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SUMMARY

Iron is an essential element for Vibrio spp., but the acquisition of
iron is complicated by its tendency to form insoluble ferric com-
plexes in nature and its association with high-affinity iron-bind-
ing proteins in the host. Vibrios occupy a variety of different
niches, and each of these niches presents particular challenges for
acquiring sufficient iron. Vibrio species have evolved a wide array
of iron transport systems that allow the bacteria to compete for
this essential element in each of its habitats. These systems include
the secretion and uptake of high-affinity iron-binding com-
pounds (siderophores) as well as transport systems for iron bound
to host complexes. Transporters for ferric and ferrous iron not
complexed to siderophores are also common to Vibrio species.
Some of the genes encoding these systems show evidence of hor-
izontal transmission, and the ability to acquire and incorporate
additional iron transport systems may have allowed Vibrio species
to more rapidly adapt to new environmental niches. While too
little iron prevents growth of the bacteria, too much can be lethal.
The appropriate balance is maintained in vibrios through com-
plex regulatory networks involving transcriptional repressors and
activators and small RNAs (sRNAs) that act posttranscriptionally.
Examination of the number and variety of iron transport systems

found in Vibrio spp. offers insights into how this group of bacteria
has adapted to such a wide range of habitats.

INTRODUCTION

Vibrionaceae are inhabitants of estuarine and marine environ-
ments worldwide (1). These Gram-negative bacteria are mo-

tile, facultative anaerobes that can grow with a number of different
carbon and nitrogen sources. Vibrios may be found as free-living,
planktonic cells; in biofilms; or colonizing a variety of marine
organisms. Their metabolic adaptability and ability to occupy a
variety of niches likely reflect their evolutionary history, which
shows evidence of frequent gene acquisition. Vibrio species ge-
nomes are organized into two chromosomes (2). The majority of
the essential genes map to the larger chromosome. The smaller

Published 9 December 2015

Citation Payne SM, Mey AR, Wyckoff EE. 2016. Vibrio iron transport: evolutionary
adaptation to life in multiple environments. Microbiol Mol Biol Rev 80:69 –90.
doi:10.1128/MMBR.00046-15.

Address correspondence to Shelley M. Payne, smpayne@austin.utexas.edu.

Copyright © 2015, American Society for Microbiology. All Rights Reserved.

crossmark

March 2016 Volume 80 Number 1 mmbr.asm.org 69Microbiology and Molecular Biology Reviews

http://dx.doi.org/10.1128/MMBR.00046-15
http://crossmark.crossref.org/dialog/?doi=10.1128/MMBR.00046-15&domain=pdf&date_stamp=2015-12-9
http://mmbr.asm.org


chromosome has a mosaic structure with pathogenicity islands
and phage-like genes, indicating numerous horizontal gene trans-
fer events.

The vast majority of the �80 Vibrio species identified thus far
are harmless to humans and marine organisms. However, some
members of the species are associated with devastating epidemics
(Vibrio cholerae) or sporadic infections (Vibrio vulnificus and
Vibrio parahaemolyticus, among others). Human infections may
follow the consumption of contaminated food or water or expo-
sure of wounds to contaminated water. Because of their effects on
human health, pathogenic vibrios have been extensively studied
and are the focus of much of this discussion.

Vibrio spp., like most other organisms, have an absolute re-
quirement for iron (3). Iron occurs in both the ferric (Fe3�) and
ferrous (Fe2�) states and can participate in electron transfer over a
wide range of redox potentials. Iron is essential for the function of
a number of crucial enzymes in the bacterial cell (3), including
ribonucleotide reductase for the synthesis of DNA precursors, cy-
tochromes for electron transport, and tricarboxylic acid (TCA)
cycle enzymes for energy production. In these enzymes, the iron
cofactor may be heme, an iron-sulfur cluster, or, less often, an iron
atom. The amount of iron required by vibrios varies depending on
the cell’s physiology and metabolism, but concentrations in the
medium in the range of 0.1 �M to 5.0 �M provide sufficient iron
for optimal growth of bacteria under laboratory conditions (4, 5).
V. cholerae cells growing in broth medium at pH 7 with aeration
will accumulate �106 atoms of iron per cell (Carolyn Fisher, un-
published data), similar to amounts reported for Escherichia coli
grown under similar conditions (6, 7).

Despite its abundance, iron is not readily available in most
environments. The form and solubility of iron are strongly influ-
enced by the Eh and pH of the environment and by the presence of
anions that may form complexes with iron. Iron has low solubility
in the presence of oxygen at neutral or slightly higher pH, where it
is predominantly found as ferric hydroxides (8). The seawater
environments that are home to the Vibrionaceae are slightly alka-
line (pH 7.5 to 8.4), and the concentration of dissolved iron in the
open ocean is usually in the nanomolar range but can be as low as
20 to 30 pM (9), well below the concentration required for most
microorganisms. Iron is more abundant in coastal and estuarine
areas due to runoff. The concentration of iron is lowest at the
ocean surface (�0.2 nM) and is 4- to 5-fold higher at depths below
500 m. Some of the iron is released from oxygenated sediments on
the continental margins and hydrothermal venting, but dust, par-
ticularly Saharan dust aerosol, is a major source of dissolved iron
in the North Atlantic Ocean (10). In the ocean interior, reminer-
alization from sinking particulate organic matter accounts for
much of the soluble iron (10). The iron that is released at hydro-
thermal vents is converted to a bioavailable form by microbes
present at the vents (11).

The low levels of available iron led Martin et al. (9) to suggest
that iron is the growth-limiting factor in nutrient-rich ocean en-
vironments. Low iron levels not only reduce the rate of growth of
bacteria but, in the case of vibrios, also affect their survival and
ability to persist, particularly at the lower end of the ocean pH
range (12). The addition of ferric oxide to water increased the
survival of V. cholerae, even in the absence of nutrients (13). Vibrio
spp. can enter a viable-but-nonculturable (VBNC) state under
adverse conditions, such as low nutrient availability or cold (14,
15). Transcriptional analysis of genes upregulated by VBNC V.

cholerae identified transport genes, including at least one iron
transport system (16), further suggesting that iron acquisition is
important for the survival of V. cholerae in the marine environ-
ment.

Although vibrios may be found as planktonic bacteria in ocean
or estuarine waters, they are often found in biofilms (17), which
can affect iron availability. Biofilms, in which the bacteria are em-
bedded in an extracellular polysaccharide (EPS) matrix forming a
complex three-dimensional structure, often form at solid-liquid
or air-liquid interfaces. The effects of biofilm on iron availability
are variable. Chelation of iron by negatively charged components
of the EPS may increase the local concentration of iron. The
amount of iron in Vibrio species EPS in nature is not known, but
divalent cations are commonly found in biofilms (18). An analysis
of pellicle biofilms isolated from mine drainage showed that iron
accounted for �70% of the cations present in the EPS. However,
the binding of iron to EPS components may reduce its availability
to bacteria. Reduced diffusion within biofilms can also lead to iron
limitation, and the localized anoxic zones that occur in biofilms
(19) influence the oxidation state and solubility of iron within
these areas. Under low-oxygen, low-Eh conditions, iron is more
likely to be in the ferrous than in the ferric form. Several bacterial
species, including Pseudomonas aeruginosa (20) and V. cholerae
(21), have reduced biofilm formation in low-iron environments,
suggesting that biofilms are not conducive to iron acquisition.

Many vibrios form species-specific associations with marine
organisms. V. cholerae can be found in the mucilaginous sheath of
the filamentous cyanobacterium Anabaena variabilis (22), and
this association allows the bacteria to persist longer in some envi-
ronments. Vibrio fischeri (23) and Vibrio logei (24) (reclassified as
Aliivibrio spp. [25]) form symbiotic relationships with squid, in-
habiting the squid light organ. Extensive studies of the V. fischeri-
squid association have shown not only that the bacteria colonize
and produce light within the squid but also that the vibrios are
required for normal development of the light organ (23, 26).
Other vibrios colonize copepods, fish, or human hosts, and these
interactions may range from relatively neutral to lethal for the
host.

Colonization of a host presents additional challenges for mi-
crobial iron acquisition. In mammals, the level of freely available
iron is far below that required for bacterial multiplication (27).
The majority of iron is intracellular as heme, in iron-sulfur clus-
ters, or stored as ferritin. Extracellular iron is bound to high-af-
finity iron-binding proteins, transferrin in serum and lactoferrin
in secretions. Heme or hemoglobin released from cells is bound to
hemopexin or haptoglobin, respectively. These proteins normally
are relatively unsaturated and inhibit microbial growth by limit-
ing iron availability. In response to infection, the level of available
iron is further restricted by a reduction in serum iron saturation.
This active withholding of iron from bacterial pathogens is a form
of nutritional immunity (28) that protects against infection. In
some human disease states, such as hemochromatosis or malaria,
iron saturation increases, allowing the pathogen to obtain iron
more easily and establish a more severe infection. In particular, V.
vulnificus infections are more common in patients with iron over-
load.

Vibrios, like other bacterial species, have evolved a variety of
mechanisms to acquire iron in each environment that they in-
habit. Some of these iron acquisition systems are closely related
among all vibrios, reflecting their common ancestry. Other trans-
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port systems appear to have been acquired by horizontal transfer
and may indicate selective advantages in specific niches occupied
by those Vibrio species. Iron transport system genes are found on
both chromosomes in vibrios and encode transporters for ferric or
ferrous iron, proteins for the synthesis and transport of high-af-
finity iron chelators, and specific receptors for iron proteins and
various chelated forms of iron. The iron transport systems are best
defined in V. cholerae, in which �1% of the genome is devoted to
iron transport systems (Fig. 1). These iron transport systems, the
genes encoding them, and the regulatory systems that control iron
uptake have been described in detail. Thus, V. cholerae serves as a
model for understanding iron acquisition in vibrios. What is
known for the other Vibrio species and the similarities with and
differences from V. cholerae are described below.

VIBRIO IRON TRANSPORT SYSTEMS

Transport of Iron Complexes

The majority of Vibrio iron transport systems recognize iron that
is complexed to an iron chelator or carrier molecule (Fig. 2). The
iron chelator may be synthesized by the bacteria or scavenged
from other cells in the environment. Vibrio spp., like many other
bacteria, produce one or more siderophores, small high-affinity
ferric iron chelators (29). The siderophores are secreted into the

environment or, less frequently, bound to the surface of the vibrio,
and they serve as scavengers for iron. Once the siderophore binds
iron, the ferrisiderophore complex is recognized by a specific re-
ceptor on the surface of the outer membrane (30, 31). Other iron
complexes, including heme or siderophores made by other species
(xenosiderophores), are also recognized by specific receptors. As
described in more detail below, transport across the outer mem-
brane via the receptor requires energy, which is supplied by the
inner membrane protein TonB and its associated proteins ExbB
and ExbD (32). Vibrios typically have more than one set of TonB/
Exb proteins, and these proteins have specific as well as redundant
functions (33). Once in the periplasm, the iron complex associates
with a periplasmic binding protein (PBP) and is delivered to a
cytoplasmic membrane permease for transport into the cytoplasm
(34, 35). The periplasmic binding proteins and cytoplasmic per-
meases are less specific than the outer membrane receptors and
recognize a broader class of complexes, usually additional mem-
bers of the same class of siderophores. Once inside the bacterial
cytoplasm, the iron is released from the siderophore by reduction
of the iron and/or enzymatic cleavage of the siderophore, making
the iron available for cellular needs (36, 37).

Vibrio siderophores. Each of the Vibrio species analyzed thus
far produces one or more siderophores when iron is limiting.

FIG 1 Map of V. cholerae chromosomes showing locations of known iron transport genes. Purple, outer membrane receptor genes; yellow, periplasmic binding
protein and cytoplasmic membrane transporter genes; green, TonB system genes; blue, cytoplasmic protein genes. (Adapted from reference 31 [Fig. 1] with kind
permission from Springer Science�Business Media.)
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These molecules often have catechols or hydroxamates as part of
the iron-binding moieties, although other structures have been
identified. In some species, such as the squid symbiont V. fischeri,
the structure of the siderophore is unknown (38), but a number of
vibrio siderophores have been isolated and characterized, and
there is considerable diversity in their structure and chemical
properties. As described in more detail in the discussion of indi-
vidual siderophores below, this diversity is likely a reflection of
vibrios evolving to grow in different environments and to produce
siderophores that can outcompete those produced by other mem-
bers of the community when iron is scarce.

(i) Catechol siderophores. Catechol siderophores, which
have 2,3-dihydroxybenzoic acid (DHBA) as the iron-chelating
moiety, are common among Vibrio spp. Catechols and their bio-
synthesis were first described in Enterobacteriaceae, and little vari-
ation in catechol structures has been noted for this group of
bacteria. Escherichia coli (39), Salmonella (40), and most Shigella
spp. (41, 42) produce enterobactin, a cyclic trimer of 2,3-dihy-
droxybenzoylserine (Fig. 3A). The notable example of varia-
tion in catechol structure in this group is the salmochelins
produced by some pathogenic Enterobacteriaceae, in which the
2,3-dihydroxybenzoylserine is glucosylated (43). In contrast,
vibrios have a much more varied repertoire of catechols. The
vibrio catechols are generally linear structures that differ in
their backbones and in the numbers and types of amino acids
linked to the catechols.

(a) Vibriobactin. V. cholerae produces the catechol vibriobactin,
which has three catechol groups attached to a norspermidine
backbone (44) (Fig. 3A). The genes for norspermidine synthesis
are not commonly found in bacteria but are widely distributed in
Vibrio spp. (45). Two of the DHBA molecules are linked to the
backbone through threonines that are cyclized, forming oxazoline
rings. The vibriobactin biosynthesis mechanisms and pathway
were determined by the Walsh group (46–49) (Fig. 4A). VibF, a
nonribosomal peptide synthetase (NRPS), together with the
vibriobactin synthase proteins VibE, VibH, and VibB assemble the
siderophore from its precursors DHBA, threonine, and norsper-
midine, (46). DHBA is the product of VibA, VibB, and VibC (50),
which have the same functions as their E. coli homologs EntA,
EntB, and EntC (51). VibF acts as the scaffold on which vibriobac-
tin synthesis is completed and has six domains organized in an
assembly-line fashion (Fig. 4B). There are two cyclization do-
mains, followed by an adenylation domain, a condensation do-
main, a peptidyl carrier protein (PCP) domain, and a second con-
densation domain (46). This assembly process on a NRPS with
distinct, modular domains is characteristic of bacterial catechol
siderophores and other secondary metabolites, including antibi-
otics, and has been described in detail for E. coli and other species
(52–54). The domain structure of the NRPSs has facilitated the
evolution of a large family of distinct siderophores with variations
in the peptide backbones, chelating moieties, or other modifica-
tions. There is considerable homology among the NRPSs, but dif-

FIG 2 V. cholerae iron transport systems. The cell envelope locations of components of the major iron transport systems and the compounds transported
through each system are shown. (Adapted from reference 154 with permission of the publisher [copyright 2011 Blackwell Publishing Ltd.].)
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ferences in the numbers of domains and in their substrates are
evident. Duplications or substitutions of domains allow different
amino acids or chelating groups to be incorporated into the final
structure, resulting in a family of related, but distinct, sidero-
phores produced by different Vibrio species.

The genes encoding vibriobactin synthesis are found in two
separate clusters on the large chromosome (Fig. 1). The genes for

the synthesis of the catechol moiety, vibABC, are linked to genes
for subsequent steps in biosynthesis, vibD, vibE, and vibH, and to
genes for catechol transport, viuPDGC (50). The NRPS VibF is
encoded by a second vibriobactin gene cluster on the large chro-
mosome linked to genes for vibriobactin transport, viuA, and uti-
lization, viuB (55) (Fig. 1). It is not uncommon in vibrios for the
core catechol genes to be found as one module and one or more

FIG 3 Structures of representative vibrio siderophores. (A) Catechol and carboxylate siderophores. (B) Amphibactins.
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genes encoding the species-specific modifications occurring else-
where in the genome as a second module.

(b) Fluvibactin and vulnibactin. Vibrio fluvialis and Vibrio vul-
nificus produce catechol siderophores, fluvibactin and vulnibac-
tin, that are structurally related to vibriobactin (56, 57) (Fig. 3A).
Like vibriobactin, these siderophores have a linear, norspermidine
backbone with the iron-binding moieties linked directly or
through threonine to the backbone. In fluvibactin, however, only
one of the three DHBA moieties is linked to norspermidine by
forming an oxazoline ring with threonine, and the other two are
linked directly to norspermidine. Vulnibactin represents another
variation on the theme: it has a norspermidine backbone with one
catechol linked directly to the backbone, but it differs in having
two salicylate residues, rather than DHBA, forming the oxazoline
rings with threonine (56) (Fig. 3A). A mutant of V. vulnificus
defective in salicylate biosynthesis was rescued for growth in low
iron by the addition of DHBA, suggesting that V. vulnificus may
also be able to produce a siderophore having DHBA instead of
salicylate (58). The genes encoding vulnibactin have not been fully

characterized, but the identification of venB (isochorismate lyase)
(59) and two AMP ligase genes (58) within a cluster of homologs
of known NRPSs suggests that a region on chromosome 2 of V.
vulnificus (VV2_0828 to VV2_0844) encodes vulnibactin biosyn-
thesis.

(c) Anguibactin, a mixed catechol and hydroxamate siderophore.
The V. anguillarum O1 serotype, a fish pathogen, also produces a
catechol siderophore, but its structure is distinct in containing
both catechol and hydroxamate groups as part of the iron-binding
residues (60) (Fig. 3A). This siderophore, anguibactin, is synthe-
sized from DHBA, which provides the catechol group; N-hy-
droxyhistamine, which contributes the N-hydroxyl group charac-
teristic of hydroxamate siderophores; and L-cysteine (61–63).

Most of the genes required for anguibactin synthesis are car-
ried on a 65-kb plasmid, but there is some redundancy with chro-
mosomal genes. Genes for DHBA synthesis (angABC) and activa-
tion (angE) are chromosomal (64), but the NRPS domain proteins
are encoded on the plasmid. The plasmid has homologs of the
angB, angC, and angE genes, but there is not an angA equivalent

FIG 4 Vibriobactin biosynthesis. (A) Biosynthetic pathway. 2,3-Dihydroxybenzoate is synthesized from chorismate by the sequential activities of VibC, VibB,
and VibA. VibB is a bifunctional enzyme that is also required for a later step in biosynthesis. VibB and VibF are modified by the attachment of phosphopanteth-
eine arms to the aryl carrier protein domain of VibB and the peptidyl carrier domain of VibF (46). VibD, which is required for late steps in vibriobactin synthesis
(263), is predicted to be the phosphopantetheine transferase based on homology and its ability to complement an E. coli entD mutation (50). VibE activates
DHBA forming the acyl adenylate and transfers it to the free thiol of the phosphopantetheine (47). This DHB thioester is combined with norspermidine by the
condensation domain protein VibH to produce N1-(2,3-dihydroxybenzoyl)norspermidine (47). VibF activates and covalently loads the PCP domain with
L-threonine and heterocyclizes 2,3-dihydroxybenzoyl-VibB with L-Thr. The aryl oxazoline is then transferred to N1-(2,3-dihydroxybenzoyl)norspermidine. VibF
catalyzes a second oxazoline acylation, yielding vibriobactin. (B) Domain structure of the vibriobactin biosynthesis enzymes VibF, VibB, and VibH. The NRPS
VibF is the scaffold for assembly, and the indicated domains act in an assembly-line fashion to construct the final product.
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among the plasmid-borne genes. Some of the plasmid-borne
genes are flanked by insertion sequences, forming a composite
transposon-like structure (65, 66). This suggests that V. anguilla-
rum acquired the anguibactin iron transport system by horizontal
transmission. Homologs of the plasmid genes are present in the
chromosome of Vibrio harveyi, which also produces anguibactin,
further supporting horizontal transfer of the genes (67).

V. anguillarum O1 strains that lack the anguibactin plasmid, as
well as strains of a number of other V. anguillarum serotypes,
synthesize vanchrobactin (Fig. 3A), a catechol siderophore dis-
tinct from anguibactin (68–70). Vanchrobactin is a linear dipep-
tide derived from arginine and serine bound to DHBA (71), indi-
cating some similarity to the enteric siderophore enterobactin
(69).

(ii) Carboxylate siderophore. Vibrio parahaemolyticus pro-
duces a very hydrophilic carboxylate siderophore that is unrelated
to other characterized Vibrio siderophores. This compound, given
the trivial name vibrioferrin, is composed of alanine, citric acid,
ethanolamine, and 2-ketoglutarate (72) (Fig. 3A). Vibrioferrin has
a lower affinity for iron than do the Vibrio catechol siderophores.
In addition, it is more sensitive to photolysis than other photore-
active siderophores, resulting in the release of iron even under
low-light conditions (73). Although the instability and low iron
affinity of vibrioferrin would appear to be disadvantageous, stud-
ies of another Gram-negative marine bacterium, Marinobacter,
offer insights into a unique role for vibrioferrin. Vibrioferrin has
been isolated from alga-associated subclades of Marinobacter, and
it was proposed that its low affinity and photoreactivity are evo-
lutionary adaptations to the bacterium-alga mutualism (74). The
phototactic dinoflagellates form aggregates with Marinobacter at
the sea surface, where sunlight promotes photolysis of the vibrio-
ferrin secreted by the bacteria. This results in a local increase in the
concentration of uncomplexed ferric iron that can be used by both
Marinobacter and the dinoflagellates. The iron allows the algae to
increase the amount of fixed carbon, some of which is made avail-
able to the bacteria (74, 75). V. parahaemolyticus, like Marinobac-
ter, can associate with marine algae (76), and it is possible that
mutualistic interactions involving vibrioferrin occur with V. para-
haemolyticus as well.

(iii) Hydroxamate siderophores. Although many of the sidero-
phores produced by vibrios are catechols, hydroxamate com-
pounds have also been found in some species. Aerobactin, a hy-
droxamate siderophore found in many enteric bacteria, including
E. coli, Shigella, and Salmonella, is also produced by some Vibrio
species. Vibrio mimicus (77), Vibrio hollisae (78), and a planktonic
marine Vibrio sp. (79) all produce this siderophore. Interestingly,
the genes for aerobactin synthesis and transport (iucABCD and
iutA) in V. mimicus and V. hollisae have the same arrangement as
that in the enteric species, and the proteins show considerable
identity to the corresponding E. coli proteins (78). In the Entero-
bacteriaceae, the genes are found on plasmids (80, 81) and in
pathogenicity islands (82–85). Thus, it is likely that these genes
have spread among the various bacterial strains by horizontal
transmission. A strain of Vibrio harveyi isolated from the open
ocean of the Gulf of Mannar produced a dihydroxamate sidero-
phore (86). However, its complete structure has not been deter-
mined. V. vulnificus also produces a hydroxamate siderophore
(87) in addition to its catechol vulnibactin, but the exact structure
of the hydroxamate is not known.

(iv) Amphiphilic siderophores. Many marine bacteria have

been found to produce amphiphilic siderophores, which have a
hydrophobic tail attached to the hydrophilic siderophore back-
bone. These siderophores are often produced by the bacteria as a
suite of related compounds with a conserved ferric iron-binding
peptide or citrate-based head group and one or two fatty acids
(88–90). The fatty acid appendages may vary in length and the
degree of saturation and hydroxylation. Depending on the pep-
tidic head group and length of the acyl chain, these siderophores
may be predominantly cell associated or more water soluble and
secreted into the environment (90). Both types of siderophores,
termed amphibactins, have been isolated from marine Vibrio spe-
cies. Vibrio species strain HC0601C5 produces a hydrophilic suite
of amphibactins that are primarily secreted into the medium (90),
while Vibrio sp. strain R-10 produces amphibactins that are cell
associated (89) (Fig. 3B). The amphibactins have a hydroxamate-
containing head group composed of a serine and three ornithine
residues with acyl groups ranging from C12 to C18. The moanach-
elins, produced by Vibrio sp. strain Nt1, are related to the amphi-
bactins but differ in the head group, in which the serine is replaced
by glycine or alanine (91). V. harveyi produces an amphiphilic
variant of enterobactin, the catechol siderophore produced by
most Enterobacteriaceae (92). V. harveyi has a cluster of genes ho-
mologous to the E. coli ent genes with a long-chain fatty acid co-
enzyme A (CoA) ligase gene located nearby. The structure of the
siderophore is similar to that of Ent but has an acyl-L-serine in
addition to the three dihydroxybenzoyl-serines that make the cy-
clic backbone of Ent. Like the other amphiphilic siderophores
produced by Vibrio spp., amphi-enterobactin is produced as a
family of siderophores differing in the acyl chain (92). The pro-
duction of a collection of these compounds by a Vibrio species
may result in the less-hydrophobic siderophores being released
into the environment, while the more hydrophobic members of
the suite would remain cell associated. It was proposed that this
would create a gradient of iron chelators extending from the bac-
terium and would allow the iron to be passed from the secreted
siderophores to those at the surface (89). How the iron transits
from the membrane-associated siderophore to the interior of the
cell is not known, but hydrolysis of the fatty acids could release the
membrane-bound form of the siderophore for its transport into
the cell (93). An amide hydrolase produced by a Marinobacter
species strain in late log phase hydrolyzed the Marinobacter am-
phiphilic siderophores. In addition, when Marinobacter sp. and
Halomonas aquamarina were cocultured, the Marinobacter en-
zyme hydrolyzed the suite of aquachelins produced by Halomo-
nas, even though these aquachelins have a different peptidic head
group (93). Thus, enzymatic modifications of secreted or cell sur-
face-associated siderophores may occur in the aquatic environ-
ment, where a variety of bacterial species coexist.

Siderophore receptors. The fully assembled siderophore is se-
creted from the cell or localized to the outer surface, where it binds
ferric iron from the extracellular environment. Binding results in
a conformational change in the siderophore that in vibriobactin is
evidenced by the change in color of the siderophore from colorless
to deep purple when the siderophore is complexed to ferric iron
(44). This iron-siderophore complex cannot diffuse back into the
cell but requires a specific outer membrane receptor (37, 94–96)
(Fig. 2). These receptors belong to the TonB-dependent receptor
family and require TonB to energize transport. Each Vibrio species
produces a receptor specific for its siderophore, and the receptor
gene is usually linked to genes encoding the siderophore biosyn-
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thesis enzymes. V. cholerae transports vibriobactin via the outer
membrane receptor ViuA (94). Similarly, PvuA is the vibrioferrin
receptor in V. parahaemolyticus (97), VuuA is the vulnibactin re-
ceptor in V. vulnificus (98), and FvtA transports vanchrobactin in
V. anguillarum (99). The siderophore receptors are typically local-
ized to the outer membrane without the need for accessory fac-
tors. However, the V. anguillarum anguibactin receptor FatA (100,
101) requires O-antigen side-chain biosynthesis for outer mem-
brane localization (102). The phenotype of the O-antigen mutants
was similar to that of a fatA mutant. This indicates a novel role for
O-antigen in the localization or stability of the siderophore recep-
tor in V. anguillarum.

Xenosiderophore receptors. Cheating, or at least taking advan-
tage of the neighbors, is a common phenomenon in iron trans-
port. Most bacteria express one or more receptors for sidero-
phores that they do not themselves synthesize, allowing them to
acquire iron bound to siderophores made by other species. Exam-
ples of the variety of siderophores transported by Vibrio spp. are
shown in Table 1. Because vibrios live in polymicrobial habitats,
there may be strong evolutionary pressure to acquire xenosidero-
phore transport systems. Iron is a limited resource, and the se-
creted siderophores that can deliver this resource represent a com-
mon good. A siderophore secreted by one species would promote

the growth of other members of that species and simultaneously
sequester iron from unrelated species that are unable to use the
siderophore. Therefore, the production of species-specific sidero-
phores represents a form of kin discrimination (103). Members of
other species bypass this kin discrimination by the acquisition of
receptors allowing the recognition and transport of the xeno-
siderophore. Vibrio spp. exhibit natural competence and readily
acquire new genes by transformation (104, 105). Such horizontal
gene transfer events appear to be responsible for many of the genes
encoding xenosiderophore transporters.

V. cholerae has receptors for nonnative catechol siderophores
(106) and for ferrichrome, a fungal hydroxamate siderophore
(107). The V. cholerae catechol receptors VctA and IrgA recognize
linear derivatives of enterobactin, which is produced by E. coli and
other enteric bacteria, while fluvibactin can be transported by ei-
ther of these receptors or by ViuA (108). V. parahaemolyticus can
use aerobactin (109) and ferrichrome (110). Both V. vulnificus
(111, 112) and V. furnissii (113) have a receptor, DesA, for the
hydroxamate deferoxamine B. desA expression requires a positive
transcription factor, DesR. This AraC-like regulator promotes the
transcription of desA in the presence of deferoxamine B (113).
Thus, the expression of this system is induced when the sidero-
phore is present in the environment.

Not surprisingly, some bacteria have evolved mechanisms to
outwit the cheaters and scavengers. This can be seen in studies of
polymicrobial communities in which some bacteria produce sid-
erophores that not only cannot be used by competitors but also
inhibit the competition. For example, the addition of the sidero-
phore produced by a potential fish probiont, Pseudomonas fluore-
scens strain AH2, to a growing culture of V. anguillarum caused
immediate growth arrest (114). Growth was restored by the addi-
tion of iron, suggesting that the P. fluorescens siderophore out-
competes V. anguillarum for iron, resulting in iron starvation.
Further analysis of the V. anguillarum response to the antagonistic
siderophore showed the induction of rpoS, encoding the alterna-
tive sigma factor associated with the stationary phase and the
stress response. Thus, P. fluorescens may protect fish from infec-
tion with V. anguillarum by producing an antagonistic sidero-
phore that withholds iron and induces stationary-phase-like
growth arrest in the vibrios. Similarly, Shewanella algae can inhibit
V. alginolyticus. V. alginolyticus has at least a dozen genes encoding
putative siderophore receptors (115) and can use ferrichrome
(116) and siderophores secreted by V. cholerae, V. fluvialis, and V.
parahaemolyticus, in addition to its own siderophore (117). How-
ever, avaroferrin, a cyclic dihydroxamate siderophore secreted by
S. algae isolated from the same red seaweed as V. alginolyticus,
inhibited V. alginolyticus. Swarming of V. alginolyticus was inhib-
ited at low concentrations of the siderophore, and this inhibition
was greater than that observed with other xenosiderophores
(115). Structural analysis of avaroferrin indicates that it is a chi-
mera of two known siderophores, bisucaberin and putrebactin.
The chimeric nature of the siderophore is reflected in the genetics
of avaroferrin biosynthesis genes. The biosynthesis genes have ho-
mologs in the Vibrio salmonicida (bisucaberin) and Shewanella
putrefaciens (putrebactin) siderophore biosynthesis gene clusters,
and Böttcher and Clardy (115) point out that the modular nature
of siderophore biosynthesis genes may favor recombination and
the evolution of new siderophores. In this case, the chimeric sid-
erophore can be used by the species that synthesizes it but is in-
hibitory to other bacteria, at least until they acquire the genes

TABLE 1 Siderophore synthesis and use by selected Vibrio species

Species and siderophore Reference(s)

V. cholerae
Endogenous siderophore

Vibriobactin 44, 46
Xenosiderophores

Linear enterobactin derivatives 44, 106, 108
Ferrichrome 44, 107

V. vulnificus
Endogenous siderophores

Vulnibactin 56
Uncharacterized hydroxamate 87, 186

Xenosiderophores
Aerobactin 257
Deferoxamine B 111, 112
Vibriobactin 117

V. parahaemolyticus
Endogenous siderophore

Vibrioferrin 72
Xenosiderophores

Enterobactin 258, 259
Aerobactin 109
Ferrichrome 110
Vibriobactin(?) 117
Fluvibactin(?) 117

V. anguillarum
Endogenous siderophores

Vanchrobactin (strains lacking plasmid pJM1) 68–70
Anguibactin (strains with plasmid pJM1) 60

Xenosiderophores
Enterobactin 260
Rhodotorulic acid 261
Ferrichrome 261
Citrate 262
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necessary for the use of avaroferrin. Thus, the evolutionary arms
race for iron continues.

Heme receptors. In addition to the siderophore receptors,
vibrios have one or more receptors for the transport of heme and
can use heme for growth in low-iron environments. These recep-
tors are also members of the TonB-dependent transporter family
and have homology to the siderophore receptors. V. cholerae has
three heme receptors, designated HutA, HutR, and HasR (118–
120). HutA and HutR share significant homology, while HasR
more closely resembles the HasR hemophore-dependent heme
transporters in Pseudomonas aeruginosa and Serratia marcescens
(120). The hemophore-dependent receptors in P. aeruginosa and
S. marcescens bind heme complexed to a heme carrier protein, the
hemophore (121), but no hemophores have been identified in V.
cholerae or other Vibrio species. Each of these receptors allows
growth in medium containing heme as the sole iron source. Heme
is transported into the cell as an intact iron-porphyrin complex
and supports the growth of a heme biosynthesis mutant (118). It is
not known whether the heme is used by V. cholerae solely as an
intact heme complex or if it is broken down following transport to
release the iron. A candidate for a heme oxygenase-like enzyme to
degrade heme is the cytoplasmic protein HutZ, which is needed
for the efficient use of heme as an iron source in V. cholerae (122).
An analysis of HutZ in vitro indicated that it has a high affinity for
heme and degrades it via the same intermediates as heme oxygen-
ase (123). Thus, HutZ may serve to release iron from heme fol-
lowing transport.

Heme receptors in other species include HupA (124), HvtA
(125), and HupO in V. fluvialis (126); HuvA in V. anguillarum
(127, 128); and MhuA in V. mimicus (129). HvtA has 68% simi-
larity and 51% identity to V. cholerae HutR, and the operon orga-
nization is the same in the two species, indicating a close genetic
relationship (120, 125). Although V. cholerae has only a limited
ability to use hemoglobin as an iron source, other Vibrio species,
including V. parahaemolyticus, V. fluvialis (126), V. alginolyticus
(130), V. anguillarum (131), and V. vulnificus (132, 133), have the
ability to use hemoglobin efficiently. This is dependent on specific
receptors that bind hemoglobin or proteases that can release the
heme from heme proteins. In V. vulnificus, for example, both
HupA and HvtA can transport hemin, but only HupA permits the
use of hemoglobin (125). V. vulnificus can use hemoglobin even
when it is bound to the hemoglobin-binding protein haptoglobin
(133, 134). Hemoglobin can also be bound by albumin. The ability
of V. vulnificus to obtain heme from the hemoglobin-albumin
complex was associated with the production of an extracellular
protease that liberated heme from the proteins (134).

TonB Systems in Vibrio Iron Transport

The transport of siderophores and heme across the outer mem-
brane of Vibrio requires energy. This is problematic since there is
no ATP or other potential energy source available to transporters
in the outer membrane. Vibrio spp. and other Gram-negative bac-
teria solve this problem by coupling outer membrane receptors
for iron sources to the cytoplasmic membrane proton motive
force. The TonB-ExbB-ExbD complex that is embedded in the
cytoplasmic membrane of Gram-negative bacteria transduces the
energy across the periplasm to the outer membrane receptors (32)
(Fig. 5). Interestingly, the vibrios have more than one set of TonB/
Exb proteins. V. cholerae (33, 120, 135), V. anguillarum (136), and
V. alginolyticus (116) have two TonB systems, and V. vulnificus

(137) has three. These systems differ in their recognition of spe-
cific receptors and in the environments in which they function, as
discussed below. In addition to the Exb proteins, some Vibrio
TonB systems also include an additional factor, TtpC (138–140).
All of the Vibrio tonB2 gene clusters, as well as some tonB3 oper-
ons, include a ttpC gene (139). TtpC is a cytoplasmic membrane
protein that is predicted to have three membrane-spanning do-
mains with its C terminus in the cytosol and its N terminus located
within the periplasm (140). TtpC is part of the TonB2-ExbB2-
ExbD2 complex and is required for the transport of heme or sid-
erophores that use the cognate outer membrane receptors (140).

The first TonB system characterized in Vibrio, the TonB1-
ExbB1-ExbD1 system, is encoded on the smaller of the two chro-
mosomes of V. cholerae, and the genes are in an operon containing
genes for the use of heme as an iron source (33) (Fig. 1). A second
system, the TonB2-ExbB2-ExbD2 system, maps to the larger
chromosome (33) (Fig. 1). Analysis of the TonB1 and TonB2 sys-
tems indicates that they have overlapping functions but are not
fully redundant. Vibriobactin and ferrichrome are transported ef-
ficiently using either TonB1 or TonB2 (33, 135). Either TonB sys-
tem also allowed heme transport via HutA and HutR, although
transport was more efficient in strains carrying the tonB1 system
genes (120). In contrast, heme uptake via HasR was TonB2 depen-
dent (120). The TonB2 system is required for catechol transport
via the VctA and IrgA receptors in V. cholerae (106), and tonB2,
but not tonB1, can complement E. coli tonB mutations for trans-
port of the catechol siderophore enterobactin (33). It was shown
through characterization of chimeric TonB molecules, as well as
analyses of TonB1 point mutants, that the specificity of TonB1 for
outer membrane receptors in V. cholerae resides within the car-
boxy terminus of TonB1 (141). Conversely, the ability of a recep-
tor to be energized by TonB1 is determined by a single amino acid
residue in the N-terminal domain of these receptors (141).

FIG 5 General scheme for TonB-dependent iron transport systems. The iron
complex is recognized by a specific receptor in the outer membrane (OM).
Vibrio spp. have receptors for their own endogenously synthesized sidero-
phores and for exogenous siderophores produced by siblings or by members of
other species (xenosiderophores). Transport across the outer membrane is
dependent on energy provided by the TonB-ExbB-ExbD complex. Following
transport, the siderophore or heme is bound to a periplasmic binding protein
and is delivered to the ATP-dependent inner membrane (IM) permease.
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TonB1 interacts with a restricted group of V. cholerae receptors
but has the ability to function under environmental conditions,
i.e., growth with high salt levels, that do not allow TonB2 to sup-
port transport through some receptors (135). TonB1 is 38 amino
acids longer than TonB2, and most of this extension maps to the
proline-rich region that spans the periplasm. Under conditions of
increased osmolarity, such as those of seawater, which increase the
periplasmic space (142), the longer TonB1 system could span the
periplasm to interact with the receptors. The shorter TonB2 sys-
tem does not function with a subset of the outer membrane recep-
tors, including the heme receptors, in medium with increased salt
concentrations. Deletion of 35 amino acids of the periplasmic do-
main region of TonB1 did not affect its ability to function at low
osmolarity but eliminated its interaction with the heme receptors
at higher osmolarity (135). Thus, TonB1 may specifically be re-
quired for transport through a subset of TonB-dependent recep-
tors when V. cholerae is in the marine environment, while TonB2
is required for the use of some catechol xenosiderophores.

V. alginolyticus also has two TonB systems that have distinct
functions. While both the TonB1 and TonB2 systems supported
the use of vibrioferrin and the xenosiderophore ferrichrome,
TonB1 was specifically required for heme use (116).

Transport from the Periplasm to the Cytoplasm

Following transport across the outer membrane, the siderophore
or heme is bound by a periplasmic binding protein (PBP) and
handed off to an ATP-binding cassette (ABC) transporter for
transit across the cytoplasmic membrane. The periplasmic and
cytoplasmic membrane proteins recognize specific ligands but
tend to be less discriminating than the outer membrane receptors.
Thus, vibriobactin is recognized by the outer membrane receptor
ViuA (94) and not by the catechol receptors VctA and IrgA (106),
but once in the periplasm, either of the catechol PBP and ABC
transporters VctPDGC and ViuPDGC can transport the sidero-
phore into the cell (106). Similarly, enterobactin derivatives are
not recognized by ViuA but can be transported by both the Vct
and Viu periplasmic and cytoplasmic membrane transport sys-
tems (96).

The transport of hydroxamate siderophores has been character-
ized in less detail than catechol transport in the Vibrionaceae. Hy-
droxamate siderophores also have specific outer membrane re-
ceptors but often share periplasmic binding proteins and
cytoplasmic transporters (143). In V. parahaemolyticus, fer-
richrome and aerobactin have distinct receptors, but FhuBCD
transports both of these hydroxamates through the periplasm and
across the cytoplasmic membrane (110).

Once in the cytoplasm, iron must be removed from the sidero-
phore for use by the cell. This can be accomplished by the reduc-
tion of ferric iron to ferrous iron, for which the siderophores have
low affinity, or by enzymatic cleavage of the siderophore. The use
of vibriobactin-bound iron requires ViuB (37), and based on its
homology to the E. coli siderophore-interacting protein YqjH
(144), it is likely to act as a ferric reductase and to release iron from
vibriobactin. Although E. coli uses an esterase, Fes, to break down
enterobactin to release iron (36), no homolog of Fes is found in V.
cholerae. Because V. cholerae uses linear rather than cyclic cat-
echols, it may not be necessary to degrade the siderophore to re-
lease the iron (108). Other Vibrio spp., however, have Fes ho-
mologs, including V. parahaemolyticus (75% amino acid sequence
identity), V. alginolyticus (37% identity), and V. anguillarum

(36% identity). The V. anguillarum Fes homolog VabH has been
partially characterized and was shown to be required for the use of
the V. anguillarum siderophore vanchrobactin (145). Vanchro-
bactin is also a linear catechol but resembles enterobactin in that it
contains serine linked to the catechol.

Transport of Unchelated Iron: Ferrous and Ferric Iron
Transporters

Although siderophores have extremely high affinities for iron and
can promote growth under many conditions of limited iron avail-
ability, they must not be sufficient for iron acquisition under all
conditions, since all the vibrios tested have been found to have
additional systems. This suggests that there has been selection for
iron transport systems that can provide iron under conditions
where the siderophores do not meet the cell’s need for iron. In
environments where only ferrous iron is available, for example,
the ferric iron-binding siderophores would not efficiently trans-
port iron. Transporters for both ferric iron and ferrous iron that is
not complexed to a carrier have been identified in Vibrio spp.

FeoABC, a ferrous iron transporter, is found in all the Vibrio
species analyzed (31, 146). This system is likely the most ancient
bacterial iron transport system, since homologs of the feo genes are
widely distributed among bacterial species, and prior to the evo-
lution of oxygen in the Earth’s atmosphere, Fe2� would have been
the predominant iron species. The Feo transporter was first de-
scribed in E. coli (147) and consists of FeoB, an 85-kDa cytoplas-
mic membrane protein, and two small (�8.5-kDa) cytoplasmic
proteins, FeoA and FeoC (Fig. 6). FeoB is the most highly con-
served of these proteins in the vibrios, while FeoC is the least
conserved (146). In V. cholerae, the feoABC genes form an operon,
and all 3 genes are required for Feo-mediated iron transport (146,
148). Although this system has not been fully characterized, it is
thought that FeoB forms the ferrous iron transport channel in the
cytoplasmic membrane and that FeoA and FeoC serve accessory
functions. FeoB is embedded in the cytoplasmic membrane and
has a cytoplasmic, amino-terminal extension with homology to
eukaryotic G proteins. The GTPase activity is required for trans-
port, but its precise function has not been established (149). Sim-
ilarly, the roles of FeoA and FeoC are poorly understood. Interac-
tions between V. cholerae FeoB and FeoC have been shown (146).
In Salmonella, FeoC has been shown to stabilize FeoB by providing

FIG 6 The ferrous iron transporter Feo. FeoB is localized to the cytoplasmic
membrane. The accessory proteins FeoA and FeoC likely associate with the
N-terminal cytoplasmic domain of FeoB. GDI, guanosine nucleotide dissoci-
ation inhibitor.
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protection against protease degradation (150), and it may play a
similar role in the Vibrio Feo transporter. FeoA has also been
shown to interact with FeoB in Salmonella (151), but how FeoA
functions in ferrous iron transport is unknown. Another question
that remains to be answered is how ferrous iron gains access to the
periplasm for transport by Feo. No ferrous iron transporter has
been identified in the outer membrane. The ferrous iron may dif-
fuse through porins or other relatively nonspecific channels, con-
sistent with the lack of a requirement for TonB for Feo-mediated
iron transport (152).

In V. cholerae, ferrous iron transport is facilitated by a cytoplas-
mic membrane protein designated VciB (152). The transport of
ferrous iron and growth of bacteria are increased when VciB is
present in addition to a ferrous iron transport system, including V.
cholerae Feo, E. coli Feo, or Shigella flexneri Sit (152). The lack of
specificity for V. cholerae Feo suggests that VciB does not recog-
nize and interact with the ferrous iron transporter but may serve a
more general function, such as in the reduction of ferric iron to
ferrous iron for subsequent transport. Unlike most of the V. chol-
erae iron transporters, which have homologs in the other Vibrio
species, VciB has few relatives in the genome sequence databases.
VciB is found in all the sequenced V. cholerae genomes and may
play a unique role in V. cholerae iron metabolism. Although it does
not have homology to VciB, a ferric reductase has been identified
in V. vulnificus (153), and it may play a similar role as VciB in
making iron more available for transport via Feo.

V. cholerae also has a transporter for ferric iron, FbpABC, an
ABC-type transporter in the cytoplasmic membrane (148). Based
on homology with other ABC transporters, it was proposed that
ferric iron bound to FbpA, the periplasmic binding protein com-
ponent of the system, is delivered to FbpBC in the cytoplasmic
membrane, which uses ATP hydrolysis to drive the transport of
iron into the cytoplasm. As noted for the ferrous iron ligand for
the Feo system, ferric iron transport by Fbp is TonB independent
(148), and no specific outer membrane receptor has been identi-
fied. FbpABC is widely conserved in the Vibrionaceae and appears
to represent a common mode of ferric iron acquisition in this
family.

A third system for the transport of iron not complexed to a
siderophore has been identified in V. cholerae. VctP, which is the
periplasmic binding protein component of the Vct system, one of
two V. cholerae transporters for catechol siderophores, also recog-
nizes iron in the absence of the catechol. These two transport
functions can be separated genetically. A tyrosine-to-phenylala-
nine substitution had no effect on ferri-catechol transport but
eliminated the transport of iron in the absence of the siderophore
(154). Thus, the Vct system can transport iron in either the pres-
ence or absence of the catechol siderophore.

IRON ACQUISITION WITHIN THE HOST

Vibrios are often found in association with other organisms.
These associations present both opportunities for the bacteria to
take advantage of new iron sources and hazards of outcompetition
by host iron-binding proteins.

In humans, most of the iron is complexed to heme, primarily in
red blood cell hemoglobin but also in heme proteins in other cells.
Ferritin and Fe-S proteins account for much of the remainder of
intracellular iron. Potential sources of iron in extracellular fluids
are host iron-binding proteins, transferrin in the circulation and
lactoferrin in secretions. However, these proteins are usually rel-

atively unsaturated with iron, reducing the level of available iron
in serum and secretions to a level below that needed to support
microbial growth (155–159). Furthermore, lactoferrin has been
found to have bactericidal activity against V. cholerae (160, 161).
Lactoferrin can be cleaved by proteases to yield the antimicrobial
peptide lactoferricin, which is active against a variety of Gram-
negative pathogens (162), and it is possible that this accounts for
the bactericidal effect against V. cholerae. In addition to the effects
of iron-binding proteins, the vertebrate hormone hepcidin helps
starve invading pathogens for iron by regulating the absorption of
iron and its distribution within the body, reducing available iron
in response to infection (158, 163, 164). This withholding of iron
by host proteins and the active sequestration of iron in mammals
in response to infection have been termed nutritional immunity
(165, 166). Conditions that result in increased available iron in
humans are associated with higher rates of infection and more
severe infections. Hemochromatosis is associated with a variety of
severe infections (167), including V. vulnificus (168) and non-O1
V. cholerae (169) infections. V. vulnificus, in particular, is associ-
ated with infections in people with iron overload (168, 170–172),
and this can be reproduced in an animal model (173). It has been
suggested that the sensitivity of hemochromatosis patients to fatal
V. vulnificus infections is due, in part, to a failure to produce suf-
ficient hepcidin (174). Studies using a hepcidin-deficient mouse
model demonstrated that reduced hepcidin levels were associated
with increased bacteremia, while administration of hepcidin ago-
nists prevented death from V. vulnificus infection in these mice
(175). The abrogation of this iron-withholding nutritional immu-
nity favors growth of the pathogen.

Not surprisingly, many bacteria that infect humans or other
vertebrates have evolved mechanisms to circumvent nutritional
immunity and acquire iron bound to host proteins. These mech-
anisms include the expression of bacterial genes encoding iron
acquisition systems in the host environment. Evidence that iron
transport genes are expressed during infection has been obtained
by using animal models or experimental infections of humans.
Lombardo et al. (176) used in vivo expression technology (IVET)
to determine the V. cholerae genes expressed during infection of
human volunteers or in an infant mouse model. fhuC, encoding
the ATPase of the hydroxamate transport system, was identified in
both infected humans and the mouse model. Transcriptome se-
quencing (RNA-seq) analysis of V. cholerae isolated from the in-
testines of mice showed that a number of iron transport genes
were highly induced in mouse (177). Furthermore, analysis of
vibrios isolated directly from infected patients provided evidence
for iron transport gene expression during naturally occurring in-
fections. Genes for vulnibactin synthesis and the ferric vulnibactin
receptor were detected in V. vulnificus obtained from the tissue of
a patient with a severe soft tissue infection (178). Similarly, tran-
scriptional profiling of V. cholerae obtained from stool of cholera
patients showed the expression of the vct and fbp iron transport
genes (179), and Fbp was also detected in the proteome of V.
cholerae obtained from human stool (180). In contrast, neither V.
cholerae (177) nor V. parahaemolyticus (181) showed significant
expression of iron transport genes when isolated from the intes-
tine of experimentally infected infant rabbits. This suggests that
rabbit intestine is not as iron limited as human or mouse intestine
and may not be the best model for studying iron transport in vivo.

Because multiple iron transport genes and proteins may be
expressed in the host, it is not clear which of these systems are

Vibrio Iron Transport

March 2016 Volume 80 Number 1 mmbr.asm.org 79Microbiology and Molecular Biology Reviews

http://mmbr.asm.org


required for iron acquisition and colonization. Several studies
have used mutational analysis to assess the roles of specific iron
transporters in acquiring iron from the host by infecting vibrios.
The heme uptake gene cluster in V. fischeri contributes to symbi-
otic colonization of the squid light organ (182). The heme uptake
genes were expressed during colonization of the squid light organ,
and a mutant containing a deletion of the heme transport genes
had reduced fitness in colonization. In contrast, heme transport
was not essential for V. cholerae colonization in a mouse model of
infection (120).

In the vertebrate host, transferrin is one of the iron-binding
proteins that can limit bacterial growth. Some vibrios have the
ability to acquire iron from transferrin, either directly or through
their siderophores. Transferrin receptors, which bind host trans-
ferrin at the cell surface, where the iron is removed for transport,
have been described for several groups of pathogens, including
Neisseria spp. In the case of Neisseria gonorrhoeae, the transferrin
receptor is required for human infection (183). Until recently,
transferrin receptors had not been identified in Vibrio species. The
lack of identification of transferrin-binding proteins on the sur-
face of vibrios may be a result of the specificity of the receptors for
host transferrin. A recent analysis of V. vulnificus biotype 2 strains,
which cause disease in eels as well as humans, identified a receptor
for eel, but not human, transferrin (184). This receptor, Vep20,
has homology (�30% identity) to the Neisseria receptor for hu-
man transferrin, TbpA (185). Vep20 is required for full virulence
and is plasmid encoded (184). Plasmids carrying the vep20 gene
were also found in other fish-pathogenic vibrios, including V. har-
veyi, suggesting horizontal transmission of this iron acquisition
gene.

Among those vibrios that lack transferrin receptors, the se-
creted siderophore may be able to capture iron from transferrin.
V. vulnificus type 2 (186), V. parahaemolyticus (187), and V. dam-
sela (188) use their siderophores for removal of iron from human
transferrin. Okujo et al. (189) showed that V. vulnificus produced
an extracellular protease that cleaved transferrin and lactoferrin,
making the iron more accessible to the bacteria. However, subse-
quent studies by Shin et al. (190) and Kim et al. (191) demon-
strated that the metalloprotease VvpE was not required for iron
uptake from holotransferrin; the siderophore vulnibactin allowed
V. vulnificus to use transferrin iron irrespective of the presence of
the protease.

While many siderophores are able to remove iron from trans-
ferrin in vitro, this does not ensure that they can acquire transfer-
rin iron in vivo. In human, siderocalin (lipocalin 2) can bind cat-
echol siderophores and remove them from the circulation (192–
194). Not to be outwitted, bacteria have evolved siderophore
modifications that defeat the antisiderophore properties of sid-
erocalin. For example, some enteric pathogens glucosylate entero-
bactin, making it unable to be bound by siderocalin (43). It was
originally reported that the V. cholerae siderophore vibriobactin
was also a stealth siderophore, able to escape siderocalin binding
because of its weaker negative charge and phenolate-oxazoline
coordination mode (195). A subsequent study by Allred et al.,
however, showed that siderocalin shifts the coordination mode of
vibriobactin from the phenolate-oxazoline mode to the distinct
catecholate mode, allowing high-affinity binding by siderocalin
(196).

Vibriobactin synthesis was not required for infection or fluid
accumulation in an infant mouse model of infection (197). Simi-

larly, a mutant defective in heme transport had no effect in this
model (120), although a mutant defective in both the siderophore
and heme iron uptake systems showed some reduction in coloni-
zation (198). A mutant defective in both the TonB1 and TonB2
systems also had reduced fitness in the infant mouse model (135),
but testing of mutants defective in each of the known iron trans-
port systems has not revealed any single system that is essential for
V. cholerae colonization in the mouse model (148, 152, 198). Be-
cause V. cholerae has so many iron transport systems, there may be
compensation for the loss of any one system. It is also likely that
subtle losses in fitness cannot be detected in short-term animal
experiments. In nature, even a small reduction in fitness due to the
loss of an iron transporter may result in a loss of the mutant from
the population. V. cholerae would not be expected to retain mul-
tiple iron transport systems if each one did not provide some
advantage in a particular environment.

IRON AND REGULATION OF GENE EXPRESSION

Regulation of Iron Transport Systems

Although iron is essential, too much iron is lethal. Intracellular
iron that is not bound to proteins or chelated can act as a catalyst
for the Haber-Weiss reaction and participate in Fenton reactions,
leading to the generation of toxic hydroxyl radicals (199, 200).
Hydroxyl radicals damage DNA, unsaturated lipids, and proteins,
resulting in increased mutations and cell damage or death (201,
202). Thus, any excess iron is sequestered in the cell, and the bac-
teria respond to excess iron by rapidly repressing iron uptake sys-
tems. There is a coordination of iron transport with the metabolic
activities of the cells and tight regulation of iron transport to meet,
but not exceed, the demand for iron.

The major regulator of iron transport in Gram-negative bacte-
ria is Fur. Fur is an iron-binding transcriptional regulator that was
first identified in E. coli (200). It forms a homodimer, and in the
presence of iron, the iron-Fur complex binds to specific sites on
the DNA. These sites, termed Fur boxes, are typically located
within the �10 and �35 regions of the promoters of iron-regu-
lated genes, and the association of Fur with sites at this location
blocks transcription.

All Vibrio spp. analyzed thus far have a Fur homolog. V. cholerae
fur was identified by Litwin et al. (203), and a fur mutant was
found to derepress the expression of two genes involved in iron
transport, irgA and viuA, suggesting that it functioned much like
Fur in E. coli (204). Crystallization of the V. cholerae Fur protein
provided evidence for two metal-binding sites per monomer: a
regulatory site where iron or other divalent metal cations can bind
and an auxiliary zinc-binding site (205). No binding to DNA oc-
curred when the metals were removed from the protein. There was
no evidence that metal binding required any of the conserved
cysteines in the protein (205). The Fur protein is relatively abun-
dant for a transcriptional regulator; there are �2,500 copies per
cell in exponentially growing V. cholerae bacteria, increasing to
�7,500 copies in stationary-phase cells (206). Although Fur is
relatively abundant, its levels are modulated in response to iron
and the metabolic status of the cell. There is moderate negative
regulation of fur by Fe-Fur in E. coli (207), while studies of V.
vulnificus have shown positive regulation of fur by Fur in the ab-
sence of iron (208, 209). These types of autoregulation may con-
trol the ratios of Fur to Fe-Fur in the cell to limit the formation of
aberrantly active dimers between iron-bound and iron-free Fur.
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fur is also positively regulated by cyclic AMP receptor protein
(Crp) (207), and this may help couple cell metabolism to iron
uptake.

Transcriptional analysis of Fur regulation in V. cholerae re-
vealed positive as well as negative effects on transcription, al-
though regulation was predominantly negative (210). Fur re-
pressed the genes involved in iron acquisition when the cells were
grown under iron-replete conditions but positively affected the
expression of ompT, encoding a major porin protein (210, 211).
For most of the negatively regulated genes, a putative Fur box is
found in the �10 and �35 regions, but the binding site for Fur in
the ompT promoter is upstream, and increased expression may be
due to Fur competing with a negative regulator at this binding site.

A more recent analysis of transcriptional regulation of Fur dis-
criminated between direct and indirect effects. Davies et al. (212)
used chromatin immunoprecipitation sequencing (ChIP-seq) to
identify the Fur-binding sites in the V. cholerae genome. This
study verified a number of the sites predicted by genetic and tran-
scriptional analyses and revealed new sites, including several small
RNAs (sRNAs). Based on their analysis, a revised 21-bp Fur box
consensus sequence was defined, and the site of the Fur box rela-
tive to the transcriptional start site was found to be variable.

There is also evidence for strain differences in the regulation of
iron transporters. There are two distinct biotypes of V. cholerae,
classical and El Tor, which differ in virulence, environmental per-
sistence, hemolysin production, and other phenotypes. The El Tor
biotype was found to have higher expression levels of iron trans-
port genes than classical V. cholerae (213), and El Tor and non-O1
strains were noted to produce larger amounts of vibriobactin and
to have greater resistance to chemical iron chelators than classical
strains (5). Whether this is related to differences in Fur or other
regulation is unknown.

Fur has been shown to play similar roles in V. vulnificus (214–
216), V. anguillarum (217, 218), and V. salmonicida (219). In each
of these vibrios, Fur negatively regulates the expression of genes
for iron acquisition systems, thereby reducing the chance of tox-
icity due to iron overload.

Many of the vibrios secrete hemolysins that may indirectly aid
in iron acquisition by lysing erythrocytes or other host cells, re-
leasing internal heme and iron. Fur negatively regulates the ex-
pression of hemolysins in V. cholerae (220), V. parahaemolyticus
(221), and V. vulnificus (215). V. vulnificus produces a protease
that aids in the acquisition of heme from heme-albumin (222).
This proteolytic activity is not regulated by iron but is induced by
heme or hemoglobin.

Although Fur acts as a global regulator to repress iron transport
systems, there are a number of examples of additional regulators
that affect individual iron transport systems. In V. anguillarum,
anguibactin transport is positively regulated by AngR and Taf
(223–225). Taf is a transcriptional activator (226), while AngR is a
bifunctional protein required for the synthesis of anguibactin as
well as for the regulation of its transport proteins (225, 227). Other
examples of positive regulation are the activation of irgA, encod-
ing a V. cholerae enterobactin receptor, and hupR, encoding the V.
vulnificus heme receptor, both of which are divergently tran-
scribed from positive regulators. IrgB activates the transcription
of irgA (228, 229), and HupR induces hupA (230). Both IrgB and
HupR are members of the LysR family of positive transcriptional
activators (228, 230). A number of other Vibrio iron transport
genes, including vctA, have known or putative regulators that are

divergently transcribed. In each of the systems with positive reg-
ulation, the genes for the activators, as well as the iron transport-
ers, are negatively regulated by Fur. This arrangement amplifies
the response to low-iron environments and allows a much greater
fold change in expression as a function of the iron concentration
than would Fur regulation alone.

Iron and Regulatory RNAs

Transcriptional analyses of iron and Fur regulation have shown
that the concentration of iron and the presence or absence of Fur
have widespread effects on the cell. Not only is iron transport
tightly controlled by Fur, but changes in superoxide dismutase
(SodB), TCA cycle enzymes, biofilm formation, and a variety of
other phenotypes are influenced by Fur. While the effects on iron
transport genes are direct, many of the other genes are indirectly
regulated by Fur via RyhB, an sRNA. RyhB, first described in E.
coli, repressed the synthesis of the iron-containing superoxide dis-
mutase, encoded by sodB, and aconitase, encoded by acnB, among
others, by controlling mRNA stability and translation (231, 232).
RyhB can bind to the transcripts of these genes in the presence of
Hfq and direct their degradation by RNase E (233). The expres-
sion of ryhB is negatively regulated by Fur (232). Thus, Fur can
positively affect gene expression by reducing the levels of the re-
pressor RyhB. RyhB provides a mechanism for linking cellular
metabolism to iron availability and shutting down iron-greedy
enzymes and iron storage proteins when iron is less plentiful
(234). The complexity of the regulation and level of control of Fur,
RyhB, and their targets is further illustrated by the fact that RyhB
influences the levels of Fur. RyhB downregulates the expression of
Fur in E. coli and is predicted to regulate fur in Vibrio spp. (235).
There is complementarity between RyhB and the translation ini-
tiation region of the V. cholerae fur gene that may result in the
downregulation of fur mRNA.

In V. cholerae, RyhB plays a role similar to that of the E. coli
homolog, linking iron acquisition and overall metabolism. Anal-
ysis of the RyhB regulon in V. cholerae showed that RyhB influ-
enced the synthesis of superoxide dismutase, TCA cycle enzymes,
and proteins containing heme or iron-sulfur clusters (21, 236).
However, V. cholerae RyhB is considerably larger than its E. coli
homolog (�200 nucleotides, compared to 90 for E. coli) and has a
larger regulon, influencing the expression of genes involved in
motility, chemotaxis, and biofilm formation. A mutant with a
deletion in ryhB had reduced chemotactic motility and was unable
to form wild-type biofilms in low-iron medium (21). The addition
of iron restored biofilm formation in the V. cholerae ryhB mutant,
but excess iron did not enhance biofilm formation in the wild-type
strain (21). This suggests that the ryhB mutant is iron stressed in
biofilms, and the inability of the ryhB mutant to properly maintain
iron homeostasis likely contributes to the defects in motility and
biofilm formation.

The role of RyhB in iron regulation is even more complex in V.
parahaemolyticus, where RyhB positively regulates the production
of the siderophore vibrioferrin (237). RyhB, with the aid of Hfq,
can directly bind to and stabilize the 5= untranslated region (UTR)
of pvsO, a polycistronic message for vibrioferrin biosynthesis,
leading to increased vibrioferrin synthesis.

In V. anguillarum, another RNA is involved in the regulation of
siderophore transport. An antisense RNA, RNA�, specifically
controls the expression of the transport genes fatA and fatB by
binding to the fatA and fatB mRNAs and reducing their transla-
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tion (238, 239). Fur is required for RNA� synthesis and controls
transcription initiation, independent of the iron status of the cell.
It is not known how Fur regulates gene expression in the absence
of iron. However, iron-independent Fur regulation of gene ex-
pression was noted in an analysis of the Fur and iron regulons in V.
cholerae (210). Iron plays a role in RNA� expression, but the effect
of iron is posttranscriptional: RNA� is stabilized in cells grown in
the presence of iron (238). The effect of RNA� in addition to Fur
allows tighter repression of FatA and FatB synthesis in the pres-
ence of iron.

Other Environmental Sensors and Regulators for Iron
Acquisition

In addition to iron, there are a variety of other environmental
factors that influence the expression of iron transport genes, in-
cluding temperature, oxygen, carbon sources, and quorum-sens-
ing molecules. These factors, summarized in Table 2, may corre-
late with the form of iron available and serve as indirect signals for
specific iron transport systems. Higher oxygen levels are associ-
ated with the presence of ferric, rather than ferrous, iron. Thus, the
presence of oxygen may signal that it would be advantageous to
express ferric iron transporters, while anoxic environments may
increase the synthesis of ferrous iron transporters (240). Similarly,
higher temperatures signal a mammalian host environment and
could favor the expression of transporters that acquire iron from
host proteins. Expression of the cell’s entire repertoire of iron
transporters under all conditions would be metabolically costly
and could lead to the import of toxic levels of iron. Thus, addi-
tional layers of regulation would allow the cell to optimize iron
acquisition and growth by tuning the expression of the transport
genes to the most likely available iron source.

Regulation in response to signals found within the host. The
sources of iron available to vibrios in the host vary depending on
whether the bacteria are found on body surfaces or in tissues or
blood. Heme is the most abundant iron source in animal hosts,
and linking the expression of heme or hemoglobin receptors to

host conditions allows the bacteria to take advantage of this iron
source. In V. vulnificus, the heme receptor gene hupA is regulated
by temperature: there is a significant increase in the level of tran-
scription at 40°C compared to that at 30°C (241). HupA is re-
quired for maximal virulence in mice, and linking its expression to
higher temperatures allows its expression in the mammalian host
but not in the generally cooler, external environments. In con-
trast, V. salmonicida, which causes cold-water vibriosis in Atlantic
salmon, produces siderophores only at lower temperatures (242).
Siderophores and iron-regulated outer membrane transport pro-
teins are synthesized at 10°C, the water temperature at which hem-
orrhagic disease occurs, but not at temperatures of 15°C or higher.
The mechanism by which temperature affects the expression of
Vibrio iron transport genes has not been determined, but the nu-
cleoid-associated protein H-NS is a possible mediator. H-NS is
found in Vibrio and is known to regulate gene expression as a
function of temperature in other species.

Other signals in the host include the presence of specific carbon
and nitrogen sources; however, these and other signals, such as O2

concentration and pH, are not limited to the host environment
but may be found in other habitats. It is the ability of the vibrios to
integrate multiple environmental signals to regulate iron trans-
port that allows them to more precisely determine their location
and possible iron sources.

Effects of metabolism on expression of iron transport genes.
Carbon metabolism influences the expression of Vibrio iron trans-
port genes. Crp binds upstream of the V. vulnificus hupA gene and
activates its expression (241). Crp also induces the expression of
tonB3 (137) and the aerobactin receptor gene iutA (243) in V.
vulnificus. Crp and cAMP may couple growth on carbon sources
other than glucose with the increased need for iron required for
full metabolism of these substrates. While glycolysis does not re-
quire iron-containing enzymes, other pathways, such as the Ent-
ner-Doudoroff pathway and the TCA cycle, have enzymes that
require iron for activity. Under low-iron conditions, E. coli shifts

TABLE 2 Regulation of iron transport by signals in addition to iron availabilitya

Environment Most likely iron source(s)b Environmental signalsc

Possible
Vibrio
regulator(s)

Effect(s) on Vibrio iron
transporters

Marine surface waters Fe3� compounds O2 present Fnr,d ArcABd 1 siderophore
Neutral or alkaline pH PepAe 2 Feo

Sediments, solid surfaces,
or biofilms

Fe2� compounds Low O2 concn, reduced diffusion,
and crowding in biofilm

Fnr,d ArcABd 1 Feo
LitR,f quorum

sensingf

2 siderophore,2 heme
transporters

Host Heme and transferrin in blood and tissues,
lactoferrin in secretions, and Fe2� iron
complexes in intestine

Temperature H-NSd 1 heme transporters
Specific C sources Crpf 1 TonB
Specific N sources in squid GlnDf 1 siderophore
Low O2 concn in intestine Fnr,d ArcABd 2 siderophore,1 Feo
Bile or antimicrobial peptides in

intestine
Cpxf 1 heme transporters,

1 siderophore
a Shown is a summary of the effects of environmental conditions on the regulation of iron transport systems. Conditions that have been shown to affect specific iron transporters
are discussed in the text. Arrows indicate a positive (up arrow) or negative (down arrow) effect on expression of the iron transport genes.
b Iron sources present in each environment are predicted based on the known distributions of iron complexes.
c Environmental signals are predicted based on conditions known to exist in each environment.
d Regulator that affects iron transport in other species and for which homologs are present in Vibrio spp.
e Regulator that is present in Vibrio spp. and is known to regulate genes in response to the stated conditions but that has not been shown to regulate iron acquisition genes.
f Regulator that is known to affect Vibrio iron transport.
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its metabolism to increase glycolysis and decrease the level of TCA
cycle enzymes (244). It is likely that vibrios alter their metabolism
in a similar way. In the absence of glucose, additional iron would
be needed for carbon metabolism via pathways other than or in
addition to glycolysis.

Another example of a link between metabolism and iron trans-
port has been identified in V. fischeri, which couples nitrogen me-
tabolism to iron acquisition. A mutation in glnD, which acts as a
nitrogen sensor, not only caused a defect in nitrogen metabolism
but also reduced siderophore synthesis by these bacteria (38). The
glnD mutant was unable to persist in the squid light organ, but
excess iron restored persistence to wild-type levels, indicating that
the colonization defect was a result of the effect of the glnD muta-
tion on iron acquisition. Thus, the presence of specific nitrogen
sources in the squid light organ may serve as a signal for this host
environment and increase the synthesis of the siderophore needed
for colonization.

Quorum sensing regulation and iron transport. Several stud-
ies have also linked quorum sensing to iron metabolism in Vibrio
spp. Quorum sensing modulates a variety of vibrio activities, in-
cluding biofilm formation and the expression of virulence factors.
In V. vulnificus, quorum sensing repressed vvsA and vvsB, which
encode a NRPS required for vulnibactin synthesis. The primary
quorum sensing regulator, SmcR, binds upstream of the vvsAB
transcription start site and overlaps the Fur-binding site. Under
high-iron conditions, Fur repressed vvsA transcription, while in
low-iron environments, SmcR regulated the expression of the sid-
erophore biosynthesis genes (245). Using a luxS mutant defective
in the synthesis of autoinducer 2 (AI-2), Kim and Shin observed
an increase in the synthesis of the siderophore receptors for aero-
bactin (IutA) and heme (HupA), suggesting that they are also
repressed by quorum sensing (246). Additional studies revealed a
more complex connection between iron and quorum sensing
(247). Fur bound at two sites upstream of the transcriptional start
site of smcR, repressing the production of SmcR under high-iron
conditions. However, the affinity of Fur at these sites was low
enough that smcR was induced by quorum sensing at a high cell
density, even under iron-rich conditions. In low-iron environ-
ments, Fur did not bind, and smcR expression was regulated solely
by quorum sensing. This dual control by iron (via Fur) and quo-
rum sensing (via SmcR) allows fine-tuning of iron acquisition. At
a high cell density, higher levels of the siderophore in the environ-
ment, representing a common good coupled with the reduced
need for iron as the cells enter stationary phase, could result in
cells importing too much iron. Monitoring cell density as a sec-
ondary level of negative regulation provides tighter control over
cellular iron levels. This cross talk between iron and quorum sens-
ing regulation may be a common theme in vibrios: Septer et al.
(248) showed that Fur represses LitR, a positive regulator of V.
fischeri quorum sensing that is a homolog of V. vulnificus SmcR.

Membrane stress response and regulation of iron transport.
Another environmental sensor that plays a role in the regulation
of Vibrio iron transport is the two-component Cpx pathway that
responds to envelope stress (249). Iron starvation in V. cholerae
led to Cpx activation, and overexpression of the response regula-
tor gene cpxR induced the expression of a number of iron-regu-
lated genes, including those for iron transport proteins. The Cpx
response was inhibited by the addition of iron, suggesting that
iron is a common component of Cpx-inducing signals in V. chol-
erae (249). Cpx may respond to the accumulation of potentially

toxic apo-cofactors for iron-containing proteins in the membrane
or periplasm, or it may be a response to the large number of mem-
brane proteins induced by iron starvation. Additionally, the pres-
ence of bile and membrane-damaging antimicrobial peptides in
the intestine could activate the Cpx response and signal the need
for increased levels of iron transporters in the host environment.
Thus, Cpx may aid in the response to membrane perturbations
associated with iron stress and help coordinate cellular functions
in response to iron starvation.

Growth on surfaces induces iron transport genes. In V. para-
haemolyticus, some iron transport proteins were induced by
growth on a surface (250). A comparison of genes expressed in
cells grown on solid medium to those expressed in cells grown in
broth showed the induction of a large number of genes, including
those encoding swarming motility proteins, virulence factors, and
sensory enzymes involved in chemoreception and cyclic di-GMP
(c-di-GMP) signaling. Iron-regulated genes, including those en-
coding the enterobactin and ferrichrome receptors, were also in-
duced when the bacteria were grown on the surface of agar me-
dium. This finding is consistent with data from previous studies
showing that restricted diffusion of iron in agar media limits its
availability to V. parahaemolyticus cells growing on surfaces, and
iron is a key signal for swarmer cell differentiation (251). Differ-
entiation in response to iron limitation requires Fur, but it is not
known whether the effect of Fur is direct or indirect (L. McCarter,
personal communication).

Iron Regulates Expression of Genes for Systems Other than
Iron Metabolism

In addition to its role as an essential element in maintaining cell
function, iron also serves as an environmental sensor for a wide
range of bacterial activities. In particular, it has long been noted
that environments deficient in iron trigger the synthesis of viru-
lence factors such as diphtheria toxin (252) and Shiga toxin (253),
suggesting that low iron levels are a signal that bacteria use to sense
that they are within a vertebrate host. This iron regulation is de-
pendent on Fur or Fur-like repressors (254–256), representing
another example of virulence factors coopting basic cellular regu-
lators of metabolism for control of virulence gene expression. In
V. cholerae, Fur positively regulates genes located in the V. cholerae
pathogenicity island, which encodes the toxin-coregulated pilus
(TCP), a major virulence factor of V. cholerae, as well as genes
within the mega-integron (210). Unlike the effects of Fur on iron
transport systems, the regulation of pathogenicity island genes
was independent of the iron concentration. Consistent with the
regulation of TCP synthesis or assembly, a fur mutant exhibited
very weak autoagglutination, independent of the iron concentra-
tion. Furthermore, the fur mutant had a strong phenotype in the
infant mouse model of cholera. The fur mutant was highly atten-
uated and failed to compete effectively with the wild type for col-
onization of the mouse intestine (210).

CONCLUSIONS

Iron acquisition is critical to the survival of Vibrio spp. These
bacteria inhabit a wide variety of habitats and encounter iron in
different forms depending on the habitat. The available iron may
be ferric or ferrous and may be in insoluble hydroxides or part of
heme or iron sulfur clusters in host proteins. Vibrio species have
evolved systems to acquire iron in all of these forms, and there is
evidence that iron transport systems may have been acquired from
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other bacterial species by horizontal transmission. Thus, these
bacteria are well adapted for survival in marine habitats and for
rapid adaptation to new environments when they transition to a
host or to polymicrobial communities. The selective pressures
that shape the repertoire of systems found in any of the Vibrio spp.
may be positive (ability to acquire iron in a new environment or to
reduce competition with other bacteria) and negative (TonB-de-
pendent receptors may be antigenic or may be receptors for bac-
teriophages). From the vibrio point of view, it is apparent that
more is better when it comes to iron transport systems.
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