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How multiple sensory cues are integrated in neural circuitry remains a challenge. The common hypothesis is that information integration might
be accomplished in a dedicated multisensory integration area receiving feedforward inputs from the modalities. However, recent experimental
evidence suggests that it is not a single multisensory brain area, but rather many multisensory brain areas that are simultaneously involved in the
integration of information. Why many mutually connected areas should be needed for information integration is puzzling. Here, we investigated
theoretically how information integration could be achieved in a distributed fashion within a network of interconnected multisensory areas.
Using biologically realistic neural network models, we developed a decentralized information integration system that comprises multiple
interconnected integration areas. Studying an example of combining visual and vestibular cues to infer heading direction, we show that such a
decentralized system is in good agreement with anatomical evidence and experimental observations. In particular, we show that this decentral-
ized system can integrate information optimally. The decentralized system predicts that optimally integrated information should emerge locally
from the dynamics of the communication between brain areas and sheds new light on the interpretation of the connectivity between multisen-
sory brain areas.
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Introduction
Almost any behavioral task seems to require the combined effort of
many brain regions working together. Information integration

across distributed brain areas is thus considered of critical impor-
tance in the brain and has been described as one of the hallmarks of
consciousness (Tononi and Edelman, 1998). Integration of infor-
mation from different sources is essential for behavior: to obtain a
reliable description for an underlying state of interest, evidence from
different sources must be combined in a proper way. Accordingly, it
has been found that neural systems combine information from dif-
ferent sensory modalities in an optimal way, as predicted by Bayesian
inference. For example, while walking, the visual input (optic flow)
and vestibular signal (body movement) both carry useful informa-
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Significance Statement

To extract information reliably from ambiguous environments, the brain integrates multiple sensory cues, which provide different
aspects of information about the same entity of interest. Here, we propose a decentralized architecture for multisensory integration. In
such a system, no processor is in the center of the network topology and information integration is achieved in a distributed manner
through reciprocally connected local processors. Through studying the inference of heading direction with visual and vestibular cues, we
showthatthedecentralizedsystemcanintegrateinformationoptimally,withthereciprocalconnectionsbetweenprocessersdetermining
the extent of cue integration. Our model reproduces known multisensory integration behaviors observed in experiments and sheds new
light on our understanding of how information is integrated in the brain.
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tion about the motion direction (Bertin and Berthoz, 2004). In the
brain, these visual and vestibular inputs can be fused seamlessly to
give rise to a more reliable estimation of the motion direction than
either of the modalities could deliver on its own (Gu et al., 2008;
Chen et al., 2013). This capability of optimal multisensory integra-
tion seems ubiquitous across modalities, as has been reported, for
example, for the integration of visual and auditory cues for inferring
object location (Alais and Burr, 2004), motion and texture cues for
depth perception (Jacobs, 1999), visual and proprioceptive cues for
hand position (van Beers et al., 1999), and visual and haptic cues for
object height (Ernst and Banks, 2002).

However, exactly how the brain integrates information opti-
mally from multiple sources using synaptic communication and
neural activity alone remains unresolved. A straightforward hy-
pothesis is that a dedicated integration area, which receives feed-
forward inputs from all sensory modalities to be combined, pools
and integrates all of the incoming information (Ma et al., 2006;
Alvarado et al., 2008; Magosso et al., 2008; Ursino et al., 2009;
Ohshiro et al., 2011). Although it has been shown that optimal
multisensory integration could be achieved within such a dedi-
cated area under certain conditions (Ma et al., 2006), the hypoth-
esis does not touch upon the recent experimental findings that
many interconnected multisensory areas are involved in the in-
tegration of sensory signals instead of just a single dedicated area
(Gu et al., 2008; Chen et al., 2011b, 2013). Here, we argue that the
existence of many multisensory areas should not be just seen as
added complexity to the hypothesis of having one dedicated in-
tegration area, but instead might be at the core of how the brain
coordinates the flow of information.

Using biological realistic neural network modeling, we ex-
plored theoretically how interconnected areas could integrate in-
formation in a distributed fashion. We developed a decentralized
architecture for multisensory integration in which multisensory
areas are connected with each other reciprocally and show that
information integration can be done in an optimal manner with-
out the need for a central area that would receive and pool all
available information. As an example, we consider the task of
inferring the heading direction from visual and vestibular cues
and found that, when describing the interconnected multisen-
sory areas dorsal medial superior temporal (MSTd) area and ven-
tral intraparietal (VIP) area as a decentralized system, model
predictions are in good agreement with biological observations.
The decentralized system can near-optimally integrate visual and
vestibular information in a wide parameter region and neural
activations are consistent with the characteristic properties of
neuronal responses observed during multisensory integration,
including the inverse effectiveness, the spatial principle, and the
reliability-based combination (Fetsch et al., 2013).

Finally, our theoretical analysis reveals that the strength of the
connectivity between different multisensory areas might be re-
lated to prior knowledge about the similarity, or the probability
of cooccurrence, of stimuli that are to be integrated. Therefore,
our decentralized view of information integration not only pro-
vides an alternative hypothesis of how the brain might solve the
challenge of integrating information, it also suggests a new inter-
pretation of the function of connectivity within and between
multisensory areas.

Materials and Methods
Neural network models for decentralized information integration. In our
study, a decentralized system consists of N �N � 2� reciprocally coupled
modules. Each module is modeled as a continuous attractor neural net-
work (CANN) (Wu et al., 2008). Excitatory neurons in each CANN

receive inputs from a stimulus feature �, for example, the heading direc-
tion, and their preferred stimulus values are uniformly distributed in the
parameter space ���, �� with periodic boundary condition. Let ul��, t�
and rl��, t� denote the synaptic input and the firing rate, respectively, of
neuron � in network l at time t. The network dynamics is given by the
following:

�
�ul��, t�

�t
� �ul��, t� 	 �

m�1

N


�
��

�

Wlm��, ���rm���, t�d��

	 Il��, t� (1)

where � is a time constant and 
 is the neuronal density. Wlm��, ���
represents the connection strength from neuron �� in network m to
neuron � in network l. Il��, t� is the feedforward input from an unisen-
sory brain area conveying the information of stimulus l.

Each CANN contains an inhibitory neuronal pool that normalizes the
response of excitatory neurons divisively according to the overall activity
level of the network. That is, the firing rate rl��, t� of neuron � in network
l is given by the following:

rl��, t� �
�ul��, t��	

2

1 	 k
�
��

�

�ul���, t��	
2 d��

(2)

where �x�	 denotes rectification of negative values; that is, �x�	 � 0 for
x � 0 and � x�	 � x for x � 0. The parameter k controls the global
inhibition strength.

The excitatory connection strength between two neurons depends on
the distance of the neurons in feature space in a Gaussian manner (see
Fig. 2C); that is:

Wlm��, ��� �
Jlm

�2�alm

exp ��
�� � ���2

2alm
2 � (3)

where Jlm is a positive overall connection strength parameter and alm is
the connection width in feature space. Note that Wll denotes the recur-
rent connections between neurons within the same network l and Wlm,
for l 
 m, represents the reciprocal connections between neurons from
different networks.

When stimulus l is presented, we assume that an internal representa-
tion (also called cue) of stimulus l is generated in an unisensory cortical
area; for example, the medial temporal (MT) or parieto-insular vestibu-
lar cortex (PIVC). Network l then receives the cue l as a feedforward input
from the corresponding unisensory area. How the unisensory area rep-
resents the cue is largely unknown, so we follow previous approaches that
the input has a Gaussian shape with multiplicative noise (Denève and
Pouget, 2004; Ma et al., 2006), as follows:

Il��, t�sl� � � lexp��
�� � �l�

2

4all
2 � 	 �l����l��, t� 	 IBkg��, t�

(4)

where �l is the stimulus feature value conveyed by sensory cue l to net-
work l. Because of the multiplicative noise, �l is the signal strength and
measures the reliability of the cue (Ma et al., 2006). The term �l����l��, t�
denotes the input noise, with noise variance �l

2��� � Fl�le
�����l�2/4all

2

proportional to the input intensity and Fl denotes the Fano factor of
the input. �l��, t� is a Gaussian white noise of zero mean and unit vari-
ance. To include spontaneous activity, a background input IBkg��, t� �

IBkg� 	 �FlIBkg�l ��, t� is added, regardless of whether cue l is present.
The mean of the background input is the same for all neurons. Input noise
�l��, t� and background noise �l ��, t� are independent of each other, satisfy-
ing 
�l ��, t��m���, t��� � �lm������t � t��, 
�l��, t��m���, t��� �
�lm������t � t��, and 
�l��, t��m���, t��� � 0, where �xx� and ��x � x�� are
the Kronecker and Dirac delta functions, respectively.

Dynamics of the reciprocally coupled networks. Because of the transla-
tional invariance of the recurrent connections in a CANN, the dynamics
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of a CANN is dominated by a few dynamical modes corresponding to
distortions in height, position, and other higher-order features of the
activity bump (Fung et al., 2010; Zhang and Wu, 2012). It was shown
previously that one can project the network dynamics onto its dominant
modes to simplify the mathematical analysis significantly (Fung et al.,
2010). In the weak input limit (i.e., �l is sufficiently small compared with
the recurrent inputs), the change of the bump position is the dominant
motion mode of the network dynamics and other distortions of the
bump can be neglected. Note that the weak input limit assumption is not
strictly true for all parameters considered in the Results section, where
the bump height (but not the higher modes) will nevertheless be signifi-
cantly affected by the input. Therefore, in addition to the following the-
oretical analysis, below we conducted numerical simulations in which
the full dynamics were simulated and thus no assumption on the con-
stancy of the bump height was necessary. The dominant mode corre-
sponding to the change of the bump position is written as follows:

�1�� � ẑ� � �� � ẑ

a 	 exp��
�� � ẑ�2

4a2 � (5)

where ẑ is a free parameter denoting the position of the bump and a is the
width of the bump. Note that projecting a function f��� onto a motion mode
��� � ẑ� is to compute the quantity ��f������ � ẑ�d�/����� �ẑ�2d�.

If only the position of the bump varies significantly with the feedfor-
ward input, then the network dynamics can be solved by using the fol-
lowing Gaussian ansatz:

ul��, t� 
 Ul exp ��
�� � ẑl�t��

2

4a2 �, l � 1, 2, (6)

rl��, t� 
 Rl exp ��
�� � ẑl�t��

2

2a2 �, l � 1, 2, (7)

where Ul and Rl represent the mean values of the bump height, which are
treated unchanged in the statistically stationary state.

Taking two reciprocally connected networks as an example, we show
how the projection of the network dynamics onto the dominant motion
mode simplifies the description. Substituting the above Gaussian ansatz
into the network dynamics (Eq. 1) and projecting it onto the motion
mode (Eq. 5), we obtain the dynamics of the bump position for network
1 (the result of network 2 is the same except that the indices are inter-
changed), as follows:

�U1

dẑ1

dt
�


J12R2

�2
� ẑ2 � ẑ1�e

�
� ẑ2�ẑ1�2

8a2 	 �1��1 � ẑ1�e
�

��1�ẑ1�2

8a2

	
2�aFl

�2��1/4��2/3�3/ 2�1 	 IBkg�1�t� (8)

For � ẑ2 � ẑ1�/8a2 and ��1 � ẑ1�/8a2 sufficiently small (which is the case
for the parameter regime we consider), the exponential terms can be
safely ignored, and the above equation, together with the one for network
2, are further simplified to the following:

dẑ1

dt
� g12� ẑ2 � ẑ1� 	 h1��1 � ẑ1� 	 �1�1�t� (9)

dẑ2

dt
� g21� ẑ1 � ẑ2� 	 h2��2 � ẑ2� 	 �2�2�t� (10)

where the following coefficients:

glm �

JlmRm

�2�Ul

, hl �
�l

�Ul
, �l

2 �
4aFl

�2���Ul�
2��2

3	
3/ 2

�l 	 IBkg�
(11)

denote, respectively, the effective strengths of the reciprocal connections,
the input signal, and the noise. Note that above equations are nonlinear
because the effective strengths glm, hl, and �l are nonlinearly dependent
with network and input parameters.

We consider the simple case that the two networks have the same
parameter values and simultaneously receive identical cue intensities
(but noises are independent to each other). This simplifies the notation
to Jll � Jrc, Jlm � Jrp�l 
 m� and the effective parameters to glm � grp,
hl � h and �l � �. By this simplifying notations in Equation 9, we arrive
at Equation 33.

In a general decentralized system of N reciprocally connected net-
works, the dynamics of the network estimations (i.e., the bump posi-
tions) can be analogously solved as follows:

dẑ

dt
� Mẑ � H� � �� (12)

where ẑ � 
 ẑl�, � � 
�l� and � � {�l}, for l � 1,…, N. The system
matrix is M � G � H, where Glm � glm � �lm¥m�glm�. H and � are
diagonal matrices, with Hll � hl and �ll � �l. Note that if cue i is not
present, then we set �i � 0.

The steady state of the mean of ẑ is given by the following:


ẑ� � �M�1H� (13)

The covariance of ẑ in the steady state, denoted as Cov(ẑ), satisfies

MCov( ẑ) � (MCov( ẑ))T � ���T (14)

To calculate Cov(ẑ), we diagonalize the matrix M as MP � P�, where �
and P are the eigenvalues and eigenvectors of M, respectively. Defining
y � P�1ẑ, we have �Cov(y) 	 ��Cov(y)�T � �P�1��TP�T, so
Cov(y) can be solved as �Cov(y)�ij � ��P�1��TP�T�ij/��ii 	 �jj�.
Finally, we obtain the following:

Cov�ẑ) � PCov(y)PT (15)

Given the number of networks and cueing conditions, the detailed ex-
pressions for the estimation mean and variance of a network can be
solved by using Equations 13 and 15.

Integration performance of two reciprocally coupled networks. It is diffi-
cult to solve analytically the integration performance of reciprocally cou-
pled networks for more general parameter settings. We found in
simulations that, over a wide range of parameters, our model achieved
near Bayesian optimal performance, as shown in Figure 4. To demon-
strate the underlying idea, we present below a special case in which Bayes-
ian integration is achieved perfectly.

We consider two coupled networks that have the same parameter
values. According to Equations 13 and 15, the mean and the variance of
the estimate of network 1 are given by the following:


ẑ1� �
� g21 	 h2�h1�1 	 g12h2�2

g12h2 	 g21h1 	 h1h2
(16)

V� ẑ1� �
��g21 	 h2�tr(M� 	 g21g12]�1

2 � g12
2 �2

2

2tr(M)�h1h2 	 g21h1 	 g12h2�
(17)

where tr(M) is the trace of M; that is, tr(M) � ¥i�1
2 Mii � ��g12 	

g21 	 h1 	 h2�. To arrive at Equations 44 and 45, two approximations
were made for simplification. First, we assumed that coefficients glm and
hl in Equations 9 and 10 are approximately unchanged with respect to
stimulus conditions and abbreviate to glm � grp and hl � h (�l 
 0), re-
spectively. Moreover, we assumed further that the effective noise
strength �, which is the ratio of noise variance over bump height and
reflects the signal-to-noise ratio of the network, is approximately un-
changed across different stimulus conditions. This assumption is sup-
ported by the experimental observation that Fano factors of neural
responses change insignificantly with stimulus conditions (Gu et al.,
2008). With these approximations and symmetric parameter settings, it
is straightforward to derive Equations 44 and 45.

Integration performance of N reciprocally coupled networks. In a decen-
tralized system composed of N all-to-all reciprocally connected net-
works, the estimation results of each network can also be calculated from
Equations 13 and 15. When the N networks have same parameters and in
response to Nq � N cues (suppose they are cue 1 to cue Nq for simplic-
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ity), the estimation mean and variance of network l with direct cue input
l �l � 1.…, Nq� are as follows:

ẑl �
Nqg

�1� l 	 Nh�1�i�1

Nq

�i

Nq �Nh�1 	 g�1�
(18)

V� ẑl� �
�2

2

�Nh�1 	 Nqg
�1�h�1

Nq�Nh�1 	 g�1�
(19)

Note that if only cue l is presented, it is V� ẑl� � �2h�1/2 and the depen-
dence on the effective reciprocal strength g vanishes, although the recip-
rocal connections are still there. This is because, without receiving cue
inputs, other networks are unable to provide information about cue l.

The estimates of the networks without direct cue input (l � Nq 	
1, … N) are as follows:

ẑl �
1

Nq
�
i�1

N
q

�i (20)

V� ẑl� �
�2

2

�Nq 	 1� g�1 	 Nh�1

NNq
(21)

A Bayesian observer of multisensory integration. To understand the be-
havior of the decentralized system, the following Bayesian observer for
multisensory integration is considered in this study (Bresciani et al.,
2006; Ernst, 2006; Roach et al., 2006; Sato et al., 2007). Suppose that two
sensory cues c1 and c2 are generated by two stimuli s1 and s2, respectively.
Under the assumption that the noise processes of two cues given two
stimuli are conditionally independent, the posterior distribution
p�s1, s2 � c1, c2� satisfies the following:

p�s1, s2 � c1, c2� � p�c1 � s1� p�c2 � s2� p�s1, s2� (22)

where p�ci � si� �i � 1, or 2) is the likelihood function and is modeled as
a Gaussian distribution with mean �i and variance �i

2. p�s1, s2� is called
the combination prior and specifies the probability of a particular com-
bination of stimuli s1 and s2. Following previous studies, we choose a
Gaussian function of the discrepancy between two stimuli (Shams et al.,
2005; Bresciani et al., 2006; Ernst, 2006; Roach et al., 2006) as follows:

p�s1, s2� �
1

�2��cpLs

exp��
�s1 � s2�

2

2�cp
2 � (23)

where Ls is the width of the feature space; that is, Ls � 2� in case of
estimating heading direction, and the parameter �cp measures the
similarity between two stimuli. Note that the prior of each cue, p�si� �i �
1 or 2) has a uniform distribution across the feature space.

In the case of integrating N cues, we consider that the combination
prior of the underlying stimuli is the product of the Gaussian function in
the form of Equation 23 for all stimulus pairs, that is:

p�s1, s2, …, sN� �
1

Z�i�j
p̃�si, sj�

�
1

Z�i�j
exp ��

�si � sj�
2

2��N/ 2�cp�
2�, i, j 	 �1, N�

(24)

where z is a normalization factor. p̃�si, sj� has the same form as p�si, sj�
except its variance is N�cp

2 /2. This ensures that the combination prior for
s1 and s2 in the case of N �N � 2� cues, calculated by pN�s1, s2�
� �p�s1, s2, …, sN�ds3ds4… dsN equals Equation 23 in the case of N � 2.
Nevertheless, the marginal distribution of each stimulus p�si� is still a
uniform distribution.

Optimal integration in a decentralized system with N modules and
N cues. Although we show in the Results section that integration is opti-
mal for the special case of a decentralized system of two modules and two
cues, the integration of the decentralized system with N modules and N
cues is generally optimal in the following sense.

Let us first consider the integration of three cues in a Bayesian observer
with above joint combination prior (Eq. 24). When all three cues are
simultaneously presented, the marginal posterior of s1 can be derived as
follows:

p�s1 � c1, c2, c3� � �� p�s1, s2, s3 � c1, c2, c3�ds2ds3

�p�c1 � s1��� p�c2 � s2� p�c3 � s3� p�s1, s2, s3�ds2ds3

(25)

Note that the last 2-fold integral in the above equation is proportional to
p�s1 � c2, c3�. However, p�s1 � c2, c3� cannot be further factorized as
p�s1 � c2� � p�s1 � c3�. Therefore, we have the following:

p�s1 � c1, c2, c3��p�s1 � c1� p�s1 � c2, c3� (26)

In a general integration of N cues, we found that the posterior of s1 can be
factorized as a pairwise product of the posterior under cue l and that of all
other conditions excluding cue l (see also Eq. 50) as follows:

p� ŝ l � cl, 
i�l ci��p� ŝ l � cl� p� ŝ l � 
i�l ci� (27)

The mean and variance of the marginal posterior of the Bayesian observer
can be found from Equations 18 –21 by replacing h �1 by � 2 and grp

�1 by
N�cp

2 /2 and deleting coefficients � 2/2. Therefore, in a decentralized sys-
tem, network l is an optimal estimator for stimulus l by integrating
its feedforward inputs from cue l and reciprocal inputs from other
networks.

Evaluating the deviations of the networks’ performance from the Bayesian
observer. For evaluating the optimality of the integration in the simula-
tion, we examined the deviations of the actual mean and variance of the
network estimations from the predicted mean and variance of the Bayes-
ian observer, respectively. For the robustness against parameter varia-
tions (see Fig. 4F ), we followed Fetsch et al. (2009) and used the bias of
the cue weight to evaluate the bias of the mean. For example, in network
1, the bias of cue 1’s weight is as follows:

�w1
net1 � w1

net1 � ŵ1
net1 (28)

where w1
net 1 � �
z1 � c1, c2� � 
z1 � c2��/�
z1 � c1� � 
z1 � c2�� is the actual

weight of cue 1 in network 1 and ŵ1
net 1 V � V �z1 � c2�/�V�z1 � c1� 	

V�z1 � c2�� is the predicted value. In each network, the bias of cue 2’s weight
has the opposite sign of the bias of cue 1’s weight; that is, �w1

net 1 �
��w2

net 1, because w1 	 w2 � 1 in the integration of two cues. Therefore,
for the analysis of Figure 4F, we only calculated the bias of the weight
of the direct cue �wdir�cue in each network. The direct cue of network
l is cue l, meaning that the network receives the input of cue l directly
from feedforward connections instead of via reciprocal inputs from
other networks. A positive �wdir�cue indicates that the network’s es-
timation is biased toward its direct cue, whereas a negative value
denotes a bias to its indirect cue. The deviation of the variance was
measured by the deviation between the actual variance and the pre-
dicted variance (from Eq. 46), namely:

�Var �
Vactual

Vpredict
� 1 (29)

A positive �Var indicates that the accuracy is worse than the predicted
value; a negative �Var denotes improvement over the prediction.

Network simulations and parameters. In the simulations, two or more
CANN networks were coupled together. Each CANN consisted of 180
neurons, which were uniformly distributed in the feature space
��180�, 180��. The parameters of the networks were chosen symmetri-
cally to each other; that is, all of the structural and input parameters of
the networks had the same value. However, the networks received inde-
pendent noise. The synaptic time constant � was rescaled to 1 as a dimen-
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sionless number and the time step size was 0.01�. All connections had the
same width: alm � 40°.

In the following, we list the parameter values used if not mentioned
otherwise. The recurrent connection strength J11 � J22 � Jrc was set in
the range of �0.4, 0.6�Jc, where Jc � 2�2�2��1/4�ka
 � 0.896 is the
minimal strength for holding persistent activity. Therefore, no persistent
activity occurred in a network after withdrawing the stimulus. The
strength of the reciprocal connections J12 � J21 � Jrp was in the range of
�0.2, 0.9�Jrc; that is, always smaller than the recurrent connections. The
input strength � was scaled relative to Um

0 � Jc/4ak�� � 6.316 and
distributed in the region of �0.4, 1.5�Um

0 , where Um
0 is the synaptic bump

height that a network can hold without external input when Jrc � Jc. The
interval of the input strength was wide enough to cover the superadditive
and nearly saturated regions. The strength of the background input was

IBkg� � 1 and all Fano factors of the cues and background inputs were
set to 0.5. This resulted in a Fano factor of single neuron responses on the
order of 1. In the simulation, the activity bump position was estimated by
using a population vector; that is, calculating the center-of-mass of the
activity bump. Specific parameter settings are mentioned in the figure
captions.

Discrimination performance of single neurons. To reproduce experi-
mental findings (Gu et al., 2008), we designed a computational task to
discriminate whether a stimulus value is smaller or larger than 0° based
on single neuron activities. Similar to the experiment, we chose an exam-
ple neuron from network 1 that preferred a heading direction of �40°.
The directions of two congruent cues were simultaneously changed from
�30° to 30°. In each direction, three stimulus conditions (see Fig. 3A)
were applied for 50 trials and the firing rate distributions were obtained
(see Fig. 5 A, B). We used receiver operating characteristic (ROC) analysis
(Britten et al., 1992) to compute the ability of the example neuron to
discriminate between two opposite heading directions; that is, �2° ver-
sus 2°. The ROC value counts the proportion of instances in which the
stimulus was correctly judged to be larger than 0°. Neurometric functions
(see Fig. 5C) were constructed from these ROC values and were fitted
with cumulative Gaussian functions to determine neuronal discrimina-
tion thresholds (the SD of the cumulative Gaussian function). The pre-
dicted threshold in the combined cue condition can be calculated using
Bayesian inference as follows:

�prediction � �1�2/��1
2 	 �2

2 (30)

where �1 and �2 are the neuronal discrimination thresholds under cue 1
and cue 2, respectively.

Virtual experiments reproducing empirical principles of multisensory in-
tegration. We further performed simulations to determine whether the
decentralized system can reproduce some characteristic neural response

properties observed during multisensory integration, namely the inverse
effectiveness, the spatial principle, and the reliability-dependent combi-
nation (Morgan et al., 2008; Fetsch et al., 2013). The neuron with feature
value 0° in network 1 was used as an example neuron. Its mean firing rates
under different tests are plotted in Figure 6. The virtual experiments
simulated the protocols of the biological experiments. In the experiments
examining the inverse effectiveness and the spatial principle, cue 1 and
cue 2 had identical intensity and noise strength and the intensity in-
creased from 0 to 1.5 Um

0 , which produced a near saturated neuronal
response. In the test of the inverse effectiveness, both cues were located at
0°, whereas in the spatial principle test, cue 1 was fixed at 0°, but cue 2 was
varied from 0° to 2a, where a is the turning width of the neuron. To test
the reliability-dependent combination (Morgan et al., 2008), the re-
sponses of the example neuron were measured under eight different
mean values for each cue (ranging from �180° to 180° with a step size of
45°), with 64 combinations in total. The intensity of cue 1, �1, was de-
creased from 0.46�2 to 0.12�2, which in turn decreased the reliability of
cue 1 whereas the intensity of cue 2, �2, was fixed. For each combination
of two cues, the bimodal tuning curve Rbi��1, �2� was fitted as a linear
model of two unimodal tuning curves as follows:

Rbi��1, �2� � w1R1��1� 	 w2R2��2� 	 C (31)

where Rbi��1, �2� denotes the firing rate when the two cues are located at
�1 and �2, respectively. R1��1� and R2��2� are the unimodal tuning curves
when only cue 1 or only cue 2 is presented, respectively. The neuronal
weights w1, w2, and offset C were determined by minimizing the mean-
squared error between the predicted bimodal responses and the mea-
sured actual neuronal responses.

Results
Decentralized architecture for information integration
In engineering applications, three principled architectures have
been proposed to integrate observations (cues) from different
stimuli (Durrant-Whyte and Henderson, 2008): the centralized,
the distributed, and the decentralized architectures (Fig. 1). In
the centralized architecture (Fig. 1A), the raw observations from
sensors are sent directly into a central fusion center, which
estimates the underlying state from the raw observations of all
of the modalities. Although simple in structure, the central-
ized architecture suffers from the computational burden of the
fusion center, the high communication load (because all raw
observations of all modalities must be delivered into a single
center), and the susceptibility of being paralyzed once the
fusion center fails.
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Figure 1. Comparison of different information integration architectures. A, Centralized architecture. A central processor directly receives the raw observations from the sensors, and does all the
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Some computational tasks can be distributed to modular local
processors (Fig. 1B). The processor modules compute local esti-
mates in parallel and then only send the results to the central
processor. However, this distributed architecture also suffers
from the robustness problem because a central fusion center still
exists. In contrast, in a decentralized architecture (Fig. 1C), all of
the processors communicate with the others directly so that a
central fusion center becomes obsolete. Each processor first
makes a local estimate according to its own observation and then
corrects it by integrating the local estimates from the other pro-
cessors to obtain a global estimate.

Would it be possible for cortical circuitry to successfully adopt
a decentralized architecture to integrate multisensory informa-
tion? Anatomically, there is some supportive evidence. For in-
stance, MSTd and VIP are two brain areas that are deeply
involved in the integration of visual and vestibular information
for inferring the heading direction and do so optimally (Gu et al.,
2008; Chen et al., 2013). There are abundant reciprocal connec-
tions between MSTd and VIP (Boussaoud et al., 1990; Baizer et
al., 1991) that cause the activities of the two areas to be correlated
with each other (Vincent et al., 2007). In addition, MSTd and VIP
receive feedforward visual and vestibular inputs from MT cortex
(Boussaoud et al., 1990) and PIVC (Lewis and Van Essen, 2000)
(Fig. 1D), where MT and PIVC are unisensory regions that belong to
the visual and vestibular systems, respectively. Together, MSTd and
VIP appear to be good candidates for local processors within a de-
centralized information integration architecture (cf. Fig. 1C,D).

Biologically plausible decentralized network model for
information integration
What realistic neural network model could be used to implement
a local processor that allows to connect different local processors
with each other as required by a decentralized architecture? Al-
though different neural network models might be applicable in
principle, we will show in the following that reciprocally inter-
connected CANN modules behave naturally like a decentralized
information integration system that shows near-optimal cue in-
tegration over a wide parameter range in a biologically realistic
manner. We first describe our model for the simplest case of two
symmetrically connected processors that receive feedforward in-
puts (cues) from their associated stimuli (Fig. 2A) and then gen-
eralize it to multiple cues.

CANNs are widely used biologically realistic network models
to implement cortical computations for continuous stimuli
(Dayan and Abbott, 2001; Pouget et al., 2003), including estimat-
ing heading directions from noisy inputs (Zhang, 1996). In a
typical CANN (full dynamics can be seen in Eq. 1– 4), every neu-
ron has a tuning function with respect to the same stimulus fea-
ture (Eq. 7); for example, the heading direction, but each neuron
is tuned to a gradually different feature value and all neurons
cover the whole feature space (Fig. 2B). The firing rate of CANNs
is a nonlinear function of the input and thus neuron activations
saturate in a realistic manner (Eq. 2; Fig. 2D). Because recurrent
connections are translation-invariant in the space of neuronal
preferred feature values (Fig. 2C), the population activity in a
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Zhang et al. • Decentralized Neural Information Integration J. Neurosci., January 13, 2016 • 36(2):532–547 • 537



CANN evolves into one of many smooth bell-shaped bumps (an
attractor state, solid line in Fig. 2E). Moreover, the activity bump
state will be stabilized at a position (in feature space) that has
maximal overlap with the input (Fig. 3C), achieving a template-
matching operation that essentially infers the underlying stimu-
lus value near a maximal likelihood estimator (Denève et al.,
1999; Wu et al., 2002).

Because the position of the population activity bump can thus
be interpreted as the estimate of the CANN given noisy sensory
information, for example, the current guess that the neural sys-
tem has about the heading direction, a CANN is an ideal imple-

mentation of a local processor in the decentralized architecture.
Therefore, in our model, each local processor is modeled by a
CANN that receives direct cue (feedforward) input from an uni-
sensory brain area (Eq. 4), such as MSTd (VIP) receives feedfor-
ward inputs about visual (vestibular) information from MT
(PIVC) (compare to the scheme in Fig. 2B). The feedforward
inputs are localized bumps corrupted by (multiplicative) noise,
so that the height of input bump � encodes the reliability of
external stimulus (Eq. 4). The current estimate of a local network
about the heading direction, that is, the bump position, is re-
ferred to as ẑ. Note that, in response to a localized noisy bump
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input, the height of network’s response increases superlinearly
(due to divisive normalization) with the reliability of network’s
estimation (Fig. 2F) (Denève et al., 2001; Denève and Pouget,
2004; Ma et al., 2006).

To achieve information exchange between local processors,
we assume that CANN modules are interconnected. We show
below that, if reciprocal connections between individual CANN
modules are defined in a translation-invariant manner similar to
the recurrent connections (Fig. 2C), the model system naturally
integrates information from two cues and thus implements a
decentralized information integration system. Figure 3 illustrates
the dynamics of information integration in a decentralized sys-
tem. To simulate a typical cue integration experiment, we first
applied two single cues individually and then applied both of
them simultaneously (Fig. 3A). Figure 3B shows the population
activities in response to two congruent cues both centered at 0°.
When two cues were simultaneously presented, the networks’
responses increased compared with single-cue conditions and the
variance of the networks’ estimates (bump positions, Fig. 3C) in
turn decreased (Fig. 3D,E), indicating that each network success-
fully integrated information from two sources.

To understand the network dynamics theoretically, we first
looked at the dynamics of the estimation within an individual
processor (CANN module) without connection to other proces-
sors. By simplifying the full network dynamics of a single proces-
sor (by ignoring distortions of the activity bump across cue
conditions), we found that the current local estimate ẑ (the bump
position) can be written as follows (see Eq. 5– 8 in Materials and
Methods):

dẑ�t�

dt
� �h� 	 ���t�� � hẑ�t� (32)

where h� 	 ���t� represents the input signal centered at �, with
the effective strength h corrupted with independent Gaussian
noise ��t� of effective strength �. Note that the effective strengths
are nonlinearly dependent on network and input parameters (see
Eq. 11). From the dynamics in Equation 32, one notes that, if the
current bump position corresponds to the input cue value �, it
will be only driven by noise (of zero mean) and thus on average
deliver the correct estimate. If the processor’s current estimate is
inaccurate, it will update its estimate according to the deviation
between the input and the current estimation and thus eventually
arrive at the correct estimate.

If now two processors are coupled together (as in Fig. 2B), the
dynamics of the estimate in network 1 can be approximated as
follows (see Eq. 9 and 10 in Materials and Methods; the estimate
of network 2 is obtained by relabeling):

dẑ1�t�

dt
� ��h1�1 	 �1�1�t�� � h1ẑ1�t�� 	 grp� ẑ2�t� � ẑ1�t��

(33)

The additional term in comparison with Equation 32 is related to
the communication between networks. Namely, the difference
between the two local estimates, grp� ẑ2�t� � ẑ1�t�� conveys the
information of cue 2 and is additionally used to adjust the net-
work’s estimate (grp is related to the coupling strength, see
Materials and Methods). Therefore, communication through re-
ciprocal connections enables each processor to integrate infor-
mation from multiple modalities.

If the information from two cues is combined together, one
would expect that the reliability of the joint estimate increased.

Consider that the two networks received two congruent and
identical cues, that is, the cues have the same intensity h1 �
h2 � h and the same feature value �1 � �2 � �. If the networks
are uncoupled (grp � 0), each network will deliver an unbiased
estimate, 
ẑ� � � with variance V� ẑ� � �2/2h (set glm zero in
Eq. 17). Note that the variance V� ẑ� is a decreasing function with
activity bump height, indicating that the bump height encodes
the reliability. When two networks are reciprocally coupled, the
variance of the estimates of both networks becomes V� ẑ� �
�2

4 �1

h
	

1

h 	 2grp
	, which decreases with the effective reciprocal

coupling strength grp, implying that the reciprocal connections
convey the information from other cues to improve the accuracy
of each network’s estimate. These theoretical predictions of the
variances correspond well with the simulations (red dashed line
in Fig. 3E).

Together, we found that a system of interconnected CANN mod-
ules fulfills the requirements that are conceptualized in the decen-
tralized framework of information integration: local processors
compute local estimates and reciprocal interactions are used to cor-
rect the estimates by integrating information from other processors.
However, whether information is integrated in an ideal way remains
to be seen. We next introduce a Bayesian observer to evaluate the
performance of the information integration of the decentralized sys-
tem and then compare the network’s estimation with the Bayesian
observer in both theory and simulation.

General Bayesian observer of multisensory integration
To assess the performance of information integration in the de-
centralized system, a Bayesian observer is needed as a benchmark
(Ernst, 2006; Clark and Yuille, 2013). We consider a Bayesian
observer for a general form of multisensory integration (Shams et
al., 2005; Bresciani et al., 2006; Ernst, 2006; Roach et al., 2006). In
many previous studies about multisensory integration, it is as-
sumed a priori that a single stimulus gives raise to multiple sen-
sory representations (cues) that are then fully integrated into an
unified percept (Ernst and Banks, 2002). However, more gener-
ally, sensory evidence about an entity of interest, such as the
heading direction, might instead originate simultaneously from
different physical sources. For instance, the optical flow of the
visual field and the body acceleration are of completely different
physical origin, but still simultaneously accessible by the visual
system and the vestibular system, respectively. Both physical
sources may only contain some partial information about the
heading direction, which can nevertheless be extracted and inte-
grated to arrive at a better estimate of the heading direction than
either cue would deliver on its own. Therefore, in our framework,
we suppose that two sensory cues c1 and c2 are generated by two
distinct stimuli s1 and s2, respectively, and assume that these two
stimuli have some systematic covariation in regard to the entity of
interest. This covariation regulates the extent of how much the
two cues are informative for the inference of either of the stimuli
s1 or s2. We will see below that, if the covariation of the stimuli is
weak, one cue does help little about inferring the other and both
cues should be (nearly) independently processed and could give
raise to two different percepts. Conversely, if both stimuli are
strongly correlated, then both cues should be (nearly) fully inte-
grated to arrive at improved estimates.

Mathematically, under the assumption that the noise processes
of the two cues given two stimuli are independent with each other,
the posterior distribution p�s1, s2 � c1, c2� satisfies the following:

p�s1, s2 � c1, c2��p�c1 � s1� p�c2 � s2� p�s1, s2� (34)
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where p�cl � sl� �l � 1, or 2) is the likelihood function indicating
the probability that a particular value of cue cl is generated from a
given stimulus sl and is modeled as a Gaussian distribution with
mean �l (stimulus feature value in Eq. 4) and variance �l

2 (pro-
portional to input intensity �l in Eq. 4). p�s1, s2� is called the
combination prior, which specifies the probability of the pres-
ence of s1 and s2. Here, we set it to be a Gaussian function of the
discrepancy between two stimuli (Bresciani et al., 2006; Roach et
al., 2006; Sato et al., 2007) as follows:

p�s1, s2� �
1

�2��cpLs

exp ��
�s1 � s2�

2

2�cp
2 � (35)

Ls is the width of feature space, for example, 2� for heading
direction. Note that the prior of either stimulus, p�sl� �l � 1 or 2), is
still a uniform distribution.

The combination prior given by Equation 35 specifies the a
priori similarity between two stimuli that give raise to the two
cues, respectively. Importantly, in the integration process, this
combination prior determines the extent for the two cues to be
integrated. Let us consider two extreme examples. When �cp �
0, p�s1, s2� becomes a delta function ��s1 � s2�, then the two
marginal posterior distributions are exactly the same, that is,
p�s1 � c1, c2� � p�s2 � c1, c2�, meaning that two cues should be fully
integrated into a unified percept (Ernst and Banks, 2002). In the
case �cp � �, the combination prior is flat and each cue should
be processed independently without any integration because no
useful information can be obtained from one modality to predict
the stimulus value of the other. In the case of 0 � �cp � �, two
cues should be partially integrated, meaning that the estimated
values of s1 and s2 can be different, but nevertheless the estimate
of one of them uses the cue information from the other. In this
study, we consider the general situation that �cp can take different
values and treat full integration as a special case.

The posterior of stimulus 1 can be obtained by marginalizing
the joint posterior distribution as follows (the posterior for stim-
ulus 2 has similar form by interchanging indices 1 and 2):

p�s1 � c1, c2� � �p�s1, s2 � c1, c2�ds2

�p�c1 � s1��p�c2 � s2� p�s1, s2�ds2 (36)

Note that p�c2 � s1���p�c2 � s2�p�s1, s2�ds2 due to the conditional
independence of two cues. Because a flat prior distribution of
each stimulus and accordingly a flat prior distribution of each cue
(from Eq. 35), we have the following:

p�s1 � c1, c2��p�s1 � c1� p�s1 � c2� (37)

Because of this factorization of the marginal posterior, the mean
and variance of the estimate for each stimulus under combined
cues can be derived from the mean and variance under single cues
(Ernst, 2006) as follows:

V� ŝ l � c1, c2�
�1 � V�ŝl � c1�

�1 	 V�ŝl � c2�
�1 (38)


 ŝ l � c1, c2�

V� ŝ l � c1, c2�
�


 ŝ l � c1�

V� ŝ l � c1�
	


 ŝ l � c2�

V� ŝ l � c2�
, l � 1, or 2

(39)

In more detail, the mean and variance of s1 and s2 can be found as
follows:


ŝ � c1, c2� �
1

�1
2 	 �2

2 	 �cp
2 � �2

2 	 �cp
2 �1

2

�2
2 �1

2 	 �cp
2 �� �1

�2
�

(40)

Cov�ŝ � c1, c2� �
1

�1
2 	 �2

2 	 �cp
2 � �1

2��2
2 	 �cp

2 � �1
2�2

2

�1
2�2

2 �2
2��1

2 	 �cp
2 � �
(41)

where s � �s1, s2�
T. The mean and variance of the stimulus esti-

mates under single-cue conditions can be found by formally let-
ting �2 ¡ � (cue 1 condition) or �1 ¡ � (cue 2 condition). We
see that the prior parameter �cp determines the extent of integration:
when �cp � 0, 
ŝ1� � 
ŝ2� � ��2

2�1 	 �1
2�2�/��1

2 	 �2
2�, the esti-

mates of two networks are identical and full integration happens
(Ernst and Banks, 2002); when �cp � �, ŝ1 � �1, and
ŝ2 � �2, implying that the two cues are not integrated at all.

Equations 38 and 39 show how to integrate estimates under
single-cue conditions optimally with associated uncertainties into
combined estimates for two stimuli, which are used as the criteria
for judging whether optimality is achieved in an information
integration system (Ernst and Banks, 2002; Ma et al., 2006).

Decentralized system implements a general
Bayesian observer
To compare the information integration of the decentralized system
to the integration predicted by the Bayesian observer, we thus com-
pared the means and variances of the network estimations in single
cue and combined cue conditions. Because the dynamics of each
network’s estimate could be approximated in closed form (Eq. 9 and
10), we can compute the mean and variance of the estimates in
analytical terms. We found that, in the case of two symmetrically
connected network modules (for a general solution, see Eq. 16 and
17), the results are given by the following (to distinguish the network
estimation and Bayesian observer, the estimation of network and
Bayesian observer are denoted as ẑ and ŝ respectively):

If only cue 1 is presented �h1 � h; h2 � 0�:


ẑ � c1� � � �1

�1
�, Cov(ẑ � c1) �

�2

2 � h�1 h�1

h�1 grp
�1 	 h�1 �

(42)

Only cue 2 �h1 � 0; h2 � h�:


ẑ � c2� � � �2

�2
�, Cov(ẑ � c1) �

�2

2 � grp
�1 	 h�1 h�1

h�1 h�1 �
(43)

Combined cues �h1 � h2 � h�:


ẑ � c1, c2� �
1

2h�1 	 grp
�1� grp

�1 	 h�1 h�1

h�1 grp
�1 	 h�1 �� �1

�2
�
(44)

Cov(ẑ � c1, c2) �
�2

2�2h�1 	 grp
�1�

� � �grp
�1 	 h�1�h�1 h�2

h�2 �grp
�1 	 h�1�h�1 � (45)

It is straightforward to verify that information integration in the
two coupled networks of the decentralized system (Eq. 42– 45)
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satisfy exactly the prediction of the Bayesian observer (Eqs., 38
and 39); that is:

V� ẑl � c1, c2�
�1 � V� ẑl � c1�

�1 	 V� ẑl � c2�
�1 (46)


ẑl � c1, c2�

V� ẑl � c1,c2�
�


ẑl � c1�

V� ẑl � c1�
	


ẑl � c2�

V� ẑl � c2�
, l � 1, or 2

(47)

Therefore, network l is an optimal estimator for stimulus l. Inter-
estingly, by comparing estimation results of the decentralized
system (Eq. 44 – 45) and the Bayesian observer (Eq. 40 – 41) with
�1 � �2, we see that the reciprocal connections between the two
networks encode the combination prior and thus determine the
extent of integration; that is:

grp
�1��cp

2 (48)

Similarly, the effective input strength represents the reliability of
input cue:

h�1��2 (49)

Notably, when full Bayesian integration is considered, it requires
�cp � 0, so grp � �; that is, the reciprocal connection strength
is infinitely strong. In such a case, the two networks effectively
collapse into a single network and the system becomes equivalent

to a system having only a single dedicated integration area as
proposed previously (Ma et al., 2006).

Although the information integration is optimal for the spe-
cial case used in the theoretical analysis above, the so far approx-
imated nonlinear dependence of the effective strengths grp, h, and
� on network and input variables may nevertheless cause the
integration in the full model to deviate from the Bayesian ob-
server. Therefore, to determine whether optimal integration still
holds without approximations and if the theoretic result gener-
alizes to a wider parameter regime, we next performed numerical
simulations.

In the simulations, for each network, the Bayesian prediction
under the combined cue condition was calculated by substituting
the estimates under single-cue conditions into Equations 46 and
47. This approach is similar to experimental studies in which the
estimations of MSTd (VIP) neurons in the combined cue condi-
tion are predicted by using the responses of MSTd (VIP) neurons
under single-cue conditions (Gu et al., 2008; Chen et al., 2013).
Figure 4A shows an example of the joint estimates of both net-
works under all three stimulus conditions. When only cue 1 was
present, the estimates of both networks were centered at �1 and
network 1 had smaller estimation variance than network 2 be-
cause network 2 received the input indirectly via network 1. This
result is in accordance with the prediction of the Bayesian ob-
server: V�ŝ2 � c1� � �1

2 	 �cp
2 is larger than V�ŝ1 � c1� � �1

2 (set

A B C

D E F

Figure 4. Optimal information integration in two reciprocally connected networks. A, Example of joint estimations of two networks under three cueing conditions, with the marginal distributions
plotted on the margin. B, Estimation variance and weight of cue 1 of network 1 when changing the intensity of either cue and fixing the intensity of another. Symbols: network results; lines: Bayesian
prediction. C, Estimation variance and weight of direct cue (feedforward cue) of both networks with reciprocal connection strength. D, E, Comparisons of the mean (D) and variance (E) of the network
estimate during the combined cue condition with the Bayesian prediction (Eq. 46 and 47) for different combinations of intensities for two cues (dots). Red star is an example parameter used in Figures
5, 6, and 7. F, Deviations of weight with deviations of variance of network’s estimations. Red dots are deviations of network’s estimations shown in D and E. Parameters: �1, �2 	 �0.4, 1.5�Um

0 ,
(B–E) Jrc � 0.5Jc, Jrp 	 0.5Jrc; (F ) Jrc � �0.4, 0.6�Jc, Jrp 	 �0.2, 0.9�Jrc.
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�2 to � in Eq. 41). The estimates of both networks were reversed
when only cue 2 was presented. In the combined cue condition,
the estimates of the two networks shifted toward a position in
between �1 and �2 and had the smallest variance. Note that the
means of the estimates of the two networks were different in the
combined cue condition when the two cues were disparate, as
required by the Bayesian observer (Eq. 40).

To determine whether the network estimation changed with
cue reliability (represented by the height of the input bump), we
varied the reliability of one cue while fixing the other cue as well
as other network parameters (Fig. 4B). With increasing reliability
of cue 1, the estimation variance of network 1 decreased (blue line
in Fig. 4B top), implying that the reliability of network 1’s re-
sponse increased accordingly and, therefore, the weight of cue 1
in network 1 increased as well (blue line in Fig. 4B bottom).
Analogous results were observed when changing the reliability of
cue 2 while fixing the other parameters (orange lines in Fig. 4B).

Furthermore, we also investigated how the strength of the
reciprocal connections Jrp between two networks influenced the
network estimations (Fig. 4C). Increasing Jrp induced a decrease
of the estimation variance and a decrease of the weight of the
direct cue (the direct cue to network l is cue l) of both networks,
meaning that the estimations of the two networks became closer
to each other, which implies that the two cues were integrated to
a larger extent (Eq. 40 and 41). This result agrees with Equation
48; that is, that the reciprocal connection strength is inversely
proportional to the variance of the combination prior �cp

2 .
Next, we tested the network performance under different

combinations of cue intensities (see Materials and Methods for
the details of the parameter settings). The cue intensities span a
large interval ranging from superadditive to near-saturation re-
gions of the neural responses. Figure 4, D and E, plots the estima-
tion means and variances of both networks versus Bayesian
predictions. Indeed, the simulation results show that each net-
work individually achieved near optimal inference for the
underlying stimulus under a wide range of parameter values (R 2 �
0.979 and 0.972 for the mean and variance, respectively).

We further systematically changed the network and input pa-
rameters and measured the deviations of the integration weight
for the direct cue �wdir�cue (Eq. 28) and the deviation of estima-
tion variance �Var (Eq. 29) from the Bayesian prediction (Fig.
4F). The varied parameters include reciprocal connection
strengths, recurrent connection strengths, and input strengths of
the two cues (see Materials and Methods for details). Expectedly,
because of some nonlinear effects of the network dynamics, the
integration performance deviated from Bayesian predictions for
extreme parameter settings. However, in our testing parameter
region, the deviations of the integration weight of the direct cue
were all bounded in the region of �0.2, and the deviations of the
variance were bounded in the region of �0.32, indicating never-
theless near optimality. Interestingly, in our system, the devia-
tions of the weights were positively correlated with deviations of
the variance, in agreement with experiments in which similar
deviations from optimal behavior were observed (Fetsch et al.,
2009).

Optimal information integration at the single-neuron level
Limited by the available data, electrophysiological experiments
for studying cue-integration focused only on single neuron activ-
ities rather than population responses (Gu et al., 2008; Chen et al.,
2013). In a heading direction discrimination task, it was found
that the optimal integration of visual and vestibular inputs could
be read out in single neurons’ activities (Gu et al., 2008; Chen et

al., 2013). To test whether similar optimal integration behaviors
are achieved on a single-neuron level in our model, we mimicked
the experimental setup and simulated a discrimination task in
which the heading direction � is judged as being above or
below 0° based on the single neuron’s activities. We investigated
whether the actual discrimination performance of an example
neuron during combined cues can be predicted from the single-
cue conditions when using Bayesian inference (Fig. 5; see Eq. 30).
Figure 5D shows the neuronal discrimination thresholds of an
example neuron across trials. The threshold in the combined cue
condition was significantly smaller than the threshold in cue 1
(p � 1.22 � 10�40, n � 50, unpaired t test) and cue 2 condi-
tions (p � 8.64 � 10�44, n � 50, unpaired t test), indicating
that the integration of two cues happened. Although the com-
bined threshold was significantly greater than the predicted value
(p � 0.044, n � 50, unpaired t test), the combined threshold was
only 2% greater than the predicted one, indicating near optimal
integration. This result shows that our model reproduces the
experimental finding on the integration behavior of single neurons.

Empirical principles of multisensory integration
We found that our decentralized system can also reproduce some
characteristic properties of neuronal responses observed during
multisensory integration, including the inverse effectiveness, the
spatial principle, and the reliability-based combination (Fetsch et
al., 2013).

Inverse effectiveness states that the amplification effect of
combined cues compared with single-cue conditions is weakened
for strong input (Stein and Stanford, 2008). Figure 6A (left) dis-
plays the responses of an example neuron in three stimulus con-
ditions with varying cue intensities (see details in Materials and
Methods). With increasing cue intensities, the combined neuro-
nal response increases, but the amplification effect of combined
responses compared with the sum of single-cue responses be-
comes smaller, indicating that the inverse effectiveness is
achieved. For weak intensity, the neuronal response to com-
bined cues was larger than the sum of its responses to two
individual cues, exhibiting a superadditive tendency, whereas,
for strong inputs, the combined neuronal response was smaller
than the sum of the single-cue responses, exhibiting a subadditive
tendency.

This amplification of the response during combined cues is
known to be modulated by the amount of disparity between two
cues. This effect is called the spatial principle (Fetsch et al., 2013).
Our system could reproduce this effect. When two cues were
congruent, the combined neuronal response was larger than its
response to either of the cues, exhibiting cross-modal enhance-
ment (Fig. 6A, left). When the disparity of two cues was large
enough, the response of the neuron became weaker than its re-
sponse to the more reliable cue, exhibiting cross-modal suppres-
sion (Fig. 6A, right). This property originates from the divisive
normalization in the network dynamics, as pointed out by
(Ohshiro et al., 2011): when the disparity of two cues is large, cue
2 excites the example neuron weakly but still contributes effec-
tively to the inhibitory neuron pool, which in turn more strongly
suppresses the example neuron compared with the inhibition in
the single-cue condition.

Finally, responses of single neurons to combined cues are re-
liability dependent. This effect is called reliability-based combi-
nation (Morgan et al., 2008) and could also be reproduced by our
model system. Figure 6B shows the bimodal tuning curves of an
example neuron in network 1 with varied cue 1 intensities while
with other parameters were fixed. With a large intensity value of
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cue (left panel in Fig. 6B), the bimodal response of the example
neuron was dominated by cue 1, meaning that the firing rate of
the example neuron was affected more significantly by changing
cue 1 than changing cue 2. With declining intensity of cue 1, the
bimodal tuning curve of the neuron became gradually dominated
by cue 2. By fitting the bimodal turning curve as a linear combi-
nation of the unimodal tuning curves of the same neuron (Eq.
31), R 2 is 0.96, 0.90, and 0.93 for decreasing intensity of cue 1 �1),
we found that when the reliability of cue 1 increased, the weight of
cue 1 also increased; whereas the weight of cue 2 decreased.

In summary, single-neuron activities of our model system
were in good agreement with a number of empirical multisensory
integration principles.

Information integration of multiple cues
In reality, the brain often needs to integrate information from
more than just two sensory cues (Wozny et al., 2008). A decen-
tralized integration system is very flexible due to its modular
structure and thus can be easily extended to an arbitrary number
of coupled network modules with each of them receiving and
processing an individual cue. For example, to integrate three
cues, a third network, which receives cue 3, can be added directly

to the aforementioned system (Fig. 7A).
Furthermore, in the general case of inte-
gration of N cues, a decentralized system
can be further extended to comprise N
modules that are reciprocally connected
in an all-to-all fashion and each module
receives feedforward inputs from its cor-
responding cue. The means and variances
of network estimations under all cueing
conditions are derived in the Materials
and Methods section (Eq. 18 –21). For
simplicity, we assumed that all networks
and inputs have the same parameters. The
results indicate that the distribution
of the estimates of network l satisfies the
following:

p� ẑl � cl,
i�lci��p� ẑl � cl�p� ẑl � 
i�lci�

(50)

The above equation means that the distri-
bution of the estimates of network l can be
factorized as the products of the distribu-
tion under cue l condition (direct cue of
network l ) and the one under condition
of all cues combined except cue l,
p� ẑl � 
i�lci�. However, the latter distribu-
tion cannot be further factorized so that it
is in general not proportional to

i�lp� ẑl � ci�. This is because network l re-
ceives the information of other cues only
indirectly from other networks and the re-
ciprocal connections induce correlation
between the indirect cues.

Does this incapability of factorization
imply that the integration of indirect cues is
suboptimal in the decentralized system?
This will depend on the Bayesian observer
used for the comparison. From the analysis
above, we know that the reciprocal connec-
tion between network 1 and 2 represents the
combination prior p�s1, s2� of the Bayesian

observer. Because networks are only connected in a pairwise man-
ner, prior information beyond the pairwise interaction seems im-
possible to represent in the network. Indeed, we found that when the
combination prior of the extended Bayesian observer has the prod-
uct of Gaussian form (see Eq. 24) as follows:

p�s1, s2, …, sN� �
1

Z�i�j
p̃�si, sj�

�
1

Z
exp� �

�i�j�si � sj�
2

2��N/ 2�cp�
2�, i, j 	 �1, N�

(51)

where the integration of the decentralized system is still optimal,
that is, network l is an opimal estimator for stimulus l through
integrating its feedforward inputs from cue l and reciprocal in-
puts from other networks (see Eq. 18 –21 and 25–27 for the der-
ivation and unshaded bars in Figure 7B). Analogous to the system
consisting of only two networks, each component of p̃�si, sj� in
Equation 51 is represented by the reciprocal connection between
network i and network j.
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Robustness against failure of modules
A key advantage of the decentralized ar-
chitecture is its robustness to damage in
local networks. For our model, we found
that, although some cues can become in-
accessible (but this problem can be re-
solved by cross-cue connections shown as
the dashed lines in Fig. 1D), the damage of
one or a few network modules does not
impair the optimality of two cue integra-
tion in still intact networks, meaning
that the network estimations under
combined cue condition can be also pre-
dicted by using Equations 38 and 39. For
example, in a system that consists of
three networks receiving three cues,
network 1 and 2 optimally integrated
cues 1 and 2 regardless of whether net-
work 3 was damaged; that is,
p� ẑl � c1, c2��p� ẑl � c1�p� ẑl � c2�, l � 1, 2
(Fig. 7B; p � 0.40 and 0.27 when compar-
ing the network variance with the predic-
tion with or without blocking network 3,
respectively; n � 100, unpaired t test).
However, the neural activity of the intact networks nevertheless
changed in response to the damage. For example, a loss of net-
work 3 caused the variance of the estimates in networks 1 and 2 to
increase even though cue 3 was absent (Fig. 7B and Eq. 18 –21 in
Materials and Methods). This change can be understood from
two perspectives. From the perspective of network dynamics, the
existing connections between networks help to average out noise

(Zhang and Wu, 2012; Kilpatrick, 2013). Therefore, the more
excitatory connections a network module receives, the smaller
the variance of its estimate, so losing a connection due to dam-
age consequently increases the variance. Conversely, from the
perspective of the Bayesian observer, the loss of network 3
changes the effective prior for the integration of cue 1 and 2, from
p3�s1, s2� � �p�s1, s2, s3�ds3 to p̃�s1, s2�. From Equation 24 (the
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case of N � 3), we see that the variance of the integration prior
increases from �cp

2 to 3�cp
2 /2, thus increasing the variance of the

estimation (Eq. 41). This property might explain the recent ex-
perimental finding that, whereas the integration of visual and
vestibular cues can still satisfy the Bayesian prediction (Eq. 38)
after blocking MSTd, the overall behavioral accuracy nevertheless
decreased (Gu et al., 2012).

Discussion
In the present study, we have explored how several brain areas
could work together to integrate information optimally in a de-
centralized manner. Decentralized computing has been favored
by engineering applications due to its robustness, computational
efficiency, and modularity (Durrant-Whyte and Henderson,
2008). Similar concepts, such as parallel and distributed process-
ing, have been long proposed as the basis of brain functions (Ru-
melhart et al., 1988) and the idea of decentralized integration was
discussed previously (Sabes, 2011). However, how decentralized
information integration might be achieved in neural circuitry is
not known. Here, we have shown that interconnected network
modules can build up a decentralized information integration
system in a biologically plausible manner. Most importantly, the
resulting system is capable of integrating information from dif-
ferent cues and estimating multiple stimuli in a near-optimal
way.

Comparison with previous approaches
In contrast to a decentralized system, a centralized architecture is
similar to the hypothesis of having one dedicated multisensory
area that pools incoming sensory information as assumed by a
number of modeling studies on multisensory integration (Ma et
al., 2006; Alvarado et al., 2008; Magosso et al., 2008; Ursino et al.,
2009; Ohshiro et al., 2011). In regard to the anatomy, the finding
of many interconnected multisensory areas favors the decentral-
ized system. Taking visual–vestibular integration system as an
example, not one single area, but instead many areas, including
MSTd (Gu et al., 2008), VIP (Chen et al., 2013), the frontal eye
field (Gu et al., 2015), and visual posterior sylvian area (Chen et
al., 2011b), display integrative responses to combined visual and
vestibular inputs. Apart from feedforward connections from
unisensory areas, abundant reciprocal connections exist be-
tween multisensory areas (Boussaoud et al., 1990; Baizer et al.,
1991).

Ma et al., 2006 found that a single
dedicated network could implement a
Bayesian observer with full integration as
follows:

p�s � c1, c2, …, cN��� l�1

N
p�cl � s�

(52)

where two or multiple cues are fully in-
tegrated into an unified percept. In con-
trast, the decentralized architecture
implements a Bayesian observer of the
form:

p�s1, s2, …, sN � 
 lcl��

�� lp�cl � s��p�s1, s2, …, sN� (53)

which estimates the values of multiple
stimuli simultaneously, integrating infor-

mation from other cues to an extent that is regulated by the form
of the combination prior. Whether one or the other Bayesian
observer is more plausible for describing the information inte-
gration in neural systems likely depends on many aspects, such as
the nature of the features to be integrated, the neural sites, and
sensory modalities in questions. Human psychophysical studies
suggest that, depending on cueing conditions, the brain may use
different strategies to integrate multisensory information, from
full to partial and to no integration at all (Hillis et al., 2002; Shams
et al., 2005; Ernst, 2006). Therefore, both Bayesian observers
might be offer a valid description in certain situations.

Reciprocal connections in the decentralized system
We found that the combination prior p�s1, s2, …, sN� of the ob-
server is encoded by the reciprocal connections between net-
works: the variance of the combination prior, �cp

2 , which
measures the similarity between stimuli and thus determines the
extent of integration, is represented by the inverse of the effective
reciprocal connection strength between networks, grp

�1. There-
fore, the decentralized system gives a new explanation for the
abundance of reciprocal connections between the many existent
multisensory areas.

From Equations 40 and 41, we see that the conventionally
used criteria for Bayesian integration are always satisfied regard-
less of the value of �cp

2 . This raises the question of how the
strength of reciprocal connections should be determined for in-
formation integration. Because the strength of the reciprocal
connection regulates the integration extent in the network, it
should be adjusted to match the real distribution of stimuli in the
natural environment, such that the estimates of the networks are
closest statistically to the true stimulus values (Körding and Wol-
pert, 2004; Körding et al., 2007).

Moreover, in a naturally dynamical environment, the under-
lying relation between two presented cues might vary over time,
implying that the extent of integration, �cp, need to be adjusted
accordingly. The decentralized system provides a promising
framework to achieve this adaptability by dynamically learning or
transiently modulating the effective reciprocal strength between
two networks.

Reciprocal connections were also considered previously in a
modeling study on coordinate transformation (Denève et al.,
2001; Pouget et al., 2002; Avillac et al., 2005). However, the com-

A B

Figure 8. A, Deviation of network variance with additivity index. The additivity index is the ratio of the peak firing rate (bump
height) under combined cue condition and the sum of the two peak firing rates under both single-cue conditions. The parameters
are the same as in Figure 4F. B, M-shaped covariance structure between two neurons in decentralized system, which is a symbol of
CANN. �1 and �2 are the preferred direction of the two neurons. When the stimulus is in between the preferred directions, the two
neurons display negative correlation; otherwise, their activities are positively correlated.
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putations involved in coordinate transformation and multisen-
sory integration are fundamentally different (Beck et al., 2011)
and thus are not comparable to the reciprocally connected net-
works within the framework of decentralized information
integration.

Plausibility and predictions of the model
In our framework, each network module is modeled as a CANN.
CANNs have many interesting computational properties and are
thus widely used to explain many cortical functions, including
the population decoding of orientation (Ben-Yishai et al., 1995),
spatial location (Samsonovich and McNaughton, 1997), and
working memory (Compte et al., 2000). Moreover, it has been
shown that a single CANN can optimally compute one sensory
quantity (Denève et al., 1999; Wu et al., 2002). The recurrent
connections within a CANN serve as the basis for estimating a
sensory quantity from noisy inputs, whereas divisive normaliza-
tion was shown to provide realistic nonlinear neural responses
(Carandini et al., 1997; Ohshiro et al., 2011). Interestingly, opti-
mal integration in a decentralized system with CANNs requires
subadditivity of neuronal responses (Fig. 8A), which is in agree-
ment with the finding of subadditive neuronal responses in mul-
tisensory areas (Morgan et al., 2008; Fetsch et al., 2013). The
subadditivity in case of optimal integration in the decentralized
network originates from the property that reliability increases
superlinearly with bump height (Fig. 2F).

One way to test experimentally whether sensory areas might
indeed be implemented by CANNs is to look for any M-shaped
correlation structure between neighboring neurons’ activities
(Fig. 8B), a hallmark of the translation-invariant connectivity
(Ben-Yishai et al., 1995; Wu et al., 2008). Recent experimental
data indeed suggests an M-shaped correlation between neurons
in MT (Ponce-Alvarez et al., 2013) and in the prefrontal cortex
(Wimmer et al., 2014), which supports the idea that CANNs
provide biologically plausible computational modules for a de-
centralized information integration architecture. A recent study
pointed out that the M-shaped correlation limits the information
capacity of a neural ensemble (Moreno-Bote et al., 2014). Certain
information loss in CANNs is indeed inevitable because of their
neutrally stable dynamics, which is a key property leading to
many computational advantages. This neutral stability implies
that noise components along the direction of bump position shift
cannot be effectively averaged out, leading to potential informa-
tion loss (these fluctuations can only be average out over time,
not space; Wu et al., 2008). Nevertheless, for general independent
noises, the information loss caused by the noise component along
the direction of bump position shift is rather small, suggesting
that using CANNs is still an efficient way to extract stimulus
information in practice (Denève et al., 1999).

In a decentralized system, neurons in different areas are recip-
rocally connected, so activities of connected areas should be cor-
related. This prediction is supported by fMRI and EEG studies
(Vincent et al., 2007; Senkowski et al., 2008). Note, however, that
our framework is not restricted to model information integration
across brain areas but may also be readily applied to information
integration between layers or between hypercolumns within a
single brain area. For instance, in the superior colliculus, where
visual and auditory information are integrated (Stein and Stan-
ford, 2008), the decentralized idea may be also applicable. Ana-
tomically, the superficial layers of the superior colliculus receive
solely visual inputs, whereas the deep layers receive solely audi-
tory inputs. As long as the superficial and deep layers are

reciprocally connected, it is possible that they constitute a
decentralized integration system.

For simplicity, we ignored cross-cue connections between
modules (dashed lines in Fig. 1D). Experiments found that the
MSTd neurons have relatively shorter latency than VIP neurons
in response to visual inputs (Gabel et al., 2002), whereas VIP
neurons respond relatively faster than MSTd neurons to vestib-
ular inputs (Chen et al., 2011a). This observation indicates that
direct- and cross- feedforward connections function differently
(otherwise, their response latencies would be comparable) and
that, as an approximation, the contribution from the cross-
feedforward connections can be regarded as included in the re-
ciprocal connections (because they are both slower than the
direct-feedforward connections and convey the same cross-cue
information). Nevertheless, the cross-feedforward connections
could be important in other aspects of information integration;
for example, they could ensure that all cues remain accessible in
case of a network module failure.

Whether MSTd and VIP and other reciprocally connected
cortical areas in posterior parietal cortex constitute a decentral-
ized system could be tested with electrophysiological experi-
ments. According to the estimations of decentralized system (Eq.
44 and 45), when visual (vestibular) cue is presented, the discrim-
ination thresholds of MSTd neurons should be smaller (larger)
than that of VIP neurons. Another prediction is that if partial
integration happens (which can only be implemented by a decen-
tralized system), the estimation means from MSTd and VIP neu-
rons are different when two cues are disparate (Eq. 44). This can
be verified by comparing the weights of the visual cue estimated
from MSTd neurons and VIP neurons.
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