. On the scanning day (day 2), subjects un-
derwent a prelearning (baseline) scan session consisting of three 8 min
fMRI odor runs. On each trial, subjects were cued to sniff at odor delivery
and then prompted to make either a pleasantness or familiarity rating of
the odor. The rating types (pleasantness or familiarity) were randomly
paired with the stimuli such that subjects could not predict the type of
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rating they would be asked to make. Each run contained 32 trials, during
which each odor was presented four times in pseudorandom order, once
within each block of eight trials. These runs were interspersed with visual
runs (identical to odor runs, except that the 8 pictures were presented
instead of the odors), which were used to perform visual category decod-
ing for comparison to the olfactory decoding data. After the prelearning
scanning session, subjects exited the scanner and underwent a comput-
erized odor-picture paired-associates learning task (see below). After the
association task, subjects returned to the scanner and underwent a
postlearning scanning session, which was identical to the prelearning
scanning session.

Olfactory-visual paired-associates learning task. The paired-associates
task took place outside of the scanner, just after the prelearning scanning
session, and consisted of two identical 30 min sessions during which each
of the eight odor-picture pairs was presented four times in each of three
32-trial blocks (12 repetitions per pair, 96 trials total). On each trial, the
start of which was cued with a “3-2-1” countdown, a picture and odor
were simultaneously presented for 10 s. To ensure attention to the stim-
uli, the task doubled as an odor detection test such that, at the end of
every trial, subjects had to indicate whether the odor was present or not
(in each 32-trial block, one trial of each pair did not contain any odor).
Subjects were informed that the odor-picture pairing would remain the
same throughout the experiment.

Postscanning behavioral ratings. Immediately following the postlearn-
ing scanning session, subjects were brought out of the scanner and ad-
ministered an odor-picture matching test. On each trial, one odor was
delivered and subjects had to select the matching picture from the group
of possible choices. Each odor was delivered twice, once in each half of the
test (16 trials total). Subsequently, just as before the prelearning scanning
session, subjects also made odor-picture congruency ratings, fruity/floral
odor ratings, and odor similarity ratings for comparison with the pres-
canning data.

fMRI data acquisition. Gradient-echo T2-weighted echo planar images
were acquired with a Siemens Trio 3T scanner using a 32-channel head
coil. Imaging parameters were as follows: TR, 2.26 s; TE, 20 ms; slice
thickness, 2 mm; gap, 1 mm; matrix size, 128 X 120 voxels; field of view,
220 X 206 mm; in-plane resolution, 1.72 X 1.72 mm; acquisition angle,
tilted 30° from the intercommissural plane (rostral > caudal) to reduce
susceptibility artifacts in olfactory regions, 36 slices per volume. A 1 mm*
isotropic T1-weighted MPRAGE structural MRI scan was also acquired.

Category decoding: searchlight-based support vector classification. The
fMRI data were preprocessed with SPM8 software (www.fil.ion.ucl.ac.
uk/spm/). Images were spatially realigned, but not normalized or
smoothed, to preserve the native data. The realigned functional images
were entered into a separate event-related GLM for each run, consisting
of four conditions (familiar flower, familiar fruit, novel flower, novel
fruit; two exemplars per condition) along with sniff volume and sniff
duration as nuisance covariates, modeled with stick functions and con-
volved with a canonical HRF, and movement nuisance regressors. The
runwise 3 parameter estimates (response amplitudes) generated from
this model were used in a support vector machine (SVM) classification
analysis. The SVM was implemented through a searchlight procedure, in
which classification was performed on the information within a 146-
voxel sphere, with accuracy mapped to the center voxel. The sphere was
then moved systematically throughout the brain to generate a whole-
brain continuous map of classification accuracy. Of note, the searchlight
was implemented on spatially realigned, but non-normalized and un-
smoothed functional images. Within each session (prelearning and
postlearning), the linear SVM classifier (LIBSVM; http://www.csie.ntu.
edu.tw/~cjlin/libsvm/) was trained to classify B estimates for familiar
fruit versus familiar flower odors, and tested on 8 estimates for novel
fruit versus novel flower odors. Importantly, the classification was per-
formed independently on fMRI data from the prelearning and postlearn-
ing scanning session. This approach was ideal for several reasons. First, by
training on the familiar items only, we ensured that decoding was guided
by the subject’s existing category structure of fruit versus flower. Second,
by training and testing within each session separately, we could eliminate
any session-specific effects, particularly those that might affect classifier
training. Third, by training and testing on different sets of stimuli, we

Qu et al. » Emergence of Odor Category Representations in the Human Brain

ensured that training and test datasets were treated independently. Fi-
nally, training and testing on different odor stimuli ensured that we
detected category-specific rather than stimulus-specific codes. In other
words, category decoding could only be successful if the novel odors
came to evoke similar category-specific (as opposed to stimulus-
specific) activity patterns that were similar to patterns evoked by the
familiar odors of the same category. Accuracy difference maps
(postlearning — prelearning session) for each subject were then nor-
malized and smoothed (6 mm FWHM) for statistical group analysis
(voxelwise one sample ¢ tests).

Two visual decoding analyses were also implemented. The first analy-
sis was performed to serve as a positive control of visual category infor-
mation within expected regions. In this analysis, the classifier was trained
to decode category (fruit vs flower) for all familiar and unfamiliar pic-
tures across all prelearning and postlearning runs. Cross-validation was
done on a leave-one-run-out basis, such that, on every iteration, the
classifier was trained on five runs and tested on a sixth run (Kriegeskorte
etal.,2006; Kahntetal.,2011). Accuracy scores were then averaged across
the six iterations. The second visual decoding analysis was analogous to
the main olfactory decoding procedure, whereby visual category classifi-
cation was assessed at the regions (voxel centroids) that were identified as
significant in the olfactory classification analysis. This analysis enabled us
to demonstrate whether the olfactory findings were indeed specific to the
olfactory modality. Within each session, the classifier was trained to de-
code familiar fruit versus familiar flower pictures, and then tested on
unfamiliar fruit versus unfamiliar flower pictures. As before, accuracy
difference maps (postlearning — prelearning session) were generated for
each subject.

Statistics. Statistical significance for behavioral measures was estab-
lished using repeated-measures ANOVA, one-sample, and paired t tests,
as appropriate. A single-linkage algorithm in MATLAB was used to
transform the similarity ratings into a hierarchical cluster tree, which was
plotted as a dendrogram. To correct for multiple comparisons in the
neuroimaging results, family-wise error (FWE) correction was per-
formed for the olfactory decoding maps across small-volume anatomical
masks of perirhinal cortex (PrC), posterior piriform cortex (PPC), or-
bitofrontal cortex (OFC), and insula (INS), manually drawn with refer-
ence to a human brain atlas (Mai et al., 2004). Visual decoding maps were
thresholded at FWE whole brain corrected at the cluster level (p < 0.05).
We extracted decoding accuracy values from regions that showed signif-
icant increases in decoding accuracy from prelearning to postlearning
using a separate leave-one-subject-out analysis to maintain independent
voxel selection. For this, the group-level analysis was performed with one
subject left out, and peak coordinates estimated from this analysis were
used to extract accuracy values from the left-out subject. This procedure
was repeated iteratively for all 15 subjects, and the resulting accuracy
values were submitted to independent group-level analysis. For correla-
tion analyses of behavioral and imaging data, similarity ratings were
normalized within-subject before calculation of within- and between-
category differences. Spearman’s rank correlation coefficients were used
for all correlations. Statistical threshold was set at p < 0.05, two-tailed,
unless otherwise noted.

Results

Subjects participated in an olfactory-visual paired-associates
learning task outside of the scanner, which was preceded and
followed by fMRI scanning (identical prelearning and postlearn-
ing scan sessions) (Fig. 1C,D). Each trial of the association task
involved the simultaneous presentation of a picture and an odor,
and subjects were instructed to learn these pairings (total of eight
unique pairs, Fig. 1E; for stimulus selection process, see Fig. 1A).
Perceptual ratings of all visual and olfactory stimuli were ob-
tained before the first and after the second scanning session to
assess behavioral changes.

Stimulus set validation
We first ensured that sufficient visual category information was
present in the pictures to guide changes in olfactory category
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Stimulus selection and experimental design. 4, Top row, Selection of novel pairs. Individual familiarity ratings of six pictures of rare and exotic fruits and flowers were used to select the

unfamiliar pictures for each subject. The two most unfamiliar fruit pictures and two most unfamiliar flower pictures for each subject (circled, by way of example) were randomly paired with the four
novel odor mixtures (pairings were counterhalanced across subjects). These four pairs constituted the experimental novel odor-picture pairs for that subject. Bottom row, Selection of familiar pairs.
Individual odor-picture congruency ratings of six commonly encountered fruits and flowers were used to select the familiar odor-picture pairs. The two most congruent fruit and two most congruent
flower pairs for each subject (sample stimuli circled) constituted the experimental familiar odor-picture pairs for that subject. Fr, fruit; Fl, flower. B, Sample set of experimental stimuli. Eight pictures
and eight odors were used for each subject, with two pairs in each condition type. (, Experimental timeline. Subjects underwent two identical scanning sessions: one before and one after an
odor-picture paired-associates learning task, which took place outside of the scanner. After scanning, subjects made postlearning behavioral ratings on all stimuli. D, fMRI trial sequence. Subjects
were cued to sniff at odor delivery. Subjects provided either familiarity or pleasantness ratings on separate trials. Each of the eight odors was presented 12 times in each of three runs. Visual runs were
identical, except that a picture was presented instead of an odor. £, Odor-picture paired-associates learning task. On each trial, subjects were cued to sniff at the onset of an odor-picture pair,
which was delivered for 10 s so that subjects could make multiple inhalations. Because the task also doubled as an odor detection task, subjects were prompted to indicate whether odor

was present on that trial.

representations. To confirm picture category membership, an
independent group of subjects (n = 11) was asked to rate all
experimental pictures. All picture stimuli were accurately classi-
fied as fruit or flower, regardless of familiarity ( p values <0.001,
one-sample ¢ tests) (Fig. 2A4). To make sure that the formation of
any olfactory categorical representations was truly de novo, we
developed a robust set of novel odors. These odors needed to be
novel and ambiguous yet carry sufficient ecological relevance to
be realistically classified as fruity or floral. To this end, we crea-
ted a set of olfactory stimuli from a combination of synthetic or
natural odorants with fruity and floral elements, ensuring com-
pletely original odors (see Materials and Methods). A separate
behavioral experiment was also performed in which another in-
dependent group of subjects (n = 11) was asked to match the
unfamiliar pictures and the novel odors without any prior learn-
ing. This revealed a random odor-picture assignment (p = 0.47,
one-sample ¢ test vs chance; chance = 12.5%), demonstrating
that none of the novel odors was predisposed to be consistently
classified as fruity or floral.

Confirming our assumptions regarding stimulus familiarity
for both modalities (visual and olfactory), before the paired-
associates learning task, familiar odors and pictures were rated as

more familiar than the novel odors and unfamiliar pictures (odor
stimuli: p values <0.03, paired ¢ tests, one-tailed; picture stimuli:
p values <0.001, paired ¢ tests). Ratings of fruity-ness and floral-
ness were used to assess category membership for the odors (Fig.
2B). All familiar odors were accurately classified as fruit or flower
(all p values <0.01, one-sample ¢ tests). Importantly, before
learning, the novel odors were not consistently rated as belonging
to either category (p values >0.26, one-sample  tests).

De novo olfactory perceptual learning

During the paired-associates task, each odor was repeatedly
paired with its corresponding picture. As such, the four novel
odors were paired with pictures of real but unfamiliar fruits and
flowers, such as dragon fruit and silver vase plant (pairings coun-
terbalanced across subjects). We found initial evidence for cate-
gory learning in subjects’ pairwise similarity ratings. Specifically,
a hierarchical cluster analysis revealed an emergent category
structure for the novel odors, such that from prelearning to
postlearning, the similarity structure reorganized to reflect the
trained categories (Fig. 3A). This structure mirrored the cluster-
ing, which was found for familiar odors in both prelearning and
postlearning sessions.
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To quantify these effects, we examined
changes in odor-picture congruency rat-
ings. A three-way (familiarity X category X
session) repeated-measures ANOVA re-
vealed an increase in perceived congruency
between odor-picture pairs from prelearn-
ing to postlearning (main effect of session:
Fi14) = 19433, p = 0.001), and critically,
novel pairs showed greater increases than
familiar pairs (familiarity X session interac-
tion: F, ;) = 17.01, p = 0.002) (Fig. 3B).
We also observed significant interactions of
familiarity X category (F; 4 = 4.74,p =
0.047) and category X session (F(, 4 =
4.89, p = 0.04), although all stimuli reached
the same level of congruency by the postle-
arning session (no main effect of familiarity,
category, or familiarity X category interac-
tion within the postlearning session, p val-
ues >0.125). We note that the category
interactions may be driven by greater inher-
ent familiarity and knowledge regarding
fruits compared with flowers, but given that
all stimuli attained an equivalent level of
congruency after learning, this difference is
unlikely to drive interpretation of our
results.

As an additional confirmation of suc-
cessful categorization, we administered
an odor-picture matching test after the
postlearning scanning session. Subjects per-
formed significantly above chance on this
matching task (mean accuracy = 73.3 =
12.8%, mean = SEM, p < 0.001, one-
sample ¢ test vs chance; chance = 12.5%)
(Fig. 3C). All pairs were significantly above
chance, and a two-way (familiarity X cate-
gory) repeated-measures ANOVA revealed
a main effect of familiarity (F, ,,, = 21.07,
p <0.001), but not category (F, 4y = 0.96,
p = 0.34) or a familiarity X category inter-
action (F; ;4 = 1.05, p = 0.32). Although
chance performance is 12.5% (1 of 8), it is
worth noting that, for the novel odors,
chance level could potentially lie at 25% (1
of 4) if the subject were able to eliminate
all familiar items from the potential choices.
However, even in this case, matching
accuracy was significantly >25% (p <
0.001, one-sample ¢ test vs 25% chance). Ac-
curate picture-odor matching as well as
significant increases in congruency, in
the context of more global categorical
changes as evidenced by the similarity rat-
ings, indicate that subjects were consistent
in their choices after learning, reflecting the
emergence of new categorical associations.
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Olfactory and limbic regions support the formation of novel
odor category representations

Our behavioral results demonstrate that visual category informa-
tion successfully guided olfactory perceptual reorganization,
such that the novel odors acquired membership to their associ-
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Preexperimental stimulus set ratings. A, An independent group of subjects rated all possible picture stimuli as accurately
belonging to their intended category (p << 0.001, one-sample ¢ tests). B, Preexperimental ratings from experimental subjects confirmed
that familiar odors were accurately rated as fruity or floral. *p < 0.01 (one-sample ¢ tests). Importantly, before learning, the novel odors
were not consistently rated as belonging to either category (p > 0.26, one-sample t tests). Data are mean == SEM.

ated object category. To investigate the neural underpinnings of
this olfactory categorical learning, we applied a whole-brain,
searchlight-based (Kriegeskorte et al., 2006; Kahnt et al., 2011)
SVM classifier to the fMRI dataset. Specifically, we trained an
SVM to classify activity patterns evoked by familiar fruit versus
familiar flower odors, and tested the SVM on activity patterns
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8 Novel Pre — 8 Novel Post performed a leave-one-subject-out analy-
o ° Iﬁ sis (see Materials and Methods) to obtain
2 [— e independently selected voxels to extract
-g 6] ——= g 6 accuracy values. Post hoc t tests confirmed
) a that classification accuracy in PrC, pOFC,
> 4 > 4 PPC, and INS was at chance at prelearning
I 5 (all p values >0.09) and increased to
E 2 I= 2 above chance at postlearning (all p values
%) n <0.04, one-tailed, one-sample t tests vs
chance), with significant improvements
Fr-2 FI-2 FI-1  Fr-1 0 Fl-1  FI-2 Fr-1 Fr-2 in classification accuracy values across
learning for all identified regions (all p
B * C values <0.04, paired ¢ tests) (Fig. 4B).
Frmmmmmmmme 1 These findings indicate that in PrC,
100, r==%--1 re- - - " 100 pOFC, PPC, and INS, originally in a naive
> * ! ! R state with indistinguishable category-
& 80 ' * §80 related pattern activity, category-specific
% T 2 patterns emerged following paired-
< @© associate learning.
S 60 ! 5 60 g
S ®
@ 40 240 . s
) = De novo formation of odor categories is
2 L specific to the olfactory modality
i;__) 201 Opre .I[ | C§U 20 Although the above findings are sugges-
M Post l tive of de novo odor categorization, it re-
— mains possible that these effects could
Familiar Novel Familiar Novel have emerged as a general function of the
Fruit  Flower Fruit Flower Fruit Flower Fruit Flower  association task, unspecific to the olfac-
tory modality. Therefore, we tested
Figure 3.  Perceptual changes across learning. A, Hierarchical cluster analysis was used to characterize effects of paired-  \yhether multivariate classification of vi-

associates learning, whereby pairwise ratings of odor similarity were converted to distances. Dendrogram plots represent a
preexisting category structure for familiar odors (top) that is sustained from prelearning to postlearning. However, this organiza-
tion emerges for the novel stimuli (bottom) only after the learning task. Fl, Flower; Fr, fruit. B, Congruency ratings between pictures
and odors reveal that both novel fruit and flower pairs were perceived as significantly more congruent after learning, with novel
items showing greater increases than familiar items. *p << 0.001, familiarity X session interaction (repeated-measures ANOVA).
C, Matching accuracy after learning. Odor-picture matching was significantly above chance (dotted line, 1 of 8 = 12.5%) for all

conditions. *p << 0.001 (one-sample ¢ tests).

evoked by novel fruit versus novel flower odors, both before and
after the paired-associates learning task (Fig. 4A; for details, see
Materials and Methods). Thus, in this analysis, while prelearning
classification accuracy should be at chance, postlearning classifi-
cation accuracy can only be above chance if category information
for the newly established fruit and flower odors comes to evoke
similar multivoxel activity patterns as for familiar fruits and flow-
ers. Accordingly, the central prediction was that classification
accuracy for the novel odors would improve significantly from
prelearning to postlearning.

sual fMRI data elicited similar learning-
related changes in PrC, pOFC, PPC, and
INS. The visual fMRI data allowed us (1)
to validate our analytical approach by
identifying established regions where vi-
sual categorical content is represented,
and (2) to perform a symmetric analysis
for direct comparison across visual and
olfactory domains. Because picture category information was ro-
bust even before learning, our first visual analysis involved de-
coding of fruit versus flower across all six preruns and postruns in
aleave-one-run-out cross-validation approach. We identified vi-
sual categorization in both right and left lateral occipital complex
([50, —54, —27], Z = 4.28, Prwe.ctuster = 0.02; [—50, =51, —14],
Z = 3.96, Prwe-cluster = 0.02) (Fig. 5A), consistent with prior
studies of visual category coding (Malach et al., 1995; Grill-
Spector et al., 2001; Cichy et al., 2011), and serving as a positive
control for the identification of visual object processing regions.
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Searchlight-based SVM category decoding. 4, Schematic of the searchlight-based implementation of the SVM classification. Classification was performed within a 146-voxel sphere,

with the classifier trained on patterns of fMRI activity for familiar flower versus familiar fruit odors, and then tested on patterns for novel flower versus novel fruit odors, within each session. This
analysis was designed to identify brain areas where classification was higher at postlearning versus prelearning. B, Perirhinal cortex (top left, y = —19), posterior orbitofrontal cortex (bottom left,
x = 17), insula (top right, y = 5), and posterior piriform cortex (bottom right, y = 3) show significant group-level increases in category decoding accuracy after paired-associates learning. Plots
indicate accuracy values extracted from each subject in the leave-one-subject-out analysis, based on the group-level peak coordinate, at prelearning and postlearning, and averaged across subjects.

Data are mean == SEM. *p << 0.05 (paired ¢ tests); display threshold p << 0.001.

For the second visual decoding analysis, we performed the
same imaging analysis as for the olfactory data but now applied to
the visual fMRI data, to generate visual category decoding accu-
racy maps for prelearning and postlearning. We then extracted
visual decoding accuracy values from our peak coordinates in
PrC, pOFC, PPC, and INS, providing a way to compare classifi-
cation performance directly between olfactory and visual
modalities. Region-wise two-way (time X modality) repeated-
measures ANOVA revealed significant time X modality interac-
tions within pOFC (F; 1,4y = 5.85,p = 0.03), PPC (F(, ,4, = 11.60,
p = 0.004), and INS (F, 1,4y = 7.38, p = 0.02), such that changes
in classification accuracy for the olfactory domain were greater
than those observed in the visual domain (Fig. 5B). A time X
modality interaction was not observed within PrC (F, ), = 1.53,
p = 0.24). By comparison, classification accuracy values for visual
decoding in pOFC, PPC, and INS were not significantly above
chance in either the presession or postsession (p > 0.27, one-
sample ¢ tests vs chance). Together, these results suggest that our
findings within pOFC, PPC, and INS are not related to mere
training-induced or session-dependent changes but are specific
to the olfactory domain.

Category-specific fMRI ensemble activity predicts perceptual
learning-related behavior

The above findings highlight the key brain regions involved in the
formation of category-specific olfactory patterns at the group
level. To test whether there was a systematic link between
learning-induced regional changes in fMRI pattern coding and
subject-specific changes in perceptual ratings, we used two mea-
sures of olfactory learning. In one analysis, we examined match-
ing accuracy scores, given that this measure best captures how
well subjects learned the correct odor-picture pairs. We found
that individual performance on the odor-picture matching test
for the unfamiliar pairs was significantly correlated with category
decodingaccuracy in pOFC (Spearman’s p = 0.64, p = 0.01) (Fig.
6A), suggesting that subjects with more well-defined category-
specific patterns were better able to match the novel odors to their

associated visual representations. In contrast, there was no signif-
icant correlation with category decoding accuracy in PrC (p =
—0.14, p = 0.63), PPC (p = 0.18, p = 0.54), or INS (p = —0.36,
p=0.19).

In a second analysis, we examined ratings of odor similarity,
given that this measure provides an estimate of categorical per-
ceptual convergence between formerly novel and ambiguous
odors. Here we examined category learning more explicitly by
regressing pairwise ratings of odor perceptual similarity against
the imaging data. To search for changes in category structure
across learning, we computed a category index by subtracting the
between-category similarity ratings from the within-category
similarity ratings. A postlearning increase of within-category rat-
ings and/or a postlearning decrease in between-category ratings
would be consistent with an emergent category structure for the
novel odors, such that an overall increase in the category index
indicates a greater perceptual change. Across subjects, we found
that the change in decoding accuracy in PrC from prelearning to
postlearning was significantly positively correlated with the
change in the category index for novel odors only (Spearman’s
p = 0.51, p = 0.03, one-tailed) (Fig. 6B). This finding indicates
that greater categorical discrimination in PrC was associated with
greater categorical perceptual differentiation from prelearning to
postlearning. On the other hand, a systematic relationship to the
category index was not observed within pOFC (p = 0.19, p =
0.25), PPC (p = —0.13, p = 0.32), or INS (p = —0.05, p = 0.43).

Discussion

Using an olfactory-visual paired-associates learning task, we in-
duced a behavioral and neural reorganization of previously am-
biguous odor representations. Perceptual changes in olfactory
categorical ratings (Fig. 3) were observed in parallel with de novo
formation of category-specific fMRI ensemble patterns within
PrC, pOFC, PPC, and INS (Fig. 4). This remarkable degree of
plasticity within the olfactory and limbic systems adds to previ-
ous evidence that olfactory perceptual learning can modify both
piriform and orbitofrontal activity patterns (Schoenbaum et al.,
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Visual category decoding across all prelearning and postlearning visual fMRI runs (leave-one-
run-out cross-validation) revealed significant category decoding in bilateral lateral occipital
complex, serving as a positive control that visual category information was present to guide
olfactory perceptual changes. Display threshold prye.custer << 0-05. B, Symmetric category
decoding analyses were also performed using the visual fMRI data, revealing significant time X
modality interactions in PPC, pOFC, and INS, such that improvements in category decoding
accuracy were greater for the olfactory modality than for the visual modality. An interaction was
not observed within PrC. Data are mean = SEM. *p << 0.05, time X modality interaction
(repeated-measures ANOVA).

1999; Sevelinges et al., 2004; Kadohisa and Wilson, 2006; Li et al.,
2006; Jones et al., 2007; Roesch et al., 2007; Li et al., 2008; Chapuis
etal., 2009), underscoring the idea that odor information content
can be dynamically updated in these regions. We also found that
category learning-related changes within PPC, pOFC, and INS
were specific to the olfactory modality. Olfactory specificity was
strongest in PPC, in line with its role in primary olfactory pro-
cessing. These modality-specific effects may help tease apart the
specific unimodal contributions that combine to form a multi-
sensory object category representation.

It is important to emphasize that, during the prelearning ses-
sion, subjects were in a naive state regarding the novel odors. It
was only after the cross-modal paired-associates task that olfac-
tory categorical representations of fMRI ensemble activity
emerged, implying the recruitment of two fundamental but com-
plementary computations: enhanced pattern completion for
odors newly affiliated with the same category, and enhanced pat-
tern separation between odors newly affiliated with different cat-
egories. This framework aligns closely with rodent studies of
olfactory recognition and discrimination in piriform cortex
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Figure 6.  fMRI magnitude of category decoding accuracy predicts learning-related behav-

ior. A, Across subjects, the magnitude of odor category decoding in pOFC after learning was
correlated with matching accuracy for the novel items, such that subjects who exhibited better
fMRI odor classification also performed better on the matching test (p = 0.64, p = 0.01). B,
Subjects showing a greater increase in fMRI decoding accuracy within PrC (from prelearning to
postlearning) also showed a greater perceptual change for the novel odors, such that subjects
who exhibited stronger improvements in odor classification also showed greater increases in
within-category versus between-category similarity ratings (p = 0.51, p = 0.03, one-tailed).
Each data point represents one subject.

(Barnes et al., 2008; Chapuis and Wilson, 2012), and broadly
concurs with recent memory-based studies emphasizing pattern
completion and separation mechanisms in the medial temporal
lobe to encode input similarities and differences across items,
facilitating generalization and discrimination among stimuli (La-
Rocque et al., 2013; Huffman and Stark, 2014; Reagh and Yassa,
2014). Critically, our data extend these principles to the PrC,
where pattern convergence and divergence are both engaged to
create new categorical structure.

Given that category learning was based on specific odor-
picture pairings, it is possible that subjects used arbitrary
stimulus-stimulus (S-S) associations to guide their perfor-
mance on the odor-picture congruency task, rather than rely-
ing on conceptual (i.e., category) knowledge. However, our
data support that subjects were able to abstract from S-S asso-
ciations to form category representations. First, the similarity
distances between previously ambiguous odors converged to
form a categorical structure that mirrored the corresponding
familiar odors (Fig. 3A). In other words, novel fruit odors
became more similar with each other, and novel flower odors
became more similar with each other, after the paired-
associates task. This change in perceived odor quality suggests
that the novel odor representations were transformed in a
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more knowledge-based, conceptual manner. Second, our
SVM was trained on familiar fruit versus flower odors and
tested on novel fruit versus flower odors. Therefore, decoding
accuracy in the test set could only be above chance if the novel
odors came to evoke similar category-specific (as opposed to
stimulus-specific) activity patterns. Finally, because we
trained and tested the classifier on different odors, the results
could not be driven by identify-specific information. To-
gether, these findings suggest that, in addition to simple S-S
associations, subjects acquired more abstract, categorical
representations.

That the OFC participates in the de novo formation of odor
categories aligns closely with its role in olfactory multisensory
integration (Gottfried and Dolan, 2003; de Araujo et al., 2003;
Small et al., 2004; Osterbauer et al., 2005) and olfactory per-
ceptual learning (Li et al., 2006; Wu et al., 2012). The correla-
tion between odor-picture matching performance and OFC
categorical representations can be interpreted in the context of
olfactory predictive coding mechanisms. Our earlier work
showed that, in an olfactory attention-based search task, odor-
specific templates of fMRI ensemble activity emerged in OFC
before onset of the actual odor stimulus (Zelano et al., 2011).
In the current study, success on the odor-picture matching
task requires the formation of a robust representation that can
be used to predict its visual associate, and our data suggest that
OFC is particularly suited to perform this role (Fig. 6A).
Hence, with stronger odor-picture associations, the corre-
sponding ability to categorize those odors will also improve.
Although speculative, this account would fit with recent mod-
els proposing that the OFC and other prefrontal regions are
important for constructing “model-based” representations of
environmental features, stimulus-outcome associations, and
goal-directed behaviors (Gldscher etal., 2010; Daw et al., 2011;
Jones et al., 2012).

Our finding of category representation within the insula
provides support for this region in multisensory integration.
This is consistent with studies identifying the insula as not
only responsive to olfactory stimuli (Cerf-Ducastel and Mur-
phy, 2001; Heining et al., 2003; Plailly et al., 2007), but impor-
tant for taste-olfactory integration (de Araujo et al., 2003;
Small and Prescott, 2005). Given that half of our odor stimuli
were food odors (fruit smells), here the insula may support a
mechanism for categorization that differentiates edibility
(food vs nonfood) (Simmons et al., 2005). The insula has been
well characterized as a center of gustatory processing (Yaxley
et al., 1990; Small, 2010; Veldhuizen et al., 2011), and more
recent research extends its role to include the convergence
of various types of sensory information (de Araujo and
Simon, 2009; Kurth et al., 2010). As a key component of the
taste-olfactory, or flavor, network, an important capability
of the insula would be to form experience-based representa-
tions of palatability, or even edibility, all supporting a framework
in which this region must code odor identity information to
guide adaptive consummatory behavior.

We acknowledge that, as a surrogate marker of neural ac-
tivity, the fMRI BOLD response is unable to provide a fine-
grained mechanistic understanding at the network, cellular, or
synaptic level. For example, response patterns observed in
pOEC, PrC, and insula could be driven by a common projec-
tion from PPC, rather than reflecting unique independent
contributions of each region. Whether the fMRI signals reflect
excitatory, inhibitory, or modulatory processing, or whether
these effects are based on actions at the cell body, synapse,
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dendrite, or axon, is also unclear (although data suggest that
the fMRI signal is largely a reflection of local field potential
activity and dendritic processing) (Logothetis, 2002; Goense
and Logothetis, 2008). Therefore, we can only interpret our
findings in the context of a network of neural structures con-
tributing to olfactory categorical learning. While we may not
achieve a complete mechanistic understanding through the
current analyses, we demonstrate strong evidence for the spe-
cific involvement of PrC, PPC, pOFC, and INS in the network
processing of categorical odor information. Moreover, we
show olfactory specificity within our findings, and correla-
tions between fMRI ensemble pattern activity and behavioral
indices of odor categorization training, which together ex-
pands our current knowledge of multimodal associative learn-
ing. Future research is necessary to address more mechanistic
questions regarding the formation of categorical odor repre-
sentations as demonstrated here. Such studies may provide a
framework by which multimodal associative learning can ex-
pand categorical representations of odors, or for how cortical
areas identified in the current study work together to create
such novel representations.

Intriguingly, the extent to which subjects used visual se-
mantic content to distinguish novel fruity from novel floral
odors (from prelearning to postlearning) was associated with
stronger pattern decoding accuracy in PrC (Fig. 6B), high-
lighting a unique role for this region in shaping olfactory in-
formation. We suggest that the involvement of PrC in the
acquisition of olfactory categorical knowledge centers on the
fact that categorical learning relied on visual semantic input.
The PrC is a visual associative region that receives dense, con-
fluent input from unimodal and polymodal visual areas (Su-
zuki and Amaral, 1994; Lavenex et al., 2004; Staresina and
Davachi, 2010) and is reciprocally connected with entorhinal
cortex, from which information can be transmitted to the
hippocampus and piriform cortex. Thus, it is ideally posi-
tioned to bind multisensory features into complex represen-
tations, and human and animal studies strongly implicate PrC
in both memory and perceptual processing, especially for new
associations (Murray etal., 1993; Wan et al., 1999; Pihlajamaiki
et al., 2003; Taylor et al., 2006; Haskins et al., 2008; Holdstock
et al., 2009). Insofar as the PrC can use visual associative in-
formation to drive perceptual categorization of novel odor
items, our findings provide unique insights into its role in
supporting configural coding and recognition.

A categorical framework of object perception, encompass-
ing anything from faces, tools, birds of prey, or Burgundian
white wines, can guide stimulus-based behavior with greater
efficiency and flexibility, optimizing generalization to percep-
tually related stimuli that may not have been previously en-
countered. Here, we provide one ecological model of how
humans may learn about and classify novel odor objects. In
particular, we outline a functional framework that could sup-
port the integration of sensory information and the formation
of novel olfactory object representations in humans. The pres-
ent results suggest a broader role for the perirhinal cortex, in
combination with orbitofrontal, piriform, and insular corti-
ces, in visual-olfactory learning. Future investigations may
shed light on the developmental processes behind olfactory
categorical representations, including how the specific con-
nections between these regions are modulated throughout
learning.
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