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The Neural Representation of Goal-Directed Actions and
Outcomes in the Ventral Striatum’s Olfactory Tubercle

X Marie A. Gadziola1 and X Daniel W. Wesson1,2

Departments of 1Neurosciences, School of Medicine, and 2Biology, Case Western Reserve University, Cleveland, Ohio 44106

The ventral striatum is critical for evaluating reward information and the initiation of goal-directed behaviors. The many cellular,
afferent, and efferent similarities between the ventral striatum’s nucleus accumbens and olfactory tubercle (OT) suggests the distributed
involvement of neurons within the ventral striatopallidal complex in motivated behaviors. Although the nucleus accumbens has an
established role in representing goal-directed actions and their outcomes, it is not known whether this function is localized within the
nucleus accumbens or distributed also within the OT. Answering such a fundamental question will expand our understanding of the
neural mechanisms underlying motivated behaviors. Here we address whether the OT encodes natural reinforcers and serves as a
substrate for motivational information processing. In recordings from mice engaged in a novel water-motivated instrumental task, we
report that OT neurons modulate their firing rate during initiation and progression of the instrumental licking behavior, with some
activity being internally generated and preceding the first lick. We further found that as motivational drive decreases throughout a
session, the activity of OT neurons is enhanced earlier relative to the behavioral action. Additionally, OT neurons discriminate the types
and magnitudes of fluid reinforcers. Together, these data suggest that the processing of reward information and the orchestration of
goal-directed behaviors is a global principle of the ventral striatum and have important implications for understanding the neural
systems subserving addiction and mood disorders.
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Introduction
Goal-directed behaviors are widespread among animals and
underlie complex behaviors ranging from food intake, social
behavior, and even pathological conditions, such as gambling
and drug intake. All goal-directed behaviors share the neces-
sity to evaluate available reward and motivational information

to select an appropriate action, and are defined by their sensi-
tivity to changes in outcome value and the action-outcome
contingency (Dickinson and Balleine, 1994; Redgrave et al.,
2010). The ventral striatum, containing both the nucleus ac-
cumbens (NAc) and olfactory tubercle (OT), serves as a
“limbic-motor interface” (Mogenson et al., 1980). The ventral
striatum receives a complex array of sensory and contextual
information from cortical, amygdalar, hippocampal, tha-
lamic, and midbrain dopaminergic afferents. Further, the ven-
tral striatum sends efferent projections to the ventral pallidum
and substantia nigra to influence basal ganglia output struc-
tures (for review, see Ikemoto, 2007; Haber, 2011). These con-
nections place the ventral striatum in a critical position for
evaluating reward information, and in turn, to influence the
motivational control and execution of appropriate behavioral
actions (Mogenson et al., 1980; Cardinal et al., 2002; Kelley,
2004; Haber, 2011).
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Significance Statement

Goal-directed behaviors are widespread among animals and underlie complex behaviors ranging from food intake, social behav-
ior, and even pathological conditions, such as gambling and drug addiction. The ventral striatum is a neural system critical for
evaluating reward information and the initiation of goal-directed behaviors. Here we show that neurons in the olfactory tubercle
subregion of the ventral striatum robustly encode the onset and progression of motivated behaviors, and discriminate the type and
magnitude of a reward. Our findings are novel in showing that olfactory tubercle neurons participate in such coding schemes and
are in accordance with the principle that ventral striatum substructures may cooperate to guide motivated behaviors.
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As a part of the ventral striatopallidal complex, the NAc and
OT share many morphological and chemical characteristics, with
medium spiny neurons being the principal projection neurons of
both structures (Alheid and Heimer, 1988). The many cellular,
afferent, and efferent similarities between the OT and NAc sug-
gest the distributed involvement of neurons within the ventral
striatum in motivated behaviors. Although the NAc has an estab-
lished role in representing goal-directed actions and their out-
comes (Apicella et al., 1991; Setlow et al., 2003; O’Doherty, 2004;
Taha and Fields, 2005; Day and Carelli, 2007; Roesch et al., 2009;
van der Meer and Redish, 2011; Floresco, 2015), it is not known
whether the OT also partakes in this function. This remains a
major void in our understanding of ventral striatum function and
how motivational information is evaluated to drive goal-directed
behaviors.

The OT influences motivated behaviors. Electrical stimula-
tion of the OT is rewarding, with rats and mice readily self-
administering stimulation (Prado-Alcalá and Wise, 1984;
FitzGerald et al., 2014). Similarly, lesions of the OT decrease mat-
ing behavior in male rats (Hitt et al., 1973) and abolish the pref-
erence of female mice for male chemosignals (Agustín-Pavón et
al., 2014; DiBenedictis et al., 2015). The OT is a target of dopa-
minergic neurons originating in the ventral tegmental area and
may also modulate the salience of drugs of abuse (Ikemoto, 2003,
2007; Ikemoto et al., 2005; Striano et al., 2014). For example,
infusions of cocaine into the OT induces conditioned place pref-
erence in rats (Ikemoto, 2003). Further, rats self-administer co-
caine into the OT more so than the NAc or ventral pallidum
(Ikemoto, 2003), and neurons within the OT exhibit changes in
firing during the self-administration of cocaine (Striano et al.,
2014). Our recent work further revealed that the OT robustly and
flexibly encodes the associated meaning of conditioned cues
(Gadziola et al., 2015). Together, these findings suggest a critical
role for the OT in the encoding of reward-related cues to adap-
tively guide behavior.

Here, we test the hypothesis that OT neurons encode goal-
directed actions and natural reinforcers by implementing a tan-
dem fixed-interval modified fixed-ratio instrumental task in
combination with extracellular multi-wire array recordings in
mice. We find that the firing rate of OT neurons is modulated by
the instrumental behavior (licking) and can encode the type and
magnitude of rewards. Our results illustrate the profound capac-
ity for the OT to represent primary reinforcers in manners likely
essential for driving motivated behaviors.

Materials and Methods
Animals. C57BL/6 male mice (n � 15, 2–3 months of age) originating
from Harlan Laboratories were bred and maintained within the Case
Western Reserve University School of Medicine animal facility. Two
animals did not contribute data because they did not reach criterion
behavioral performance levels. Three animals were used for behav-
ioral measures only. Mice were housed on a 12 h light/dark cycle with
food and water available ad libitum, except when water was restricted
for behavioral training (see below). Postsurgical animals were housed
individually. All experimental procedures were conducted in accor-
dance with the guidelines of the National Institutes of Health and
were approved by the Case Western Reserve University’s Institutional
Animal Care Committee.

Surgical procedures. Surgical procedures were conducted as described
previously (Gadziola et al., 2015). Briefly, mice were anesthetized with
Isoflurane (2– 4% in oxygen, Abbott Laboratories), and mounted in a
stereotaxic frame with a water-filled heating pad (38°C) beneath to main-
tain body temperature. An injection of a local anesthetic (0.05% mar-
caine, 0.1 ml s.c.) was administered before exposing the dorsal skull. A

craniotomy was made to access the OT (�1.8 mm bregma, �1.0 mm
lateral; Fig. 1). An 8-channel micro-wire electrode array (102 �m diam-
eter PFA-insulated tungsten wire, with 4 electrode wires encased together
in a 254 �m diameter polyimide tube) was implanted within the OT (4.9
mm ventral) and cemented in place, along with a headbar for later head
fixation. A second craniotomy was drilled over the contralateral cortex
for placement of a ground wire (127 �m stainless steel wire). For one
cohort of mice (n � 3), electrode arrays were implanted bilaterally within
the OT to increase data yield. During a 3 d recovery period, animals
received a daily injection of Carprofen (5 mg/kg, s.c., Pfizer Animal
Health) and ad libitum access to food and water.

Behavioral task. Mice were mildly water-restricted for 3 d before be-
havioral training on a 24 h water restriction schedule. Bodyweight was
monitored daily and maintained at 85% of their original weight by means
of daily supplemental water. Although C57BL/6 mice normally consume
�3–5 ml of water per day (Mouse Phenome Database from the The
Jackson Laboratory; http://www.jax.org/phenome), physiological adap-
tation and stabilization of body weight occurs with chronic restriction of
water, resulting in the mice only requiring �1–2 ml of water per day to
maintain their restricted weight (Bekkevold et al., 2013; Guo et al., 2014).

Mice were trained in cohorts of three. All behavioral procedures were
performed during the light hours. Across multiple sessions (�1 h dura-
tion), head-fixed mice were trained on a tandem fixed-interval (FI) mod-
ified fixed-ratio (M-FR) task to lick a spout positioned in front of their
snouts for a 4 �l water reward. Mice were required to lick near continu-
ously throughout a 2 s baseline period before reward delivery, enabling us
to independently monitor activity changes in response to the instrumen-

Figure 1. Electrode tip locations within the OT. Coronal panels show the approximate loca-
tion of electrode placement following histologic verification (red ellipses, n � 13 separate
implants from 10 mice; some were bilateral). All recordings had electrode tips confirmed within
the OT, with the majority of tips localized within the anterior portion of the OT. The extent of the
OT is indicated by gray shading. Placement within a specific layer of the OT could not be re-
solved. Sections span from 0.5 to 2.0 mm anterior of bregma, in 0.5 mm intervals.
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tal period and reinforcer. Licking was measured by a pair of infrared
photobeams positioned to cross in front of the lick spout by �2 mm.
Mice were first trained to lick the spout for a water reward according to a
FI(1) schedule (Phase 1). Thus, after the 1 s FI had elapsed, mice were
eligible to receive a 4 �l reward if a single lick response to the spout was
detected. Reward delivery would then initiate the start of a new trial. The
FI was progressively increased from 1 to 11 s, incrementing in 1 s steps. In
Phase 2, a vacuum epoch (2 s duration, 2 L/min flow rate) occurred
within the FI, 6 s after reward delivery, to remove any remaining liquid
(Fig. 2A). Once behavioral stability was reached on the FI(11) schedule,
in Phase 3, mice were transitioned to a tandem FI M-FR schedule, in
which reinforcement only occurred after the two successive schedule
requirements had been met (Fig. 2A). The M-FR schedule was progres-
sively increased until licking was maintained for at least 2.5 s before
triggering reward delivery. In the M-FR schedule, a pause in lick detec-
tion of �300 ms would reset the FR counter back to 1 to ensure that there
was a continuous bout of licking before reward delivery. Mice were re-
quired to complete �20 trials before the M-FR was incremented by 1–2
licks. Final M-FR schedules varied from 16 to 24 licks for different ani-
mals based on their rates of dry licking. No cue was provided at trial start
or to signal when one schedule was complete and the next had begun.

On separate experimental days mice were evaluated under two differ-
ent behavioral sessions. In the first session, a water reward was delivered
at three different volumes (4, 8, and 12 �l). Mice then received additional
training (2– 4 sessions) with the three different reward types (water, sac-
charin, or quinine) to increase the number of trials performed within a
single session. For the second experimental session, all three reward types
were presented at two different volumes each (4 and 12 �l). Both sessions
also included some trials of reward omission (0 �l). Experiments contin-
ued until mice stopped initiating new trials or after 1 h had elapsed. In the
first session mice performed an average of 104 � 25 trials, resulting in a
range of 15– 45 trials per reward type. In the second session mice per-
formed an average of 125 � 28 trials, resulting in a range of 14 –26 trials
per reward type. Mice consumed 0.75 ml of water on average within the
behavioral task and were provided supplemental water as needed in a
dish in their home cage.

Reward delivery. Reward fluids were delivered through a custom 3D-
printed polylactic acid lick spout. The spout contained seven 1 mm holes,
with one hole positioned in the center and the other six arranged in a
circle around the center hole, with �1.7 mm spacing between adjacent
holes. Independent stimulus lines terminated onto 20 G blunted needles
that passed through the holes and extended to the tip of the spout. In the
current task, three adjacent holes on the lick spout were used for reward
delivery, three were connected to a vacuum line, and the last unused hole
was blocked. Reward types included water, 2 mM saccharin and 1 mM

quinine (Sigma-Aldrich; dissolved in water), and could be delivered at
one of three different volumes (4, 8, and 12 �l) by controlling the dura-

tion that fluid-limiting solenoid pinch valves were opened. Reward vol-
umes were calibrated for each reward valve at the beginning of each
experimental session. Placement of reward lines rotated on different ses-
sions. To dampen any potential auditory cues from the different solenoid
valves, valves were housed within a sound-attenuating chamber. Reward
types and volumes were pseudo-randomized throughout the session. No
predictive cues were associated with rewards.

Measuring changes in motivational drive across a session. To test
whether motivational drive to perform the task (i.e., thirst) changed
across the duration of a session, three behavioral measures were exam-
ined. First, a cohort of mice without electrode implants (n � 3) were
trained on the task to receive a 4 �l water reward each trial. Across two
behavioral sessions, these mice were then removed at different time
points in the session to measure ad libitum access water consumption.
Specifically, on different days the mice were removed either early in the
session (after 0.125 ml of water consumption, or 31 trials completed) or
late in the session (after 0.625 ml of water consumption, or 156 trials
completed), which corresponds to the amount of water typically
consumed within the first third and last third of trials, respectively. Fol-
lowing, the mice were immediately transferred to a mouse cage for mon-
itoring of water consumption for 30 min via ad libitum access to metal
lick tubes which allowed measures of both the volume of consumption
and number of licks (based on the designs of Bachmanov et al., 2002;
Hayar et al., 2006; Slotnick, 2009). Mice were maintained at the same
weight on both testing days and had previous experience with the ad
libitum access behavioral setup, receiving their supplemental water dur-
ing 15 min sessions for 5 d before initial testing. As a second measure of
motivational drive, in 10 mice we analyzed the latency to initiate the first
dry lick that resulted in reward delivery after completion of the FI from all
experimental sessions. Finally, as a third measure of motivational drive,
in the same 10 mice we also analyzed the duration of wet licking observed
after delivery of a water reward. This lick bout was defined by the first lick
triggering reward delivery and the last lick that occurred before vacuum
onset.

Reinforcer devaluation test. To assess whether our head-fixed licking
behavior measurement is subject to devaluation and therefore “goal-
directed” (Dickinson and Balleine, 1994; Redgrave et al., 2010), a subset
of water-restricted animals (n � 4) were allowed ad libitum access to
water 30 min before testing. Mice consumed an average of 1.5 � 0.31 ml
of water, with the majority of intake occurring within the first few min-
utes. Immediately afterward, mice were head-fixed within the behavioral
task so that the amount of instrumental behavior in a sated state could be
evaluated. The number of trials completed when sated were compared
with the average number of trials completed in the previous five sessions
that were under normal water-restriction.

In vivo electrophysiology. The output of the electrode array was ampli-
fied, digitized at 24.4 kHz, filtered (bandpass 300 –5000 Hz), and moni-

Figure 2. Experimental trial outline. A, After trial start, head-fixed mice had to first allow an 11 s FI schedule to elapse and were then eligible to receive a reward if the subsequent M-FR schedule
requirements were met. Mice were required to lick from a spout positioned in front of their mouth on a M-FR schedule that would result in continuous licking behavior for �2.5 s. Average M-FR
schedule across all mice was 20 licks (range: 16 –24 licks). Reward was delivered on the last lick of the M-FR schedule and the next trial initiated. This allowed for a 6 s delay to monitor activity changes
following reward delivery, after which a 2 s vacuum was activated to remove any remaining solution on the spout, followed by a 3 s delay before the start of the M-FR schedule. B, Example licking
behavior in response to the task. Dry licks correspond to any licking during the M-FR schedule, whereas wet licks refer to licking upon and following reward delivery up until the onset of the vacuum.
The M-FR schedule did not permit any pause in licking �300 ms, and the counter would be reset if one occurred. C, Average number of trials completed when animals are in a water-restricted or
sated state during a reinforcer devaluation test (n � 4 mice). Gray circles represent values from individual mice.
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tored (Tucker-Davis Technologies), along with licking (300 Hz sampling
rate), and reward presentation events. One electrode wire was selected to
serve as a local reference. Our electrode arrays were fixed in place and no
attempt was made to record from unique populations of neurons on
different sessions. To compensate for the possibility that the same neu-
rons were recorded across multiple days, two different behavioral tasks
were used and statistical comparisons are only made within each task
type. After all recording sessions were complete (between 10 and 21 d),
mice were overdosed with urethane (i.p.) and transcardially perfused
with 0.9% saline and 10% formalin. Brains were stored in 30% sucrose
formalin at 4°C. OT recording sites were verified by histological exami-
nations of slide-mounted, 40 �m coronal sections stained with a 1%
cresyl violet solution (Fig. 1).

Analysis of behavioral and physiological data. Single neurons were
sorted offline in Spike2 (Cambridge Electronic Design), using a combi-
nation of template matching and cluster cutting based on principle com-
ponent analysis. Single neurons were further defined as having �2% of
the spikes occurring within a refractory period of 2 ms. Spike times
associated with each trial were extracted and exported to MATLAB
(MathWorks) for further analysis. To examine modulations in firing rate
within a single trial, spike density functions were calculated by convolv-
ing spike trains with a function resembling a postsynaptic potential
(Thompson et al., 1996). Mean firing rates across trials were measured in
50 ms bins, along with the 95% confidence interval. Mean baseline firing
rate for each neuron was averaged across a 2 s period (�3 to �1 s relative
to the onset of the first dry lick), whereas the mean prestimulus back-
ground firing rate was calculated over a 2 s period before reward delivery.
As we reported previously (Gadziola et al., 2015), baseline firing rates of
OT neurons were low with a median firing rate of 0.9 Hz (interquartile
range: 0.2–9.6 Hz, range: 0 –58 Hz).

To assess changes in activity during the dry lick period, spiking was
aligned to the first dry lick instead of reward delivery, and background
firing was calculated from �3 to �1 s relative to the onset of the first dry
lick. On some trials, mice may have been licking before the first recorded
dry lick (e.g., if licking was initiated before the completion of the FI, or
if any pauses in licking reset the FR counter). Any trial in which the
animal licked during the 2 s period before the first recorded dry lick
was removed.

All statistical tests were two-sided and met assumptions of normality
(Kolmogorov–Smirnov test). Statistical analyses were performed in SPSS
22.0 or MATLAB. All data are reported as mean � SD unless otherwise
noted.

Receiver operating characteristic analysis. The area under the receiver
operating characteristic (auROC) is a nonparametric measure of the dis-
criminability of two distributions (Green and Swets, 1966). To normalize
activity across neurons, we used an auROC method that quantifies
stimulus-related changes in firing rate to the baseline activity on a 0 –1
scale (for more details, see Cohen et al., 2012). A value of 0.5 indicates
completely overlapping distributions, whereas values of 0 or 1 signal
perfect discriminability. We calculated the auROC at each 50 ms time bin
over a 4 s period centered on reward onset for each neuron. Values �0.5
indicate the probability that firing rates were increased relative to the
prestimulus background (excitation), whereas values �0.5 indicate the
probability that firing rates were decreased relative to the prestimulus
background (inhibition). Similar trial numbers have been used for cal-
culating auROC (Veit and Nieder, 2013; Gadziola et al., 2015). To obtain
mean auROC values, the auROC values of individual neurons were av-
eraged at each time bin. In some cases mean auROC values were com-
puted separately for all excitatory and inhibitory neurons.

To evaluate reward-evoked responses, a permutation test was used to
create a null distribution of auROC values �0.5, where the “response”
and “background” firing rate labels were randomly reassigned and cal-
culated 1000 times. Significant auROC bins were determined by testing
whether the actual auROC value was outside the 95% confidence interval
of this null distribution (Veit and Nieder, 2013). Neurons were consid-
ered reward-responsive if there were at least two consecutive significant
bins within a 2 s period from reward delivery, to at least one of the
presented reward types. To evaluate responses during the dry lick period,
the above analysis was repeated, but with spike times aligned to first dry

lick instead of reward onset, and periods of significant modulation were
evaluated before and after the first dry lick.

Results
We monitored OT activity from 10 head-fixed mice that were
trained to lick a spout according to a tandem FI M-FR schedule
for acquisition of a liquid reward (Fig. 2A,B). Water-restricted
mice were trained over successive days (see Materials and Meth-
ods) to display progressively longer bouts of licking to receive a
single reward. Several key components of this task design were
implemented to allow for powerful analysis of the neural data.
The M-FR schedule ensured that mice would continuously lick
the spout for �2.5 s before reward, so that reward delivery was
not confounded by the onset of licking. Mice were also required
to lick at a rate �3.3 Hz to more closely match the licking behav-
ior observed after reward delivery. Last, the FI schedule guaran-
teed a minimum intertrial interval of �11 s in which to
monitor activity. Licks in the window preceding and following
reward delivery are defined as “dry” or “wet” licks, respec-
tively. Thus, this task structure enabled us to monitor changes
in activity in response to the instrumental behavior and rein-
forcer independently.

Trained mice contributed data for two experimental sessions
recorded on different days. In the first session, a water reward was
delivered at three different volumes (4, 8, and 12 �l). Mice then
received additional training with three different reward types
(water, saccharin, or quinine) to increase the number of trials
performed within a single session. For the second experimental
session, all three reward types were presented at two different
volumes each (4 and 12 �l). As expected, behavioral performance
in our task was considered to be goal-directed because the instru-
mental action was dramatically suppressed after a subset of mice
were sated with ad libitum access to water 30 min before testing in
a reinforcer devaluation experiment (113 � 45 vs 3 � 7 com-
pleted trials; paired t test, t(3) � 5.20, p � 0.014; Fig. 2C).

OT neural dynamics are shaped by appetitive
instrumental behavior
We found that OT neurons encode an appetitively driven ins-
trumental behavior. Specifically, after mice learned the task
(range � 3–9 d of training), we observed that the majority of OT
single neurons modulated their firing rates during the 2 s dry lick
period relative to baseline rates. Some neurons progressively in-
creased their discharge throughout the entire dry lick period (Fig.
3A1,A2), whereas others had a more transient discharge around
the start of the dry lick period, with only modest occasional firing
during the sustained licking (Fig. 3B1,B2). To characterize re-
sponses across the population, we first removed any trials in
which the animal licked during the 2 s before the first recorded
dry lick (see Materials and Methods). We then measured the
temporal response profile of each neuron by quantifying changes
in firing rate from baseline using an ROC analysis (Cohen et al.,
2012; Veit and Nieder, 2013; Gadziola et al., 2015). This analysis
revealed that 69% (56/81) of neurons significantly modulated
their firing rate during the dry lick period, with 71% of these
responsive neurons increasing their firing rates relative to base-
line and the remaining neurons suppressing their firing rates
relative to baseline. Interestingly, the temporal response profile
revealed that the modulation in firing rate occurred before the
first dry lick for 79% of the responsive neurons (Fig. 3C,D). On
average, the latency of significant response was 186 ms before the
first dry lick, with the earliest response occurring as early as 550
ms prior. There were no discernable differences in the temporal
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response pattern of neurons that increased vs decreased firing
rates in response to the dry licking period (Fig. 3C,D), suggesting
that these neurons are similarly driven by instrumental behav-
iors. Thus, OT neurons can represent both the onset and progres-
sion of the instrumental licking behavior associated with reward,
with the activity before the first lick likely internally generated.

The influence of motivation on OT activity
Is the activity observed before the onset of dry licking related to
motivational drive as observed in other systems (Rolls, 2005;
Gutierrez et al., 2006)? To address this question we first tested
whether the motivational drive to perform the task declines
across the session. In other words, do the animals get less thirsty
throughout the session? Session trials were split into thirds, and
the early and late trial blocks were compared. Three behavioral

measures suggested that the reinforcing value of the reward de-
clined over the course of the session, coinciding with an increase
in the total amount of water earned. First, when the mice were
allowed ad libitum access to water after a session, they consumed
40% less water on average when they were removed during late,
compared with early session trials (0.83 � 0.44 vs 1.40 � 0.44 ml,
respectively; Fig. 4A, left), suggesting that mice were less thirsty.
Second, the mean latency to initiate the first dry lick after com-
pletion of the FI schedule was significantly delayed in late, com-
pared with early session trials (15.57 � 12.56 vs 7.75 � 5.97 s,
respectively; paired t test, t(24) � �3.43, p � 0.002; Fig. 4A, mid-
dle), indicating that mice were slower to initiate actions that
would earn rewards. Finally, the duration of wet licking after
reward delivery decreased in late, compared with early, session
trials (3.31 � 0.64 vs 4.08 � 0.45 s, respectively; paired t test, t(13)

Figure 3. OT neural dynamics are shaped by appetitive instrumental behavior. Example single neurons (2 separate mice) which show either a sustained increase in firing rate throughout the
entire dry lick period (A1), or a transient increase in firing rate around the first dry lick (B1). Example single-electrode traces in response to one trial show multiunit activity (MUA) that was
spike-sorted offline to identify single-unit activity (SUA; see Materials and Methods). Red vertical lines indicate the onset of individual licks, and were detected when the voltage from the infrared
beams (“lick”) exceeded a set threshold. Downward arrow in A1 indicates the relative onset timing of the current M-FR schedule. For the neuron in B1, onset of the M-FR schedule was 36 s before
first dry lick. Overlaid spike waveforms demonstrate well isolated single neurons. Scale bar, 0.2 ms. A2, B2, The raster and peri-event time histogram computed across all trials for the example
neurons in A1 and B1, respectively. Note that spiking is occurring before the first dry lick (black vertical dashed line). On a few trials licking occurred before the first detected dry lick. These trials were
removed from subsequent analyses. C, Time course of changes in firing rate relative to baseline as indicated by auROC in response to the start of dry licking. auROC values were calculated in 50 ms
bins and significance tested against a shuffled null distribution of values �0.5 (see Materials and Methods). Each row represents one single neuron, sorted based on response type (excitatory vs
inhibitory) and latency of response. D, Population average auROC values for all responsive neurons (n�53 neurons, 10 mice), separated by whether they showed an excitatory or inhibitory response.
Values represent mean � 95% confidence intervals.
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� 4.27, p � 0.001; Fig. 4A, right), consistent with a decrease in
reinforcer value (Davis, 1973; Davis and Levine, 1977; Travers
and Norgren, 1986; Taha and Fields, 2005; Travers, 2005). To-
gether, these results suggest that motivational drive to perform
the task declines as the total amount of water earned increased
across a recording session. We next compared the temporal re-
sponse profile of each neuron during early (high motivational
drive) and late session trials (low motivational drive). On late
session trials both excitatory and inhibitory OT neurons in-
creased the amount of early modulation in firing rate observed
before the first dry lick (Fig. 4B). The mean onset of significant
response was statistically earlier for late versus early session trials
(�176 � 291 vs 36 � 289 ms, respectively; two-sample t test,
t(101) � 3.71, p � 0.001). In contrast, firing rates of neurons
during the baseline period and first 500 ms postreward onset did
not significantly differ between early and late session trials. Thus,

as motivational drive declines across an experimental session, the
activity of OT neurons is enhanced earlier relative to the instru-
mental action.

OT neurons encode rewards based upon their type
and magnitude
Within these same mice, we next asked whether the firing rates of
OT neurons are modulated in response to reward delivery itself,
independent of the modulation occurring during the instrumen-
tal behavior. An ROC analysis was used to test for significant
modulation in firing rate relative to the background firing rates
observed during the 2 s dry lick period before reward delivery.
Thus, a reward-evoked response must overcome any modulation
in firing rate that was already occurring in response to the instru-
mental behavior. A substantial number of neurons (53/81, 65%)
were significantly modulated by reward compared with reward
omission trials (Fig. 5A). On average, these responses upon re-
ward presentation were transient, returning to background firing
rates within �500 ms from reward delivery (Fig. 5A). Looking
across individual neurons, many of the excitatory reward re-
sponses were transient (Fig. 5B, horizontal arrow), whereas in-
hibitory responding neurons were more likely to sustain their
decreased firing rate after reward delivery (Fig. 5B, arrowhead).

Do OT neurons encode reward magnitude? In the first exper-
imental session, three different volumes (4, 8, and 12 �l) of water
reward were randomly varied throughout the session and were
not associated with any predictive cue. Used as an indicator of
perceived reward palatability, we first examined the duration of
the licking cluster in response to reward delivery (Davis, 1973;
Davis and Levine, 1977; Travers and Norgren, 1986; Spector et al.,
1998). As expected, we found that the average duration of licking
could discriminate the magnitude of the water reward, with in-
creasing volumes resulting in significantly increased lick cluster
durations (Fig. 6A; 3.1 � 0.2, 3.8 � 0.2, and 4.4 � 0.2 s for 4, 8 and
12 �l water, respectively; F(3,48) � 16.9, p � 0.001, repeated-
measures ANOVA with Bonferroni correction). This confirms
that the mice detected the differences in reward volumes. We next
explored whether these differences are reflected among the activ-
ity of OT neurons, and found that some neurons robustly en-
coded reward magnitude. For instance, the example neuron
illustrated in Figure 6B displayed a transient excitatory response
locked to reward delivery, with increasing firing rates for the
three increasing magnitudes of water reward. We examined the
number of neurons with significant responses to any of the three
reward volumes within the first 500 ms from reward delivery, and
found that neurons were not equally responsive to the different
reward volumes (�	2, N�53


2 � 5.99, p � 0.05). Across all respon-
sive neurons, auROC values were greater for the two lar-
ger reward sizes compared with the smallest reward size (Fig. 6C,D).
These findings indicate that OT neurons encode the magnitude of
reward, particularly between small and larger sized volumes.

Do OT neurons encode reward type? In a separate experimen-
tal session, reward delivery was randomized among three differ-
ent reward types: water, saccharin, or quinine, presented at two
different magnitudes (4 or 12 �l). As before (Fig. 6A), there was a
main effect of volume on licking duration, with large magnitude
rewards evoking longer durations of licking compared with small
magnitude rewards (Fig. 7A; F(1,10) � 17.8, p � 0.001, repeated-
measures ANOVA). There was also a significant interaction be-
tween the effects of reward type and magnitude on the duration
of the licking cluster (F(2,20) � 4.52, p � 0.024, repeated-
measures ANOVA). Although the type of reward did not have an
effect at small magnitudes, saccharin evoked a longer duration of

Figure 4. Motivational influences upon OT dynamics. A, Three behavioral measures suggest
a decrease in motivational drive during late session trials: average water consumed during ad
libitum access (left; n � 3 mice), average latency to initiate licking after completion of the FI
(middle; n � 25 sessions, 10 mice), and average duration of licking in response to water
rewards (right; n � 14 sessions, 10 mice). Gray circles represent values from individual mice. B,
Time course of changes in firing rate relative to baseline in response to the start of dry licking
during early and late session trials (n � 58 neurons, 10 mice). Responsive neurons are sorted
based on response type (excitatory vs inhibitory) and latency of response. Both excitatory and
inhibitory responses occur at earlier latencies during late session trials.
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licking compared with quinine at large magnitudes (Fig. 7A; p �
0.025, with Bonferroni correction). Together, this result illus-
trates that mice identify differences among the rewards used, and
so we again explored whether these differences are encoded
among OT neurons. In this task, 68% (36/53) of neurons were
significantly modulated by at least one reward type. Neurons
differentially modulated their firing rate and duration of re-
sponse among reward types, as illustrated by the two example
neurons in Figure 7. The first example neuron exhibited a large
increase in firing in response to both water and quinine but not to
saccharin (Fig. 7B). The second example neuron increased its
firing in response to both saccharin and water, but not quinine
(Fig. 7C). Across the population of responsive neurons, 33% (12/
36) of responsive neurons were highly selectively for a specific
stimulus; responding to just one of the six presented rewards (Fig.
7D). The majority of these selective neurons (83%, 10/12 neu-
rons) were responsive for saccharin (split equally across the 2
volumes), suggesting a strong preference for this highly palatable
reinforcer (Fig. 7E). Among the remaining nonselective neurons
(n � 24), the percentage of neurons responding to each reward
type was roughly uniform across the different rewards (Fig. 7E).
Thus, although some OT neurons are highly selective for just one
reward type, the entire population of neurons is able to collec-
tively represent different rewards. As a population, OT neurons
encode receipt of a reinforcer and do so based on the type and
volume of reward.

Discussion
The orchestration of goal-directed behaviors relies on decision-
making processes that evaluate available rewards and their cur-
rent value based on motivational and contextual information.
Neural responses to rewards can include distinct anticipatory and
consummatory components related to reward receipt, and sev-
eral brain regions are involved in reward processing, including
midbrain dopaminergic nuclei, striatum, orbitofrontal cortex
(OFC), and the amygdala (Berridge, 1996; Schoenbaum et al.,
1999; Schultz et al., 2000; O’Doherty, 2004; Roesch et al., 2007a;
Ilango et al., 2014). As the first study to describe the neural rep-
resentations of goal-directed actions and their outcomes in the

OT, the novel insights reported here advance our understanding
of how substructures within the ventral striatum may collectively
function to guide motivated behavior.

Known aspects of reward-related encoding in the
ventral striatum
A complex array of sensory and contextual information arrives in
the ventral striatum from several cortical and subcortical struc-
tures in both rodents and primates (Zahm and Brog, 1992;
Heimer, 2003; Ikemoto, 2007; Haber, 2011). In rodents, both the
NAc and OT receive similar inputs that mediate reward process-
ing, including afferents from the prefrontal cortex (McGeorge
and Faull, 1989; Berendse et al., 1992a; Brog et al., 1993), baso-
lateral amygdala (Russchen and Price, 1984; Brog et al., 1993;
Wright et al., 1996), subiculum of the hippocampus (Kelley and
Domesick, 1982; Groenewegen et al., 1987; Brog et al., 1993),
paraventricular thalamic nucleus (Berendse and Groenewegen,
1990; Moga et al., 1995), and ventral tegmental area (Fallon and
Moore, 1978; Swanson, 1982; Del-Fava et al., 2007). Efferent pro-
jections of the ventral striatum are sent to the ventral pallidum
(Heimer et al., 1987, 1991; Zhou et al., 2003), lateral hypothala-
mus (Berendse et al., 1992b; Usuda et al., 1998), and midbrain
dopaminergic nuclei (Berendse et al., 1992b; Usuda et al., 1998)
to then develop and execute appropriate action plans. Notably,
both the afferent and efferent projections vary with mediolateral
topography (Ikemoto, 2007). Despite substantial overlap in their
anatomical connections, some of this connectivity is unique be-
tween structures, which suggests that the NAc and OT may serve
distinct functions in motivated behaviors. For example, only the
OT is highly interconnected with olfactory regions (White, 1965;
Haberly and Price, 1977; Luskin and Price, 1983; Carriero et al.,
2009; Kang et al., 2011; Sosulski et al., 2011; for review, see Wes-
son and Wilson, 2011) and provides a direct projection to poste-
rior regions of the OFC and agranular cortices (Barbas, 1993;
Illig, 2005; Hoover and Vertes, 2011).

Elegant work by numerous groups has established that neu-
rons within the NAc encode conditioned task-related events, in-
cluding the instruction or trigger cues that signal subsequent
outcomes, the preparation, initiation, and execution of behav-

Figure 5. OT neurons are modulated by reward. A, Population average auROC values for all responsive neurons (n�53 neurons, 10 mice) in response to reward vs control (reward omission) trials.
Values represent mean � 95% confidence intervals. B, Time course of changes in firing rate relative to the background dry lick period, aligned to reward delivery. Excitatory responses were mostly
transient in nature (horizontal arrow), whereas inhibitory responses were typically sustained throughout the postreward period (arrowhead). Vertical dashed line represents the brief delivery of a
single reward.
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ioral actions, and the sensory properties of reinforcers (Apicella
et al., 1991; Schultz et al., 1992; Williams et al., 1993; Hollerman
et al., 1998; Hassani et al., 2001; Carelli, 2002; Setlow et al., 2003;
Taha and Fields, 2005; Roesch et al., 2009). During goal-directed
behaviors, the activity of rodent NAc neurons is characterized by
anticipatory changes in firing preceding the operant response,
followed by either an increase or decrease in firing after delivery

of the reinforcer (Carelli et al., 1993, 2000; Chang et al., 1996; Lee
et al., 1998; Martin and Ono, 2000). Further, NAc neurons can
differentially encode reward value and motivation (Bissonette et
al., 2013), and integrate the value of expected rewards with direc-
tions of required movements during decision making (Roesch et
al., 2009; van der Meer and Redish, 2009). Dopamine released by
ventral tegmental area terminals within the ventral striatum

Figure 6. OT neurons encode rewards based upon their magnitude. A, Average duration of the licking cluster in response to different reward magnitudes. Values represent mean �
SEM. B, Example single-neuron raster and peristimulus time histogram for the three water rewards (4, 8, and 12 �l) and reward omission trials. Red vertical lines indicate timing of
detected licks on each trial. Overlaid spike waveforms demonstrate a well isolated single neuron. Scale bar, 0.2 ms. C, Population average auROC values for all responsive neurons (n �
53 neurons, 10 mice) in response to different reward sizes. The larger reward sizes (8 and12 �l) had a significantly higher auROC value than the small reward size. Values represent
mean � 95% confidence intervals. D, Time course of changes in firing rate relative to the background dry lick period, aligned to reward delivery, for the four reward types. **p � 0.001.
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modulate glutamatergic input onto me-
dium spiny neurons (Nicola et al., 2000;
O’Donnell, 2003) and is essential for
signaling reward and promoting goal-
seeking behavior (Wise, 1982; Salamone
and Correa, 2002; Nicola, 2007; Tsai et al.,
2009; du Hoffmann and Nicola, 2014).
When dopamine is depleted within the
NAc, animals are less likely to engage in
instrumental responses with a high work
requirement and often fail to respond to
reward-predictive cues (Salamone et al.,
2003; Salamone and Correa, 2012). The
extensive body of literature on the NAc
has led to the proposal that the ventral
striatum serves as a “critic” in actor-
critic models of reinforcement learning
(O’Doherty, 2004; van der Meer and Re-
dish, 2011), providing necessary informa-
tion to midbrain dopaminergic neurons
for updating of reward prediction errors.

Novel insights into OT representations
of reward-related behaviors and
outcomes
Our findings suggest that the OT may be a
critical site for translating the representa-
tion of “reward” into overt action. OT
neurons represented the onset and pro-
gression of the instrumental licking be-
havior, similar to what has been observed
among NAc neurons (Carelli et al., 1993;
Chang et al., 1996). Interestingly, we find
that neurons respond before the first lick,
and that the latency of response decreases
even earlier as the session progresses. Pre-
response activity may relate to the in-
volvement of the OT in responding to the
associative contingencies of conditioned
stimuli (Gadziola et al., 2015), or in the
case here, to self-initiated behaviors in an-
ticipation of expected reward. We predict
that this increase in pre-response OT ac-
tivity may be an essential component for
invigorating instrumental behavior in
states of reduced motivation, and that do-
pamine has a crucial role in promoting
performance within high-effort instru-
mental tasks, such as the one we used
(Salamone et al., 2007; Nicola, 2010). Fur-
ther studies investigating the causal mech-
anism of this pre-response activity are
required to test this hypothesis, as there
may be alternative explanations for the

Figure 7. OT neurons encode rewards based upon their type. A, Average duration of the licking cluster in response to different
reward types and magnitudes. Values represent mean � SEM. B, C, Example single-neuron raster and peristimulus time histo-
grams for three different reward types (water, saccharin, and quinine). These neurons illustrate that OT neuron firing rates can
discriminate among reward types, and that different neurons preferentially respond to different stimuli. Red vertical lines indicate
timing of detected licks on each trial. Overlaid spike waveforms demonstrate a well isolated single neuron. Scale bar, 0.2 ms. D,
Distribution of the number of reward stimuli neurons were responsive to. Twelve neurons were highly selective, only responding

4

to one of the six presented reward types. E, Percentage of neu-
rons responding to the different reward types, separated by
selective and nonselective neurons (n � 12 and 24 neurons,
respectively, from 8 mice). Selective neurons displayed a
strong preference for the saccharin reward type, whereas non-
selective neurons equally represented all reward types. *p �
0.05, **p � 0.001.
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change across a session, such as over-trial learning. The monitor-
ing of licking behavior by OT neurons could also play an impor-
tant role in the regulation of appetitive consummatory behaviors,
as seen in the OFC (Rolls, 2005; Gutierrez et al., 2006). Future
studies will need to address whether the OT is necessary or suffi-
cient in regulating licking or other appetitive operant behaviors.

Another major finding is that OT neurons encode natural
reinforcers with changes in firing rate. Although these neurons
may also respond to the instrumental behavior itself, they never-
theless display a significant change in firing after reward delivery
beyond any modulation occurring in response to the instrumen-
tal licking. Although excitatory responses were transient, neurons
displaying reward-evoked inhibition were more likely to sustain
the suppressed firing rate relative to the background period.
These suppressive responses likely represent neurons that in-
crease activity during the instrumental period in anticipation of
reward and terminate their response upon reward delivery.

Our results revealed robust reward-evoked responses among
neurons with different ranges of selectivity to the different reward
types and magnitudes (small vs larger volumes) presented, de-
spite the fairly limited stimulus set used. Across the entire popu-
lation of sampled neurons, the effectiveness of particular rewards
at evoking a response was roughly uniform. However, a subset of
highly selective neurons displayed a preference for saccharin,
suggesting that palatability is a significant factor in reward encod-
ing within the OT. Sensory properties of the reinforcer may un-
derlie this discrimination (including gustatory mechanisms),
with OT neurons differentially tuned for different reinforcers.
Although not necessarily independent from the above, it is also
possible that the responses of OT neurons depend upon the cur-
rent value of the rewards; something that could be determined
with alternative task designs that allow for testing of selective
devaluation or contrast (Dickinson and Balleine, 1994; Taha and
Fields, 2005), or by evaluating reinforcer selectivity with concen-
tration response functions.

It will be important for future studies to identify how distinct
cell classes or regions within the OT are contributing to moti-
vated behavior. For example, optogenetic approaches would al-
low for identifying distinct cell types within the OT (Millhouse
and Heimer, 1984; Chiang and Strowbridge, 2007), which may
differentially contribute to the reward response. There is also
evidence for functional heterogeneity between the medial and
lateral OT (Ikemoto, 2003; Agustín-Pavón et al., 2014; DiBene-
dictis et al., 2015; Murata et al., 2015) that may be subserved by
the mediolateral topographical projection patterns of dopami-
nergic (Newman and Winans, 1980) and other inputs into the
OT (Schwob and Price, 1984; Ikemoto, 2007). Although we did
not have a sufficient number of neurons in each OT subregion to
address this question, it is possible that the OT is spatially heter-
ogeneous in its encoding of motivated actions and outcomes.

In our task, water-deprived mice engaged in a tandem fixed-
interval modified fixed-ratio schedule to obtain a fluid reinforcer.
This task structure enabled us to independently monitor activity
changes in response to the instrumental period and reinforcer. As
licking behavior involves a combination of chemosensory, mo-
tor, and motivational responses, the act of licking itself is inextri-
cably tied to reward (Gutierrez et al., 2006). Thus, we expect that
both the firing rates of neurons and measures of licking behavior
should be effective at discriminating among reward types. It is
unlikely that the changes in neural activity we observed were
exclusively driven by the act of licking for several reasons. First,
because mice are engaged in near continuous licking behavior
before and after reward delivery, the reward-evoked activity can-

not easily be explained by changes in motor activity or arousal
levels. Further, if changes in licking behavior were driving neural
activity then one would expect to see a much higher percentage of
neurons responding to the large volume rewards compared with
small volume rewards.

The duration of licking clusters is used to infer solution pal-
atability, though this is typically tested under ad libitum access
conditions (Davis, 1973; Davis and Levine, 1977; Travers and
Norgren, 1986; Spector et al., 1998). Although licking cluster
durations have not been studied to our knowledge in response to
a single drop of fluid, they do reflect palatability for brief (1–2 s)
presentations of solution (Taha and Fields, 2005), and the
amount of licking is increased after delivery of large compared
with small rewards (Bissonette et al., 2013). It is possible that
rodents do not discriminate the palatability of tastants as well
under conditions of water-deprivation, because the drive to re-
store fluid balance should override the natural palatability of so-
lutions. Indeed, thirsty rodents ingest similar volumes of water,
quinine and sucrose solutions independent of their palatability
during the initial period of consumption (Scalera, 2000). We find
that mice extend the duration of licking for large saccharin re-
wards relative to quinine of the same volume. However, it is not
clear whether the increased licking duration to large rewards is
related to a higher associated value of the stimulus (Bissonette et
al., 2013; Burton et al., 2014) or because of the additional time
required to consume a larger volume.

Conclusion
Our findings are in accordance with the principle that parallel
processing of motivated behaviors and their outcomes is occur-
ring within ventral striatum substructures. Although the NAc
and OT share many features in common, some of their unique
connectivity suggests that they serve distinct functions in moti-
vated behaviors. For example, the OT may play a particularly
important role in the processing of social and consummatory
motivated behaviors (especially those directed by olfactory cues),
and in influencing the OFC representation of outcome expectan-
cies (Kringelbach, 2005; Schoenbaum et al., 2006). The current
findings, along with our previous work (Gadziola et al., 2015),
suggests that the OT is highly sensitive to the associative contin-
gencies of conditioned cues, initiation and maintenance of in-
strumental behaviors, and outcomes of natural rewards. This
accumulating evidence sets reward-related processing within the
OT apart from other olfactory cortical regions, such as piriform
cortex (Calu et al., 2007; Roesch et al., 2007b; Gire et al., 2013),
and appears more in line with reward-related responses observed
in the NAc and OFC (Carelli et al., 1993; Schoenbaum and
Roesch, 2005; Taha and Fields, 2005; Roesch et al., 2007b; Bisson-
ette et al., 2013). Furthermore, the OT and piriform cortex are
also distinct in their anatomical connections with the OFC (Illig,
2005; Hoover and Vertes, 2011).

Both the NAc and OFC are thought to serve as “critics” in
actor-critic models of reinforcement learning—providing
unique information related to predicted outcome changes and
general affective information, respectively (Schoenbaum et al.,
2009). Based upon our results, we propose that the OT also plays
the role of a critic. Investigating the unique dynamics of each
ventral striatum substructure, the cell types involved, and their
dependence on one another will have profound impacts on our
understanding of how the brain coordinates reward value judge-
ments to ultimately guide motivated behavior (Stott and Redish,
2015). How activity in the ventral striatum may lead to reward
preferences and the consumption of natural rewards is funda-
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mental to understanding the mechanisms involved in aberrant
reward-associations and anhedonia, which is observed in a vari-
ety of psychiatric disorders, including addiction and mood dis-
orders (Lobo and Nestler, 2011; Russo and Nestler, 2013;
Ikemoto and Bonci, 2014).
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